BOLLETTINO UNIONE MATEMATICA ITALIANA

LUCIANA RAMELLA

Strata of smooth space curves having unstable normal bundle

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **2-B** (1999), n.3, p. 499–516.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_1999_8_2B_3_499_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Strata of Smooth Space Curves Having Unstable Normal Bundle.

Luciana Ramella (*)

Sunto. – Per $d\gg g$, vengono trovate curve liscie in \mathbb{P}^3 di grado de genere g aventi fibrato normale instabile con grado di instabilità σ , per ogni $1 \le \sigma \le d-4$. Inoltre per $4g-2 \le \sigma \le d-4$, viene trovata una famiglia di curve in \mathbb{P}^3 di grado de genere g avente fibrato normale instabile con grado di instabilità σ e formante uno strato dello schema di Hilbert della giusta dimensione che è $4d-g+1-2\sigma$.

Introduction.

Several authors studied the normal bundle of spaces curves, but even today our knowledge of this subject is not satisfactory.

The normal bundle of a smooth rational space curve is well-known. Eisenbud and Van de Ven in [6] and [7] gave a complete geometric description of the strata associated to the splitting type of the normal bundle of smooth rational space curves.

For $g \ge 1$, one can stratify the Hilbert scheme of degree d and genus g smooth spaces curves C by the following integer $s(N_C)$ associated to the normal bundle N_C :

$$s(N_C) = rac{1}{2} \, \deg N_C - \deg L_{\max}, \, \, \text{where} \, \, L_{\max} \, \, \text{is a maximal line subbundle of} \, \, N_C.$$

If $s(N_C) = s > 0$, we say that N_C is stable with stability degree s. If $s(N_C) = s < 0$, we say that N_C is unstable with instability degree $\sigma = -s$. If $s(N_C) = 0$, N_C is semi-stable non-stable.

Some natural questions arise.

For every integer s such that $-(d+g-4) \le s \le \lfloor g/2 \rfloor$ does exist a smooth space curve C with $s(N_C) = s$?

Let $N_{d,\,g}(s)$ be the stratum parametrizing the smooth space curves C of degree d and genus g with $s(N_C)=s$. Does $N_{d,\,g}(s)$ have an irreducible component of the «right» dimension?

(*) This research was partially supported by GNSAGA of CNR (Italy).

For $g \ge 2$ and a large d the general degree d genus g curve C has a superstable normal bundle N_C , i.e. N_C is stable with stability degree [g/2] ([10]).

For g=1, by using the geometric construction of Eisenbud and Van de Ven, Hulek and Sacchiero in [20] proved that the degree d genus 1 general space curve has a semi-stable normal bundle and they found all the instability degrees σ that normal bundles of elliptic curves can admit.

In this paper we find a lot of smooth space curves having an unstable normal bundle. For example, if either $g \ge 3$ and $d \ge 4g + 2$ or g = 2 and $d \ge 12$, we find a degree d genus g smooth curve C in \mathbb{P}^3 having an unstable normal bundle N_C with instability degree σ , where $1 \le \sigma \le d - 4$ (Theorem 4.3, Proposition 4.5, Theorem 4.6).

Moreover for $4g - 2 \le \sigma \le d - 4$, we find an irreducible component of the stratum $N_{d,g}(-\sigma)$ consisting of degree d genus g smooth space curves having an unstable normal bundle with instability degree σ of the right dimension, that is $4d - g + 1 - 2\sigma$ (Theorem 4.3).

Also for g=1, $d \ge 7$ and $3 \le \sigma \le d-4$, we can find a good irreducible component of the stratum $N_{d,1}(-\sigma)$ of the right dimension, that is $4d-2\sigma$. Thus we can calculate the dimension of some strata that Hulek and Sacchiero found in [20] (Theorem 4.8).

We use the geometric construction that Eisenbud and Van de Ven gave in [6] and [7], i.e. we use a developable ruled surface S_L containing C to describe a line subbundle L of the normal bundle N_C . S_L is called the characteristic surface of L and it is the dual surface of the curve Λ in \mathbb{P}^{3} image of the Gauss morphism induced by L.

We calculate the dimension of our strata by showing that normal sheaves N_f of morphisms f from a curve C to \mathbb{P}^3 form a flat algebraic family of sheaves (Proposition 1.3) and by describing a natural \mathcal{H} -morphism (see Theorem 1.6)

$$\gamma \colon \overset{\circ}{\mathrm{Quot}^{1,\,b}}(N_{\phi}(-1),\,\mathcal{C} \times_{S} \mathcal{H},\,\mathcal{H}) \!\to\! \mathcal{H}\!\!\mathrm{om}_{\mathcal{H}}^{b}(\mathcal{C} \times_{S} \mathcal{H},\,\mathbb{P}_{\mathcal{H}}^{3\,\vee})$$

where S is the fine moduli space of genus g smooth curves with level m structure, \mathcal{C} is the universal curve over S, \mathcal{H} is the scheme of degree d S-morphisms of \mathcal{C} in \mathbb{P}^3_S , ϕ is the universal degree d S-morphism and the first scheme denotes the quasi-projective scheme of rank 1 degree b quotient sheaves of $N_{\phi}(-1)$ that are flat over \mathcal{H} and locally free over $\mathcal{C} \times_S \mathcal{H}$.

The above morphism γ gives in a natural way the morphism G that Eisenbud and Van de Venn described in [7] Theorem 5.1.

All schemes that we consider are separated and of finite type over an algebraically closed field k of characteristic 0.

1. - A family of normal sheaves.

Let \mathcal{C} be a smooth curve of genus g over a scheme S and let d be a positive integer.

We consider the functor $\underline{\mathrm{Hom}}^d_S(\mathcal{C},\,\mathbb{P}^3_S)$ from the category of S-schemes to the category of sets associating to an S-scheme T the set $\mathrm{Hom}^d_T(\mathcal{C}\times_S T,\,\mathbb{P}^3_T)$ of T-morphisms f from $\mathcal{C}\times_S T$ to \mathbb{P}^3_T of degree d.

This functor is representable (see [14]). We denote by $\mathcal{H} = \mathcal{H}om_S^d(\mathcal{C}, \mathbb{P}_S^3)$ the S-scheme representing it and by $\phi \colon \mathcal{C} \times_S \mathcal{H} \to \mathbb{P}_{\mathcal{H}}^3$ the universal \mathcal{H} -morphism. The bijective map from $\operatorname{Hom}_S(T, \mathcal{H})$ to $\operatorname{Hom}_T^d(\mathcal{C} \times_S T, \mathbb{P}_T^3)$ associates to an S-morphism $\phi \colon T \to \mathcal{H}$ the T-morphism induced by the S-morphism $p \circ \phi \circ (1_{\mathcal{C}} \times \varphi)$, where p is the projection from $\mathbb{P}_{\mathcal{H}}^3$ to \mathbb{P}_S^3 .

We note that a k-point of $\mathfrak{H}om_S^d(\mathcal{C}, \mathbb{P}^3_S)$ is a pair (C, f), where C is a genus g smooth curve which is the fibre of \mathcal{C} at a k-point of S and f is a degree d morphism from C to \mathbb{P}^3_k .

DEFINITION 1.1. – We consider the canonical morphism $d\phi: T_{\mathcal{C} \times_S \mathcal{H}/\mathcal{H}} \to \phi^* T_{\mathbb{P}^3_{\mathcal{C}}/\mathcal{H}}$. The quotient sheaf coker $(d\phi)$ is denoted by N_{ϕ} and is called the normal sheaf of the universal morphism ϕ (universal normal sheaf for short).

We will prove that N_{ϕ} gives the family of normal sheaves of morphisms from \mathcal{C} to $\mathbb{P}^3_{\mathcal{S}}$.

Lemma 1.2. – The following exact sequence

$$0 \rightarrow T_{\mathcal{C} \times_{S} \mathcal{H}/\mathcal{H}} \rightarrow \phi * T_{\mathbb{P}^{3}_{\mathcal{H}}/\mathcal{H}} \rightarrow N_{\phi} \rightarrow 0$$

remains exact after any base change.

PROOF. – We prove that the sequence remains exact after every S-morphism from T to $\mathcal H$ and after every k-morphism from S' to S. Let $\varphi\colon T\to\mathcal H$ be an S-morphism and let us consider the following commutative diagram:

From [15] 20.5.4.1 and 20.5.7.3, we obtain the following commutative diagram:

Since $\Omega_{X \times_S Y/Y} \cong \Omega_X \otimes \mathcal{O}_Y$, the two first vertical arrows are isomorphisms. Moreover $\Omega_{\mathcal{C} \times_S T/\mathbb{P}_T^3}$ is a torsion sheaf supported at a closed scheme of $\mathcal{C} \times_S T$ and then its dual sheaf is zero.

 \mathbb{C} and \mathbb{P}_S^3 are two smooth S-schemes, then dualizing the above diagram gives us the following commutative diagram (see [16] Proposition 16.5.11):

Since the vertical arrows are isomorphisms, the first row is an exact sequence.

Now let $S' \to S$ be a base extension. We write $\mathcal{C}' = \mathcal{C} \times_S S'$ and $\mathcal{H}' = \mathcal{H} \times_S S'$; we note that \mathcal{H}' is the scheme representing the functor $\underline{\mathrm{Hom}}_{S'}^d(\mathcal{C}', \mathbb{P}_{S'}^3)$. We have the following commutative diagram:

$$\begin{array}{cccc} \mathcal{C}' \times_{S'} \mathcal{H}' & \stackrel{\phi'}{\longrightarrow} & \mathbb{P}^3_{\mathcal{H}'} & \longrightarrow & \mathcal{H}' \\ \downarrow & & \downarrow & & \downarrow \\ \mathcal{C} \times_{S} \mathcal{H} & \stackrel{\phi}{\longrightarrow} & \mathbb{P}^3_{\mathcal{H}} & \longrightarrow & \mathcal{H} \end{array}$$

and we conclude as above.

Proposition 1.3. – The universal normal sheaf N_{ϕ} is flat over \mathcal{H} .

PROOF. – The sequence of Lemma 1.2 remains exact after any base change and $\phi * T_{\mathbb{P}^3_{\mathcal{K}}/\mathcal{H}}$ is a flat sheaf over \mathcal{H} . Thus the quotient sheaf N_{ϕ} is flat over \mathcal{H} (see [4] ch. I § 2 n. 5).

The Euler exact sequence $0 \to \mathcal{O}_{\mathbb{P}^3}(-1) \to \mathcal{O}_{\mathbb{P}^3} \otimes k^4 \to T_{\mathbb{P}^3}(-1) \to 0$ gives the following exact sequences:

$$\begin{array}{c} 0 \\ \downarrow \\ T_{\mathcal{C} \times_S \mathcal{H}/\mathcal{H}}(-1) \\ \downarrow \\ 0 \ \rightarrow \ \mathcal{O}_{(\mathcal{C} \times_S \mathcal{H})}(-1) \ \rightarrow \ \mathcal{O}_{(\mathcal{C} \times_S \mathcal{H})} \otimes k^4 \ \rightarrow \ \phi^* T_{\mathbb{P}^3_{\mathcal{H}}/\mathcal{H}}(-1) \ \rightarrow \ 0 \\ \downarrow \\ N_{\phi}(-1) \\ \downarrow \\ 0 \end{array}$$

We have $\mathbb{P}(N_{\phi}(-1)) \subset \mathbb{P}(\phi * T_{\mathbb{P}^3_{\mathcal{K}}/\mathcal{H}}(-1)) \subset \mathcal{C} \times_S \mathbb{P}_{\mathcal{H}}^{3 \vee}$.

Proposition 1.4. – The scheme $\mathbb{P}(N_{\phi})$ is flat over \mathcal{H} .

PROOF. – $\mathbb{P}(N_{\phi})$ as an \mathcal{H} -subscheme of $\mathbb{P}(\phi * T_{\mathbb{P}^3_{\mathcal{H}}/\mathcal{H}})$ is locally defined by a unique equation.

Thus $\mathbb{P}(N_{\phi})$ is a flat \mathcal{H} -scheme if and only if it is a Cartier \mathcal{H} -divisor of $\mathbb{P}(\phi * T_{\mathbb{P}^3_{\sigma}/\mathcal{H}})$.

Write
$$L = T_{\mathcal{C} \times_S \mathcal{H}/\mathcal{H}}(-1)$$
, $T = \phi * T_{\mathbb{P}^3_{\mathcal{H}}/\mathcal{H}}(-1)$ and $N = N_{\phi}(-1)$.

We have the following exact sequence: $0 \rightarrow L \rightarrow T \rightarrow N \rightarrow 0$. Consider the following projection q:

$$\mathbb{P}(N) \subset \mathbb{P}(T) \subset \mathcal{C} \times_S \mathcal{H} \times_S \mathbb{P}_S^{3} \vee \xrightarrow{q} \mathcal{C} \times_S \mathcal{H}.$$

We have the following commutative diagram with exact rows:

(α is induced by τ).

Since morphisms f are not constant, locally the intersection of q*L and $\ker \tau$ in q*T is zero. Then q*T is locally a direct sum of q*L and $\ker \tau$. So we conclude that α is an isomorphism and $\mathfrak{I}_{P(N)}$ is isomorphic to the line bundle $\mathcal{O}_{P(T)}(-1) \otimes q*L$.

DEFINITION 1.5. – The natural morphism $\pi: \mathbb{P}(N_{\phi}(-1)) \hookrightarrow \mathbb{C} \times_{S} \mathbb{P}_{\mathcal{H}}^{3} \vee \to \mathbb{P}_{\mathcal{H}}^{3} \vee$ is called the *universal morphism giving the family of algebraic dual surfaces* of degree d morphisms from \mathbb{C} to \mathbb{P}_{S}^{3} .

Note that we have $\deg N_{\phi}(-1) = \deg \pi = 2d - 2 + 2g$.

Let b be a positive integer, we denote by $\operatorname{Quot}^{1,\,b}(N_{\phi}(-1),\,\mathcal{C}\times_{S}\mathcal{H},\,\mathcal{H})$ the quasi-projective scheme of rank 1 degree b quotient sheaves of $N_{\phi}(-1)$, that are flat over \mathcal{H} and locally free over $\mathcal{C}\times_{S}\mathcal{H}$.

Theorem 1.6. - We have a natural *H-morphism*

$$\gamma \colon \operatorname{Quot}^{1,\,b}(N_{\phi}(-1),\,\mathcal{C} \times_{S} \mathcal{H},\,\mathcal{H}) \!\to\! \mathcal{H}\!\!\operatorname{om}_{\mathcal{H}}^{b}(\mathcal{C} \times_{S} \mathcal{H},\,\mathbb{P}_{\mathcal{H}}^{3\,\vee})$$

where $\mathfrak{Hom}_{\mathcal{H}}^b(\mathcal{C} \times_S \mathcal{H}, \mathbb{P}_{\mathcal{H}}^{3\vee})$ denotes the scheme of degree b \mathcal{H} -morphisms from $\mathcal{C} \times_S \mathcal{H}$ to $\mathbb{P}_{\mathcal{H}}^{3\vee}$.

Proof. – Both $\mathcal H$ -schemes represent contravariant functors from the category of $\mathcal H$ -schemes to the category of sets. We denote these functors by F and G respectively.

We construct a functor map $g\colon F\to G$ in order to define the morphism γ . Let T be an $\mathcal H$ -scheme. The Euler exact sequence gives the following exact sequences:

If Q is an element of F(T), then Q is also a rank 1 locally free quotient of $\mathcal{O}_{(\mathcal{C} \times_S \mathcal{PO}) \times_{\mathcal{H}} T} \otimes k^4$ and so Q induces a canonical \mathcal{H} -morphism λ_Q from $(\mathcal{C} \times_S \mathcal{H}) \times_{\mathcal{H}} T$ to $\mathbb{P}^3_{\mathcal{H}}$, such that $Q = \lambda_Q^* \mathcal{U}$, where \mathcal{U} denotes the universal quotient of $\mathbb{P}^3_{\mathcal{H}}$. Thus λ_Q has degree b. So we have defined a map $g_T \colon F(T) \to G(T)$, $g_T(Q) = \lambda_Q$.

Let $h\colon T\to T'$ be an \mathcal{H} -morphism of \mathcal{H} -schemes. We have $g_T\circ F(h)=G(h)\circ g_{T'}$ because $g_T\circ F(h)(Q)=\lambda_{h^*Q},$ with $(\lambda_{h^*Q})^*\mathcal{U}=h^*Q,$ and $G(h)\circ g_{T'}(Q)=\lambda_Q\circ (1\times h),$ with $(\lambda_Q\circ (1\times h))^*\mathcal{U}=(1\times h)^*(\lambda_Q^*\mathcal{U})=(1\times h)^*Q=h^*Q.$

We write $Q_b = \overset{\circ}{\mathrm{Quot}^{1,\,b}}(N_\phi(-1),\,\mathcal{C}\times_S\mathcal{H},\,\mathcal{H})$ and we omit the index b when there can be no ambiguity.

DEFINITION 1.7. – The morphism γ of Theorem 1.6 gives a natural degree b \mathcal{H} -morphism from $\mathcal{C} \times_S \mathcal{H} \times_{\mathcal{H}} \mathcal{Q}$ to $\mathbb{P}^{3\vee}_{\mathcal{H}}$ and thus a degree b \mathcal{Q} -morphism $\lambda \colon \mathcal{C} \times_S \mathcal{Q} \to \mathbb{P}^{3\vee}_{\mathcal{Q}}$.

The morphism λ is called the degree b Gauss morphism associated to the universal normal sheaf $N_{\phi}.$

Now we consider the canonical morphism $d\lambda$: $T_{\mathcal{C} \times_S \mathcal{Q}/\mathcal{Q}} \to \lambda^* T_{\mathbb{P}^3_{\mathbb{Q}}^{\vee}/\mathcal{Q}}$ induced by the Gauss morphism λ , the normal sheaf $N_{\lambda} = \operatorname{coker} d\lambda$ of λ and the morphism $\sigma \colon \mathbb{P}(N_{\lambda}(-1)) \subset \mathcal{C} \times_S \mathbb{P}^3_{\mathbb{Q}} \to \mathbb{P}^3_{\mathbb{Q}}$. We have, as above, that the sheaf N_{λ} is flat over \mathcal{Q} and the scheme $\mathbb{P}(N_{\lambda})$ is flat over \mathcal{Q} . Note that the morphism σ has degree 2b - 2 + 2g.

DEFINITION 1.8. – The morphism σ from $\mathbb{P}(N_{\lambda}(-1))$ to $\mathbb{P}^3_{\mathbb{Q}}$ is called the universal morphism giving the family of degree 2b-2+2g algebraic characteristic surfaces of degree d morphisms from \mathcal{C} to \mathbb{P}^3_S .

We consider as an example $\mathcal{C} = \mathbb{P}^1_k$. We denote by $q_b \colon \mathbb{Q}_b \to \mathcal{H}$ the structural morphism and by $q_b(\mathbb{Q}_b)$ the scheme image of q_b .

We denote by N(2d-2-b,b) the scheme $(q_b(\mathcal{Q}_b)-q_{b-1}(\mathcal{Q}_{b-1}))\cap \mathcal{H}'$, where \mathcal{H}' denotes the open set of \mathcal{H} consisting of embeddings. A k-point of N(2d-2-b,b) is an embedding $f\colon \mathbb{P}^1_k\to \mathbb{P}^3_k$ of degree d such that the vector bundle $N_f(-1)$ is isomorphic to $\mathcal{O}_{\mathbb{P}^1_k}(2d-2-b)\oplus \mathcal{O}_{\mathbb{P}^1_k}(b)$. We have the following:

COROLLARY 1.9 (see [7]). – If b < d-1, then there is a natural morphism $G \colon N(2d-2-b\,,\,b) \to \mathcal{H}om^b(\mathbb{P}^1_k,\,\mathbb{P}^{3\vee}_k)$.

PROOF. – Let \mathcal{Q}' the inverse image of \mathcal{H}' by q_b . If b < d-1, then q_b is an isomorphism between \mathcal{Q}' and N(2d-2-b,b). So the \mathcal{H} -morphism $\gamma: \mathcal{Q} \to \mathcal{H}_{\mathcal{H}}^b(\mathbb{P}^1_k \times \mathcal{H}, \mathbb{P}^{3\vee}_{\mathcal{H}})$ of Theorem 1.6 gives the morphism G.

In Corollary 1.9 we have obtained in a *natural way* the morphism G that Eisenbud and Van de Ven described in [7] Theorem 5.1. The morphism G has been the basis for studying the stratification of the scheme \mathcal{H}' of embeddings f from \mathbb{P}^1_k to \mathbb{P}^3_k by the splitting type of $N_f(-1)$ (see [6] and [7]).

2. – Dual and characteristic surfaces of curves.

Now we want to describe fibres of the morphism γ of Theorem 3 by means of curves on developable ruled surfaces. We use the geometric construction that Eisenbud and Van de Venn gave in [6] and [7].

We consider a smooth curve C of genus g over k and a morphism $f: C \to \mathbb{P}^3_k$ of degree $d \ge 2$. The fibre $(N_f)_x$ of the normal sheaf N_f of f is a free $\mathcal{O}_{C,x}$ -module if and only if x is not a ramification point of f and f(x) is not a cusp. Moreover, if f is an embedding, the normal sheaf N_f is isomorphic to the normal bundle N_X of X = f(C) in \mathbb{P}^3_k .

DEFINITION 2.1. – The quotient N_f of the normal sheaf N_f by its torsion subsheaf R_f is called the *normal bundle of the morphism f*.

The number $\kappa = \deg R_f$ is called the number of points x of C such that either x is a ramification point or f(x) is a cusp (see [25] §3).

The image of the canonical morphism $\pi: \mathbb{P}(N_f'(-1)) \to \mathbb{P}_k^{3}^{\vee}$ is called the dual surface of f.

Let $\wp^m(f^*\mathcal{O}_{\mathbb{P}^3_k}(1))$ be the bundle of principal parts of order m (m=1,2), it has rank (m+1) and we have a canonical morphism $a^m:(k^4)^\vee\otimes\mathcal{O}_C\to$ $\wp^m(f^*(\mathcal{O}_{\mathbb{P}^3_k}(1)).$

DEFINITION 2.2 (see [25]). – The bundle $\wp_f^m = \text{Im}(a^m)$ is called the osculating bundle of order m of f.

The rank 2 bundle \wp_f^1 gives a natural morphism τ_f^1 from C to the Grassmannian G(1,3) of lines in \mathbb{P}_k^3 , describing tangents lines of f(C). The bundle \wp_f^2 gives a morphism τ_f^2 from C to $\mathbb{P}_k^3 \vee$ describing osculating planes of f(C).

Assume that f is a non-degenerate morphism. The image of the canonical morphism $p \colon \mathbb{P}(\mathscr{D}_f^1) \hookrightarrow C \times \mathbb{P}_k^3 \to \mathbb{P}_k^3$ is the tangent developable surface T_f of f. The image of τ_f^2 in \mathbb{P}_k^3 is the dual curve of f(C) and τ_f^2 is denoted by f^{\vee} .

If f is a degenerate morphism, the image of τ_f^1 is the (plane) dual curve of f(C) and τ_f^1 is denoted by f^\vee .

Lemma 2.3. – We have the following exact sequence of bundles over C:

$$0 \rightarrow (\wp_f^1)^{\vee} \rightarrow k^4 \otimes \mathcal{O}_C \rightarrow N_f'(-1) \rightarrow 0$$
.

PROOF. – From properties satisfied by osculating bundles and described in [25], we deduce the following commutative diagram with exact rows and columns:

Thus we find the following exact sequence:

$$0 \to N_f(-1)^{\vee} \to k^{4\vee} \otimes \mathcal{O}_C \xrightarrow{a^1} \wp^1(f * \mathcal{O}_{\mathbb{P}^3_k}(1))$$

and we obtain the thesis by dualizing it.

PROPOSITION 2.4. – If f is a non-degenerate morphism from C to \mathbb{P}^3_k , then the dual surface S_f of f is the tangent developable surface of the morphism f^{\vee} giving the dual curve of f(C).

If f is a degenerate morphism, then we have $N'_f(-1) \cong \mathcal{O}_C \oplus (f^{\vee})^* \mathcal{O}_{\mathbb{P}^{2\vee}}(1)$ and the dual surface S_f of f is the cone over the (plane) dual curve $f^{\vee}(C)$ with vertex the point corresponding to the plane containing f(C).

Proof. – If f is non-degenerate then, from the above Lemma and from Lemma 5.2 of [25], we obtain canonical isomorphisms of the following exact sequences:

If f is degenerate, we have $N'_f(-1) \cong \mathcal{O}_C \oplus N'_{f,H}(-1)$, where H is the plane containing f(C) and $N'_{f,H}$ denotes the normal bundle of f in H. From Lemma 2.3 $N'_{f,H}(-1)$ is isomorphic to $(f^\vee)^* \mathcal{O}_{\mathbb{P}^{2\vee}}(1)$ and we have the assertion.

Let L be a line subbundle of $N_f'(-1)$. It gives an exact sequence of vector bundles $0 \to L \to N_f'(-1) \to Q \to 0$. The injection $\mathbb{P}(Q) \hookrightarrow \mathbb{P}(N_f'(-1))$ gives a section of the projective bundle $\mathbb{P}(N_f'(-1))$.

DEFINITION 2.5. – The restriction of the morphism π to $\mathbb{P}(Q)$ (see Definition 2.1) gives a morphism $\lambda \colon C \to \mathbb{P}^{3}_{k}$ called the *Gauss morphism associated* to the line subbundle L of $N_{f}'(-1)$ (see [7]). We have $\lambda^{*}(\mathcal{O}_{\mathbb{P}^{3}\vee}(1)) \cong Q$.

If deg $\lambda > 0$, let x be a point of C, the dual line in \mathbb{P}^3_k of the tangent line of $\lambda(C)$ at $\lambda(x)$ is called the *characteristic line of* L at x.

If deg $\lambda > 1$, the set of characteristic lines of L forms a ruled surface S_L called the *characteristic surface of* L.

PROPOSITION 2.6. – The characteristic line of L at $x \in C$ contains the point f(x).

PROOF. – We denote by $k[x_0, x_1, x_2, x_3]$ and $k[X_0, X_1, X_2, X_3]$ the homogeneous coordinate ring of \mathbb{P}^3 and $\mathbb{P}^{3\vee}$ respectively. We assume that f(x) and $\lambda(x)$ are contained in the affine open sets $x_0 \neq 0$ and $X_0 \neq 0$ respectively.

Morphisms f and λ are locally defined at x by equations of the following type respectively:

$$\begin{cases} x_1 = a_1(t) \\ x_2 = a_2(t) \\ x_3 = a_3(t) \end{cases} \text{ and } \begin{cases} X_1 = A_1(t) \\ X_2 = A_2(t) \\ X_3 = A_3(t) \end{cases}$$

Suppose that for both morphisms f and λ the point x gives neither a ramification point nor a cusp.

The characteristic line of L at x has equations

$$x_0 + \sum_{i=1}^3 A_i(0) x_i = \sum_{i=1}^3 A_i'(0) x_i = 0$$
.

By using the duality between tangent developable surfaces and dual ones, we have that the plane $x_0 + \sum\limits_{i=1}^3 A_i(t) \, x_i = 0$ contains the tangent line of f(C) at f(t), then we have $1 + \sum\limits_{i=1}^3 A_i(t) \, a_i(t) = \sum\limits_{i=1}^3 A_i(t) \, a_i'(t) = 0$. The derivate of the first equation gives $\sum\limits_{i=1}^3 A_i'(t) \, a_i(t) = 0$ and then the characteristic line of L at x contains f(x).

For the other points x of C the proof is similar.

REMARK 2.7. – Let $f: C \to \mathbb{P}^3$ be a degree d morphism, with $d \ge 2$, and $0 \to L \to N_f'(-1) \to Q \to 0$ an exact sequence of vector bundles, with $\deg Q \ge 2$. The line subbundle L of $N_f'(-1)$ induces a Gauss morphism

 $\lambda \colon C \to \mathbb{P}^{3\vee}$, with $\lambda^*(\mathcal{O}_{\mathbb{P}^{3\vee}}(1)) \cong Q$, and the curve $\lambda(C)$ lies on the dual surface S_f of f.

The above Proposition prove that the characteristic surface S_L of L (i.e. the dual surface of λ) contains the curve f(C) and we have a quotient $N'_{\lambda}(-1) \to f^* \mathcal{O}_{\mathbb{P}^3}(1) \to 0$. We can say that f is the Gauss morphism associated to a line subbundle of $N'_{\lambda}(-1)$.

Note that f(C) is the projection of a unisecant section of $\mathbb{P}(N_{\lambda}'(-1))$. If λ is birational, $\mathbb{P}(N_{\lambda}'(-1))$ is isomorphic to the desingularisation \widetilde{S}_{λ} of the dual surface S_{λ} of λ . If λ is a r: 1 morphism (r > 1), the desingularisation \widetilde{S}_{λ} of S_{λ} is isomorphic to a rank 2 projective bundle $\mathbb{P}(E)$ on the desingularisation of the curve $\lambda(C)$. In this case f(C) is the projection of a r-secant section of $\mathbb{P}(E) \cong \widetilde{S}_{\lambda}$.

We can conclude that the fibre of the morphism γ of Theorem 1.6 at the point (C, λ) is given by the pairs (f, Q), where f is the morphism associated to a degree d line bundle quotient of $N'_{\lambda}(-1)$ and Q is $\lambda^* \mathcal{O}_{P^{3\vee}}(1)$.

3. - Stratifications.

Let E be a rank 2 vector bundle over a genus g smooth curve C. To E associate the integer $\tilde{s}(E) = \deg E - 2 \max \{\deg L\}$, where the maximum is taken over all rank 1 subsheaves L of E (see [21]).

A rank 1 subsheaf L of E of maximal degree is a line subbundle of E and it is called a *maximal subbundle* of E.

Note that $\tilde{s}(E) \equiv \deg E(\operatorname{mod} 2)$ and that E is called *stable* (resp. *semi-stable*) if and only if $\tilde{s}(E) > 0$ (resp. $\tilde{s}(E) \geq 0$). If $\tilde{s}(E) < 0$ E is called *unstable*.

Let C_0 be a section of the projective bundle $\mathbb{P}(E)$ of minimal self-intersection. C_0 is given by a maximal subbundle of E and we have $C_0^2 = \tilde{s}(E)$. Nagata proved in [22] that $\tilde{s}(E) \leq g$.

The normal bundle N of a smooth curve in \mathbb{P}^3 has an even degree. We give the following definition:

DEFINITION 3.1. – If N is a rank 2 vector bundle of even degree, we put $s(N) = (1/2) \tilde{s}(N)$. If s(N) > 0, the bundle N is stable and we say that s(N) is the *stability degree of* N; if s(N) < 0, N is unstable, we write $\sigma(N) = -s(N)$ and we say that $\sigma(N)$ is the *instability degree of* N.

The definition of stability degree of the normal bundle of a space curve used by Ellingsrud and Hirschowitz in [10] is the one given above.

We want to study curves in \mathbb{P}^3 having an unstable normal bundle. Note that we have the following fact:

Lemma 3.2. – An unstable rank 2 vector bundle N has a unique maximal subbundle.

PROOF. – Let us suppose that there exist two maximal subbundles L_1 and L_2 of N. We have two exact sequences of vector bundles over $C\colon 0\to L_1\to N\to Q_1\to 0$ and $0\to L_2\to N\to Q_2\to 0$. Then we have a natural morphism $\varphi\colon N\to Q_1\oplus Q_2$. The morphism φ is non-null, then we have rank $(\ker\varphi)\leqslant 1$. L_1 and L_2 are two different line subbundles of N, then $\ker\varphi$ is of rank 0 and so φ is an injective morphism. Since N is unstable, we have $\deg N>\deg Q_1+\deg Q_2$, absurd.

Now we define the stratification of the Hilbert scheme of smooth curves in \mathbb{P}^3 with unstable normal bundle by the instability degree of the normal bundle and we estimate the «right» dimension of these strata.

NOTATION 3.3. – Let $\mathcal{C} \to M_{g, m}$ be the universal curve over the fine moduli space of genus g smooth curves with level m structure, for $g \ge 2$.

We denote by $\mathcal{H}_{d,g,m}$ the open set of $\mathcal{H}_{M_{g,m}}(\mathcal{C}, \mathbb{P}^3_{M_{g,m}})$ consisting of embeddings and by $\phi \colon \mathcal{C} \times_{M_{g,m}} \mathcal{H}_{d,g,m} \to \mathbb{P}^3_{M_{g,m}}$ the universal morphism. In the étale topology, we can consider the relative Picard scheme $\operatorname{Pic}^{\mu}_{\mathcal{H}_{d,g,m}}(\mathcal{C} \times_{M_{g,m}} \mathcal{H}_{d,g,m})$ and its closed subschemes (see [18])

$$\mathcal{P}_{d,\,g,\,m}(\mu) = \left\{ (C,\,f,\,L) \in \operatorname{Pic}^{\mu}_{\mathcal{H}_{d,\,g,\,m}}(\mathcal{C} \times_{M_{g,\,m}} \mathcal{H}_{d,\,g,\,m}) / h^{\,0}(C,\,N_f \otimes L^{\,\vee}) \geq 1 \right\}.$$

(Notice that L is a subsheaf of N_f if and only if $h^0(C, N_f \otimes L^{\vee}) \ge 1$.)

If $\mathcal{P}_{d, g, m}(\mu)$ is non-empty, then we have codim $\mathcal{P}_{d, g, m}(\mu) \leq |\chi| + 1$, where $\chi = \chi(N_f \otimes L^{\vee}) = 4d - 2\mu$ (see [1] and [18]).

Let $\mathcal{P}_{d,\,g,\,m}^0(\mu)$ be the scheme image of the natural projection of $\mathcal{P}_{d,\,g,\,m}(\mu)$ in $\mathcal{H}_{d,\,g,\,m}$.

Note that if L is a rank 1 subsheaf of N_f , then for every point p of C the line bundle L(-p) is, in a natural way, a rank 1 subsheaf of N_f . So in $\mathcal{H}_{d,\,g,\,m}$ we have $\mathcal{P}^0_{d,\,g,\,m}(\mu+1) \subset \mathcal{P}^0_{d,\,g,\,m}(\mu)$. Let us denote by $\mathcal{N}_{d,\,g,\,m}(2d-1+g-\mu)$ the locally closed scheme $\mathcal{P}^0_{d,\,g,\,m}(\mu) - \mathcal{P}^0_{d,\,g,\,m}(\mu+1)$. Let $\sigma = \mu - 2d + 1 - g > 0$. Then $\mathcal{N}_{d,\,g,\,m}(-\sigma)$ parametrizes all the degree d embeddings f of genus g smooth curves with level m structure in \mathbb{P}^3 having an unstable normal bundle N_f with degree of instability σ .

For g = 1, we consider the fine moduli space $M_{1, m}$ of polarized smooth elliptic curves with level m structure and we can do as above.

REMARK 3.4. – Let σ be a positive integer. If ξ is a k-point of $\mathcal{N}_{d,\,g,\,m}(-\sigma)$ giving an embedding $f\colon C\to\mathbb{P}^3$ with $h^1(f^*T_{\mathbb{P}^3})=0$, then for each irreducible component W of $\mathcal{N}_{d,\,g,\,m}(-\sigma)$ containing ξ we have $\dim W \geqslant 4d-g+1-2\sigma$ if $g\geqslant 2$ and $\dim W\geqslant 4d+1-2\sigma$ if g=1.

Indeed, let $\mu=2d-1+g+\sigma$. We have $\operatorname{codim} \mathscr{P}_{d,\,g,\,m}(\mu) \leq |\chi|+1$, where $\chi=\chi(N_f\otimes L^\vee)=-2(g+\sigma-1)$ (see [1] and [18]). From Lemma 3.2 we have $\dim \mathcal{N}_{d,\,g,\,m}(-\sigma)=\dim \mathscr{P}_{d,\,g,\,m}(\mu)\geq \dim \mathcal{N}_{d,\,g,\,m}+g-2(g+\sigma-1)-1$.

We have that ξ is a smooth point in $\mathcal{H}_{d,\ g,\ m}$ and $h^0(f^*T_{\mathbb{P}^3})=4d+3-3g$. Thus every irreducible component of $\mathcal{H}_{d,\ g,\ m}$ containing ξ has dimension $\geq 4d$ if $g\geq 2$ and $\geq 4d+1$ if g=1.

In a similar way, we can stratify the Hilbert scheme $I_{d,g,m}$ of degree d genus g smooth curves C in \mathbb{P}^3 with level m structure and also the Hilbert scheme $I_{d,g}$ of degree d genus g smooth curves C in \mathbb{P}^3 by the normal bundle N_C .

NOTATION 3.5. – If $\sigma > 0$, we denote by $N_{d,\,g,\,m}(-\sigma)$ and $N_{d,\,g}(-\sigma)$ the strata in $I_{d,\,g,\,m}$ and $I_{d,\,g}$ respectively parametrizing curves C having unstable normal bundle N_C with instability degree σ .

If $h^1(N_C)=0$, C is a smooth point in the Hilbert scheme and every irreducible component of $N_{d,\,g,\,m}(-\sigma)$ and of $N_{d,\,g}(-\sigma)$ containing C has dimension $\geq 4d-g+1-2\sigma$.

There exist natural morphisms $\mathcal{H}_{d,\,g,\,m} \xrightarrow{\alpha} I_{d,\,g,\,m} \xrightarrow{\alpha'} I_{d,\,g}$ and then also [4] $\mathcal{N}_{d,\,g,\,m}(-\sigma) \xrightarrow{\alpha} N_{d,\,g,\,m}(-\sigma) \xrightarrow{\alpha'} N_{d,\,g}(-\sigma)$.

We note that fibres of α' are finite, while fibres of α are finite if $g \ge 2$ and of dimension 1 if g = 1.

4. - Unstable normal bundles and some strata of the right dimension.

NOTATION 4.1. – We denote by $D_S(g)$ the minimum integer d such that there exists a degree d genus g smooth curve C in \mathbb{P}^3 whose normal bundle N_C is stable and by $D_S^0(g)$ (resp. $D_{SS}^0(g)$) the minimum integer d such that there exists a degree d genus g smooth curve C in \mathbb{P}^3 whose normal bundle N_C is stable (resp. semi-stable) and satisfies the condition $h^1(N_C) = 0$.

If $g \ge 3$ we have $D_S^0(g) \le g+3$ and for g=2 we have $D_S^0(2)=6$ (see [10]). For g=0, 1 the normal bundle is not stable.

LEMMA 4.2. – For every triple of integers (d, g, σ) such that $d \ge 3g + D_S(g) - 1$ and $4g - 2 \le \sigma \le d - 1 + g - D_S(g)$, there exists a degree d genus g smooth curve in \mathbb{P}^3 whose normal bundle is unstable with instability degree σ .

PROOF. – We consider a smooth curve C of genus g, an integer b such that $D_S(g) \le b \le d-3g+1$ and an embedding $\lambda \colon C \to \mathbb{P}^{3}$ of degree b whose normal bundle N_λ is stable. Let s be the stability degree of N_λ $(1 \le s \le \lfloor g/2 \rfloor)$.

A maximal line subbundle F_0 of $N_{\lambda}(-1)$ gives an exact sequence $0 \to F_0 \to N_{\lambda}(-1) \to \mathcal{O}_C(D_0) \to 0$ and an unisecant section C_0 of $\mathbb{P}(N_{\lambda})$ of minimal self-intersection $C_0^2 = -e = 2s$.

If D_1 is a divisor on C of degree $\geq -2s + 2g + 1$, then the divisor $\widetilde{C} = C_0 + D_1 f$ is very ample (see [3]) and then a general curve of the linear system $|\widetilde{C}|$ is projected by $p \colon \mathbb{P}(N_{\lambda}(-1) \to \mathbb{P}^3)$ into a smooth curve. So we have an embedding $f \colon C \to \mathbb{P}^3$ such that $f \colon (\mathcal{O}_{\mathbb{P}^3}(1)) = \mathcal{O}_C(D_1 + D_0)$ (see Remark 2.7).

If we pick up a divisor D_1 of degree d-b+1-g-s, we obtain an embedding f of degree d. The bundle $N_f(-1)$ has $\lambda^* \mathcal{O}_{\mathbb{P}^{3\vee}}(1)$ as a quotient (Remark 2.7) and then it has a line subbundle L of degree 2d-2+2g-b. Thus $N_f(-1)$ is unstable with instability degree $\sigma=d-1+g-b$.

Theorem 4.3. – For $g \ge 2$, $d \ge 3g + D_S^0(g) - 1$ and $4g - 2 \le \sigma \le d - 1 + g - D_S^0(g)$, the stratum $N_{d,g}(-\sigma)$ of the Hilbert scheme $I_{d,g}$ parametrizing degree d genus g smooth curves having an unstable normal bundle with instability degree σ is non-empty and it has an irreducible component of the right dimension $4d - g + 1 - 2\sigma$.

PROOF. – Let $b=d-1+g-\sigma$, b is an integer such that $D^0_S(g) \leq b \leq d-3g+1$. We consider the universal curve $\mathcal{C} \to M_{g,\,m}$, the scheme $\mathcal{H} = \mathcal{H}_{M_{g,\,m}}(\mathcal{C},\,\mathbb{P}^3_{M_{g,\,m}})$ and the \mathcal{H} -morphism γ of Theorem 1.6.

We consider the open subscheme $\mathcal{H}_{d, g, m}$ of \mathcal{H} consisting of embeddings and the stratum $\mathcal{N}_{d, g, m}(b-d+1-g)$ (see Notation 3.3).

Let (C,f) be a k-point of $\mathcal{N}_{d,\,g,\,m}(b-d+1-g)$, since b < d-1+g, the normal bundle N_f is unstable and it has a unique maximal subbundle. Thus $N_f(-1)$ has a unique rank 1 quotient of degree b. We have that the $M_{g,\,m}$ -scheme $\mathcal{N}_{d,\,g,\,m}(b-d+1-g)$ is isomorphic to an open subscheme of $\mathrm{Quot}^{1,\,b}(N_\phi(-1),\,\mathcal{C}\times_{M_{g,\,m}}\mathcal{H},\,\mathcal{H})$ and γ is also a k-morphism

$$\gamma \colon \mathcal{N}_{d, g, m}(b-d+1-g) \to \mathcal{H}om^b_{M_{g, m}}(\mathcal{C}, \mathbb{P}^{3 \vee}_{M_{g, m}}).$$

We consider also the natural projections

$$egin{aligned} \mathcal{N}_{d,\,g,\,m}(b-d+1-g) & & \mathcal{H}_{b,\,g,\,m} \ & & & & & \mathcal{A}\downarrow & & \text{and} & & eta\downarrow \ & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & & & & & & \mathcal{A}\downarrow & & \ & & & & & & & & & & & & & & & \ & & & & & & & & & & & & \ & & & & & & & & & & & \ & & & & & & & & & & & \ & & & & & & & & & & \ & & & & & & & & & \ & & & & & & & & & \ & & & & & & & & & \ & & & & & & & & \ & & & & & & & & \ & & & & & & & & \ & & & & & & & \ & & & & & & & & \ & & & & & & & & \ & & & & & & & & \ & & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & & \ & & & & & & \ & & & & & & \ & & & & & & \ & & & & & & \ & & & & \ & & & & & \ & & & & & \ & & & & & \ & & & & \ & & & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & & & \ & & & & \ & & & & \ & & & & \ & & & \ & & & & \ & & & & \ & & & \ & & & \ & & & & \ & & & \ & & & & \ & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & \ & & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & \ & & \ & & & \ & \ & & \ & & \ & & \ & & \ & \ & & \ & & \ & & \ & & \ & \ & \ & & \ & & \ & \ & & \ & & \ & \ & \ & \ & \ & & \$$

where $\mathcal{H}_{b,\,g,\,m}$ denotes the open subscheme of $\mathcal{H}_{M_{g,\,m}}^{b}(\mathcal{C},\,\mathbb{P}_{M_{g,\,m}}^{3\,\vee})$ consisting of embeddings and $I_{b,\,g,\,m}$ denotes the open subscheme of the Hilbert scheme Hilb_{b,\,g,\,m}($\mathbb{P}^{3\,\vee}$) consisting of smooth curves.

Let Λ be a degree b genus g smooth curve of $\mathbb{P}^{3\vee}$ having a stable normal

bundle N_A with $h^1(N_A) = 0$. We denote by $H_{b,g,m}$ the irreducible component of dimension 4b of $I_{d,g,m}$ defined by A with a level m structure.

 Λ is given by a degree b embedding $\lambda: C \to \mathbb{P}^{3 \vee}$ of $\mathcal{H}_{b, q, m}$.

The fibre of γ at (C, λ) is an (irreducible) open subscheme of the Hilbert scheme of curves in $\mathbb{P}(N_{\lambda}(-1))$ of class $\tilde{C} = C_0 + (d-b+1-g-s)f$ in the Neron-Severi group, where s denotes the stability degree of N_{λ} .

By the Kodaira Vanishing Theorem, we have $h^1(\mathcal{O}(\widetilde{C}))=0$ (see [3] §1) and then, by the Riemann-Roch Theorem, we have dim $|\widetilde{C}|=\widetilde{C}^2+1-2g$. Thus we have found a non-empty irreducible component of $\mathcal{N}_{d,\,g,\,m}(b-d+1-g)$ of dimension $4b+\widetilde{C}^2+1-g=4d-g+1-2\sigma$.

We conclude by considering the (finite) projections into $N_{d, g, m}(b-d+1-g)$ and $N_{d, g}(b-d+1-g) = N_{d, g}(-\sigma)$.

When there exist degree b curves having stable normal bundle with maximum stability degree $s = \lfloor g/2 \rfloor$, we can amplify the range of σ in the above Theorem. We have:

PROPOSITION 4.4. – For $g \ge 4$, $d \ge 6g - 2$ and $4g - 1 - \lfloor g/2 \rfloor \le \sigma \le 4g - 3$, the stratum $N_{d,\,g}(-\sigma)$ of the Hilbert scheme $I_{d,\,g}$ parametrizing degree d genus g smooth curves having an unstable normal bundle with instability degree σ is non-empty and it has an irreducible component of the right dimension $4d - g + 1 - 2\sigma$.

PROOF. – For $b \ge 3g$ the general curve \varLambda of $I_{b,\,g}$ has a stable normal bundle N_{\varLambda} with stability degree $s = \lfloor g/2 \rfloor$ and it satisfies the condition $h^1(N_{\varLambda}) = 0$ (see [10]). At this point we can proceed as in the above proof, by using general curves of $I_{b,\,g}$ with $3g \le b \le d-3g+\lfloor g/2 \rfloor$.

For g = 2 we obtain also the following

Proposition 4.5. – For g=2, $d \ge 12$ and $\sigma = d-4$, the stratum $N_{d,\,2}(4-d)$ of the Hilbert scheme $I_{d,\,2}$ parametrizing degree d genus 2 smooth curves having an unstable normal bundle with instability degree d-4 is non-empty and it has an irreducible component of the right dimension 2d+7.

PROOF. – For b=5 and g=2 the general curve \varLambda of $I_{5,\,2}$ lies on a smooth quadric. Thus its normal bundle is unstable with instability degree 1. Moreover we have the condition $h^1(N_{\varLambda})=0$, so we can proceed as in the proof of Theorem 4.3.

Since $D_S^0(g) \le g+3$ for $g \ge 3$ and $D_S^0(2) = 6$ (see [10]), if either $g \ge 3$ and $d \ge 4g+2$ or g=2 and $d \ge 12$, we found an irreducible component

of the stratum $N_{d,g}(-\sigma)$ of the right dimension for every stability degree σ such that $4g-2 \le \sigma \le d-4$.

For $1 \le \sigma \le 4g - 3$, we can prove that the stratum $N_{d,g}(-\sigma)$ is non-empty.

THEOREM 4.6. – Assume $d \ge 1 + 2g + \sqrt{1 + 8g}$, then there exist degree d genus g smooth curves in \mathbb{P}^3 having an unstable normal bundle with instability degree σ , for every $1 \le \sigma \le (1/2) d + 2g - 2$.

PROOF. – There exists a birational morphism $\lambda\colon C\to\mathbb{P}^{3\,\vee}$ of degree $d+g-1-\sigma$ such that the curve image Λ is plane with $\kappa=d+4g-4-2\sigma$ cusps. In fact its (plane) dual curve $\lambda^\vee\colon C\to\mathbb{P}^3$ is of degree d and has $\kappa_0=d+g-1+\sigma$ cusps, it satisfies conditions (17') of [30] p. 221 and its existence is proved in [30] p. 222.

We consider $\pi: \mathbb{P}(N_{\lambda}'(-1)) \to \mathbb{P}^3$, the surface image is the cone S over $\lambda^{\vee}(C)$ with vertex the point corresponding to the plane containing $\lambda(C)$.

We recall that $N'_{\lambda}(-1) = \mathcal{O}_C \oplus \mathcal{O}_C(D)$, where D is the divisor of C giving the morphism λ^{\vee} . $\mathcal{O}_C(D)$ as a line subbundle of $N'_{\lambda}(-1)$ gives the unisecant section C_0 of $\mathbb{P}(N'_{\lambda}(-1))$ of minimal self-intersection $C_0^2 = -d$. Furthermore $\mathcal{O}_C(D)$ as a quotient of $N'_{\lambda}(-1)$ gives the unisecant section $\widetilde{C} = C_0 + Df$.

The complete linear system |D| gives a degree d embedding $F: C \to \mathbb{P}^{d-g}$. $\lambda^{\vee}(C)$ is the projection of F(C) from a linear space l of dimension d-g-3. The secant variety of F(C) is of dimension 3 and so it intersects l at a finite set of points. Then the general hyperplane l_0 of l does not meet the secant variety of F(C). The projection from l_0 maps F(C) onto a smooth curve contained in a cone over $\lambda^{\vee}(C)$.

The general curve of the linear system $|\tilde{C}|$ is projected by π onto a smooth curve of degree d having an unstable normal bundle with instability degree σ .

COROLLARY 4.7. – For g=2 and $d \ge 10$, g=3 and $d \ge 12$, $g \ge 4$ and $d \ge 4g-2$ there exist smooth curves C of degree d and genus g having unstable normal bundle with instability degree σ , for every $1 \le \sigma \le 4g-3$.

PROOF. – For $g \ge 2$, we have $4g-3 \le (1/2) \ d + 2g-2$ if and only if $d \ge 4g-2$, then we apply the above Theorem for $d \ge \max \big\{ 1 + 2g + \sqrt{1 + 8g}, 4g-2 \big\}$.

For g=1 and $d \ge 6$ Hulek and Sacchiero found degree d elliptic smooth curves in \mathbb{P}^3 having unstable normal bundle with instability degree σ , for every $1 \le \sigma \le d-4$.

Now we can deduce from the following Theorem that for $d \ge 7$ and $3 \le \sigma \le d-4$ the stratum $N_{d,\,1}(-\sigma)$ has an irreducible component of the right dimension.

THEOREM 4.8. – For $g \ge 1$, $d \ge 3g + D_{SS}^0(g)$ and $4g - 1 \le \sigma \le d - 1 + g - D_{SS}^0(g)$, the stratum $N_{d,g}(-\sigma)$ of the Hilbert scheme $I_{d,g}$ parametrizing degree d genus g smooth curves having an unstable normal bundle with instability degree σ is non-empty and it has an irreducible component of the right dimension $4d - g + 1 - 2\sigma$.

PROOF. – We consider the integers b such that $D_{SS}^0(g) \le b \le d - 3g$ and we proceed as in the proof of Theorem 4.3.

Acknowledgement. – I wish to thank Sandro Verra for stimulating discussions.

REFERENCES

- [1] E. Arbarello M. Cornalba P. A. Griffiths J. Harris, Geometry of Algebraic Curves, Springer-Verlag, New York-Berlin-Heidelberg-Tokio (1985).
- [2] E. BALLICO PH. ELLIA, Some more examples of curves in P³ with stable normal bundle, J. Reine Angew. Math., 350 (1984), 87-93.
- [3] A. BIANCOFIORE E. L. LIVORNI, On the genus of a hyperplane section of a geometrically ruled surface, Ann. Mat. Pura Appl., 147 (1987), 173-185.
- [4] N. BOURBAKI, Élements de mathématiques Algèbre commutative, f. XXVIII, ch. 1 et 2, Herman, Paris (1961).
- [5] P. Deligne M. Rapoport, Les schémas de modules de courbes elliptiques, Lecture Notes in Math., n. 349, Springer-Verlag, Berlin, Heidelberg, New York (1973), 143-316.
- [6] D. EISENBUD A. VAN DE VEN, On the normal bundles of smooth rational space curves, Math. Ann., 256 (1981), 453-463.
- [7] D. EISENBUD A. VAN DE VEN, On the variety of smooth rational space curves with given degree and normal bundle, Invent. Math., 67 (1982), 89-100.
- [8] Ph. Ellia, Exemples de courbes de P³ à fibré normal semi-stable, stable, Math. Ann., 264 (1983), 389-396.
- [9] Ph. Ellia, Double structures and normal bundle of spaces curves, preprint.
- [10] G. ELLINGSRUD A. HIRSCHOWITZ, Sur le fibré normal des courbes gauches, C. R. Acad. Sc. Paris, 299 (1984), 245-248.
- [11] G. ELLINGSRUD D. LAKSOV, The normal bundle of elliptic space curves of degree 5, 18th Scandinavian Congress of Mathematicians, Proceedings 1980, PM 11, Birkhäuser, Boston, Basel, Stuttgart (1981).
- [12] F. GHIONE G. SACCHIERO, Normal bundle of rational curves in P³, Manuscripta Math., 33 (1980), 111-128.
- [13] A. GROTHENDIECK, Techniques de descente et théorèmes d'existence en géométrie algébrique-II: Le théorème d'existence et théorie formelle des modules, Sém. Bourbaki, exp. 195, 12 (1959/60).
- [14] A. GROTHENDIECK, Techniques de construction et théorèmes d'existence en géométrie algébrique: Les schémas de Hilbert, Sém. Bourbaki, exp. 221, 13 (1960/61).

- [15] A. GROTHENDIECK J. DIEUDONNÉ, Éléments de géométrie algébrique. Étude locale des schémas et des morphismes des schémas, Publ. Math. IHES, 20 (1964).
- [16] A. GROTHENDIECK J. DIEUDONNÉ, Éléments de géométrie algébrique. Étude locale des schémas et des morphismes des schémas, Publ. Math. IHES, 32 (1967).
- [17] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, Heidelberg, Berlin (1977).
- [18] A. HIRSCHOWITZ, Rank techniques and jump statifications, in Vector Bundles and Algebraic Varieties, Proc. Bombay 1984, Oxford Univ. Press (1987), 159-205.
- [19] K. Hulek, The normal bundle of a curve on a quadric, Math. Ann., 258 (1981), 201-206.
- [20] K. Hulek G. Sacchiero, On the normal bundle of elliptic space curves, Arch. Math., 40 (1983), 61-68.
- [21] H. Lange M. S. Narasimhan, Maximal subbundles of rank two vector bundles on curves, Math. Ann., 266 (1983), 55-72.
- [22] M. NAGATA, On self-intersection number of a section on a ruled surface, Nagoya Math. J., 37 (1970), 191-196.
- [23] P. E. Newstead, A space curve whose normal bundle is stable, J. London Math. Soc., 28 (1983), 428-434.
- [24] D. Perrin, Courbes passant par m points généraux de P³, Mémoires de la Soc. Math. de France, n° 28/29, Suppl. au Bull. de la S.M.F., 115 (1987).
- [25] R. PIENE, Numerical characters of a curve in projective n-space, in Real and Complex Singularities, Oslo 1976, Sijthoff en Noordhoff (1978), 475-495.
- [26] H. POPP, Moduli Theory and Classification Theory of Algebraic Varieties, Lecture Notes in Math., n. 620, Springer-Verlag, Berlin, Heidelberg, New York (1977).
- [27] G. SACCHIERO, On the varieties parametrising rational space curves with fixed normal bundle, Manuscripta Math., 37 (1982), 217-228.
- [28] G. SACCHIERO, Exemple de courbes de P³ de fibré normal stable, Commun. Algebra, 11 (1983), 2115-2121.
- [29] A. VAN DE VEN, Le fibré normal d'une courbe dans P³ ne se decompose pas toujours, C.R. Acad. Sc. Paris, 289 (1979), 111-113.
- [30] O. ZARISKI, Algebraic Surfaces, 2nd ed., Springer, Berlin, Heidelberg, New York (1971).

Dipartimento di Matematica, Università di Genova via Dodecaneso 35 - 16146 Genova e-mail: ramella@dima.unige.it

Pervenuta in Redazione il 20 novembre 1997