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Homogenization of Neumann Problems
for Unbounded Integral Functionals

LUCIANO CARBONE - ANTONIO CORBO ESPOSITO - RICCARDO DE ARCANGELIS

Sunto. – Si studia l’omogeneizzazione di problemi di tipo Neumann per funzionali in-
tegrali del Calcolo delle Variazioni definiti su funzioni soggette a vincoli puntuali
di tipo oscillante sul gradiente, in ipotesi minimali sui vincoli. I risultati ottenuti
sono dedotti mediante l’introduzione di nuove tecniche di G-convergenza, unita-
mente ad un risultato di ricostruzione per funzioni affini a tratti, che permettono
la dimostrazione di un teorema generale di omogeneizzazione per funzionali inte-
grali a valori reali estesi.

0. – Introduction.

In the book [BLP] the authors proposed a general issue about the homoge-
nization of certain families of Dirichlet, Neumann and mixed minimum prob-
lems for integral functionals of the Calculus of Variations defined on functions
subject to pointwise oscillating constraints on the gradient (cf. [A2], [DM] and
[SP] beside the above quoted book [BLP] for general references on homoge-
nization theory).

A slightly simplified version of the issue relative to Dirichlet and Neumann
problems deals with the study, for every regular bounded open set V , b�
L Q (V), lDVbVL Q (V) , of the asymptotic behaviour as e tends to 0 of the families
]ie

Q (V , b)(eD0 and ] je
Q (V , b , l)(eD0 of the minimum values

(0.1) i Q
e (V , b) 4

min{s
V

fg x

e
, Duh dx1s

V

budx: u�W0
1,Q(V),NDu(x)NGmg x

e
h for a.e. x�V} ,

(0.2) je
Q (V , b , l) 4

min{s
V

fg x

e
, Duh dx1s

V

bu dx1ls
V

NuNdx : u�W 1, Q (V),

NDu(x)NGmg x

e
h for a.e. x�V} ,
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where f and m are functions verifying (here and in the sequel Y4

]0 , 1[n )

.
/
´

f : (x , z) �Rn 3Rn O f(x , z) � [0 , 1Q[ ,

f(Q , z) measurable and Y-periodic for every z�Rn ,

f(x , Q) convex for a.e. x�Rn ,

(0.3)

.
/
´

m : x�Rn O m(x) � [0 , 1Q] ,

m measurable and Y-periodic ,
(0.4)

m�L Q (Y) .(0.5)

Once introduced the convex, lower semicontinuous function fQ
hom defined

by

(0.6) fQ
hom : z�Rn O

min{s
Y

f(y , z1Dv) dy : v�W 1, Q
loc (Rn ), v Y-periodic ,

Nz1Dv(y)NGm(y) for a.e. y�Y} ,

the convergence of the families ]i Q
e (V , b)(eD0 and ] j Q

e (V , b , l)(eD0 respect-
ively to

(0.7) i Q
hom (V , b) 4min{s

V

fQ
hom (Du) dx1s

V

bu dx : u�W0
1, Q (V)} ,

(0.8) j Q
hom (V , b , l)4min{s

V

fQ
hom (Du) dx1s

V

bu dx1ls
V

NuNdx : u�W 1, Q (V)}
has been conjectured.

We observe explicitly that, beside (0.1) and (0.2), also (0.7) and (0.8) are
gradient constrained problems; in fact, since fQ

hom in (0.6) may take the value
1Q, the functions u that make the integrals in (0.7) and (0.8) finite must be
such that Du(x) �dom fQ

hom for a.e. x�V , dom fQ
hom being the closed convex,

bounded subset of Rn given by

dom fQ
hom 4 ]z�Rn : f hom (z) E1Q( 4

]z�Rn : there exists v�W 1, Q
loc (Rn ), v Y-periodic such that Nz1Dv(y)NGm(y)

for a.e. y�Y( .
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The case of Dirichlet problems has been treated in some papers (cf.
[C1]5[C4], [CS1], [CS2], [F]) under some additional assumptions on m and fi-
nally in [CEDA2] by requiring only (0.3)5(0.5). On the other side in [CS3],
[DAV], [DAGP] and [CDA2] some attempts have been made in order to study
the above Dirichlet problems when (0.5) is dropped, nevertheless the study of
the general case in which m verifies only (0.4) has not been completely
achieved.

On the contrary the case of Neumann problems has been less studied in lit-
erature and it has been treated only in [CDA2] under suitable summability hy-
potheses on m and in [DAGP] when m(Rn ) 4 ]0, 1Q(.

In the present paper we want to study just the case of Neumann problems
by assuming minimal hypotheses on m.

We prove that if f , m are as in (0.3), (0.4) and one of the following assump-
tions (0.9) or (0.10) is fulfilled

(0.9) NzNpGf(x,z) for a.e. x�Rn , every z�Rn and some p�]1 , 1Q[ ,

(0.10) m�L p (Y) for some p� [1 , 1Q] ,

then for every convex bounded open set V, b�L Q (V), lFVbVL Q (V) the values
j p
e (V , b , l) given for every eD0 by

(0.11) j p
e (V , b , l)4min{s

V

fg x

e
, Duhdx1s

V

bu dx1ls
V

NuNdx : u�W 1, p (V),

NDu(x)NGmg x

e
h for a.e. x�V}

converge as e tends to 0 to

(0.12) j p
hom (V , b , l) 4

min{s
V

f p
hom (Du) dx1s

V

bu dx1ls
V

NuNdx : u�W 1, p (V)} ,

where f is the convex, lower semicontinuous function defined by

(0.13) f p
hom : z�Rn O minms

Y

f(y , z1Dv) dy : v�W 1, p
loc (Rn ),

v Y-periodic , Nz , Dv(y)NGm(y) for a.e. y�Y} .
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Moreover, if (0.10) holds, dom f p
hom turns out to be bounded and

j p
hom (V , b , l) 4min{s

V

f p
hom (Du) dx1s

V

bu dx1ls
V

NuNdx : u�W 1, Q (V)} .

Finally, if ]e h ( is a sequence of positive numbers converging to 0 and, for
every h�N , uh is a solution of j p

e h
(V , b , l) then ]uh ( is compact in L p (V) and

its converging subsequences converge to minimizers of j p
hom (V , b , l) (Corol-

lary 4.2).
In order to obtain the above results we introduce a new technique based on

G-convergence theory (cf. [DG], [DGF]), together with a reconstruction argu-
ment for the limit problem in (0.12) proposed in [A1], [A2], and a representa-
tion result for piecewise affine functions (Theorem 2.1). Such technique allows
us to prove very general results for Neumann problems, and can also be ap-
plied in the case of Dirichlet problems to get some more refined theorems under
additional assumptions, weaker than those existing in literature, but not minimal
(cf. [DMD]). The problem of the study of the Dirichlet case under assumptions
comparable to the ones proposed in the present paper remains open.

The convergence theorem we prove is deduced by a general homogenization
result for unbounded integral functionals, i.e. of the type of those in (0.2) but with
integrands taking extended real values and possibly being not finite on large class-
es of regular functions, (Theorem 3.10), that can be applied also to the treatment of
further classes of perturbations of the first integral in (0.11).

We also observe that we are able to consider only minimum problems directly
on W 1, p-spaces and not infimum problems on classes of more regular functions, as
for example differentiable or Lipschitz continuous functions. This remark is not
trivial since it is known that in general, both in the unconstrained and constrained
case, a Lavrentieff phenomenon may occur and the homogenization processes may
lead to different results (cf. [CEDA1], [CESC]).

Finally we remark that variational problems of the type considered in this
paper are interesting also from a physical point of view: for instance the prob-
lem of the homogenization of the elastic-plastic torsion of a cylindrical bar (cf.
[An], [B], [BS], [CR], [DL], [DLi], [GL], [L], [T]) can be framed in this
context.

In conclusion we also want to thank the referee for the useful remarks and
comments.

1. – Notations and preliminary results.

We first recall the notion and the main properties of G2-convergence, we
refer to [DG], [DGF], [Bu] and [DM] for a complete exposition on the
subject.
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Let (U , t) be a topological space, for every u�U let us denote by J(u) the
set of the neighborhoods of u in t .

Let E’R , u be a cluster point of E and let, for every e�E , Fe be a function-
al from U to [2Q , 1Q].

DEFINITION 1.1. – We define the functionals

G2 (t) liminf
eKu

Fe : u�U O sup
I� J(u)

liminf
eKu

inf
v�I

Fe (v) ,

G2 (t) limsup
eKu

Fe : u�U O sup
I� J(u)

limsup
eKu

inf
v�I

Fe (v) .

If at u�U it results G2 (t) liminf
eKu

Fe (u) 4G2 (t) limsup
eKu

Fe (u) we say that

the family ]Fe(e�E G2 (t)-converges at u as e goes to u , and we define the
G2 (t)-limit at u as

G2 (t) lim
eKu

Fe (u) 4G2 (t) liminf
eKu

Fe (u) 4G2 (t) limsup
eKu

Fe (u) .

It is clear that

G2 (t) liminf
eKu

Fe (u) GG2 (t) limsup
eKu

Fe (u) for every u�U ,(1.1)

moreover it is well known (see [Bu]) that

(1.2) the functionals G2 (t) liminf
eKu

Fe and G2 (t) limsup
eKu

Fe

are t-lower semicontinuous on U .

If E4N and (U , t) satisfies also the first countability axiom, the function-
als G2 (t) liminf

eKu
Fe and G2 (t) limsup

eKu
Fe can be characterized in the following

way (cf. [DGF])

(1.3) G2 (t) liminf
hK1Q

Fh (u)4min mliminf
hK1Q

Fh (vh ): vh Kun for every u�U ,

(1.4) G2 (t) limsup
hK1Q

Fh (u)4min mlimsup
hK1Q

Fh (vh ): vhKun for every u�U .

We explicitly recall that (1.3) holds if and only if it results

(1.5) G2 (t) liminf
hK1Q

Fh (u)Gliminf
hK1Q

Fh (vh ) for every u�U and every vhKu

and

(1.6) G2(t) liminf
hK1Q

Fh(u)Fliminf
hK1Q

Fh(uh)

for every u�U and at least one sequence uh Ku .
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Analogously (1.4) holds if and only if (1.5) and (1.6) are fulfilled with
G2 (t) liminf

hK1Q
Fh (u) replaced by G2 (t) limsup

hK1Q

Fh (u) and the operator “liminf
hK1Q

”

replaced by “limsup
hK1Q

”.

If E’R and u is a cluster point of E it is easy to verify that

(1.7) G2 (t) limsup
eKu

Fe (u) 4

sup mG2 (t) limsup
hK1Q

Fe h
(u): ]e h ( ’E , e h Kun for every u�U ,

moreover, if in addition (U , t) satisfies also the first countability axiom, it re-
sults that (cf. for example [DAG])

(1.8) G2 (t) liminf
eKu

Fe (u) 4

min mG2 (t) liminf
hK1Q

Fe h
(u): ]e h ( ’E , e h Kun for every u�U .

The following results are proved in [DGF].

PROPOSITION 1.2. – Let ]Fh ( be a sequence of functionals from U to
[2Q , 1Q], and assume that the limit G2 (t) lim

hK1Q
Fh exists on U, then for

every t-continuous functional G from U to R it results

G(u)1G2 (t) lim
hK1Q

Fh (u) 4G2 (t) lim
hK1Q

]G(u)1Fh (u)( for every u�U .

Let ]Fh ( be a sequence of functionals from U to [2Q , 1Q]. We say that
the functionals Fh are t-equicoercive on U if for every real number l there
exists a compact subset Kl of U such that ]u�U : Fh (u) Gl( ’Kl for every
h�N .

THEOREM 1.3. – Let ]Fh ( be a sequence of equicoercive functionals on U,
and assume that the limit G2 (t) lim

hK1Q
Fh (u) exists for every u�U , then

G2 (t) lim
hK1Q

Fh has a minimum on U and

min
v�U

G2 (t) lim
hK1Q

Fh (v) 4 lim
hK1Q

inf
v�U

Fh (v) .

Moreover if ]uh ( is a sequence such that uh Ku and lim
hK1Q

]Fh (uh )2

inf
v�U

Fh (v)( 40, then u is a minimum point for G2 (t) lim
hK1Q

Fh on U .
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For every subset E of Rn we define x E to be the characteristic function of E
defined by x E (x) 41 if x�E and x E (x) 40 if x�Rn 0E , moreover, if in addi-
tion E is also Lebesgue measurable, we denote by NEN its measure.

Given x0 �Rn, rD0 we set Br (x0 ) 4 ]x�Rn : Nx2x0NEr(.
For every nonempty subset C of Rn we denote by aff (C) the affine hull of C,

i.e. the smallest affine set containing C. It is known that if in addition C is also
convex and is regarded as a subset of aff (C), then C possesses interior points
in the topology induced on aff (C) by the natural one of Rn ; the set of such inte-
rior points is called the relative interior of C and is denoted by ri (C). Obvious-
ly when aff (C) 4Rn then ri (C) 4C7.

For every d� ]1, R , n( we denote by 0(d) the null vector in Rd and by Prd

the projection operator from Rn to Rd defined by Prd : (x1 , R , xn ) �
Rn O (x1 , R , xd ) �Rd.

For every z�Rn we denote by uz the linear function defined by uz (x) 4z Qx
for every x�Rn, and, if p� [1 , 1Q], we set W 1, p

per (Y) 4 ]u�W 1, p
loc (Rn ): u is

Y-periodic(.
Let u be a continuous function on Rn, we say that u is piecewise affine

if

u(x) 4 !
j41

m

(uzj
(x)1sj ) x Pj

(x) for every x�Rn ,(1.9)

where m�N , z1 , R , zm �Rn , s1 , R , sm �R and P1 , R , Pm are pairwise dis-

joint polyhedra, i.e. finite intersections of half spaces, such that 0
j41

m

Pj 4Rn.

We denote by PA (Rn ) the set of the piecewise affine functions on Rn.
We denote by A the set of the bounded open subsets of Rn and, for every A,

B� A , we say that A%%B if A’B .
Given a set function a : A K [2Q , 1Q] we say that a is increasing if

a(f) 40 and a(A1 ) Ga(A2 ) whenever A1 , A2 � A with A1 ’A2 . For every in-
creasing set function a we define the inner regular envelope a 2 of a as

a 2 : A� A O sup ]a(B): B� A , B%%A( .

Finally, given a real function f : Rn K]2Q , 1Q], we set dom f4 ]z�
Rn : f (z) E1Q(, define the bipolar f ** of f as

(1.10) f **: z�RnO sup ]a Qz1b : a�Rn , b�R , a Qj1bGf (j) for every j�Rn (

and recall that f ** turns out to be the greatest convex lower semicontinuous
function on Rn less than or equal to f.

We now define the functionals we are going to consider in this paper.
Let Ln and Bn be respectively the s-algebras of the Lebesgue measurable
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and of the Borel subsets of Rn, let f be a function verifying

.
`
/
`
´

f : (x , z) �Rn 3Rn O f (x , z) � [0 , 1Q] ,

f Ln 7 Bn measurable ,

f (Q , z) Y-periodic for every z�Rn ,

f (x , Q) convex and lower semicontinuous for a.e. x�Rn,

(1.11)

and let p� [1 , 1Q], then for every V� A , u�W 1, p (V), eD0 the function

fg Q

e
Du(Q)h is nonnegative and measurable on V and hence the functional

Fe (V , Q)

Fe (V , Q): u�L p (V) O
.
/
´

s
V

fg x

e
, Duh dx if u�W 1, p

loc (Rn ) ,

1Q if u�L p (V)0W 1, p
loc (Rn ) ,

(1.12)

turns out to be well defined. We observe explicitly that the functional in (1.12)
involves a constraint on the gradients of the admissible functions, in fact the
elements u of W 1, p

loc (Rn ) that make the integral in (1.12) finite satisfy the con-

straint Du (x) �dom fg x

e
, Qh for a.e. x�V .

For every V� A let us set

(1.13) F 8hom (V , u) 4G2 (L p (V) ) liminf
eK0

Fe (V , u),

F 9hom (V , u) 4G2 (L p (V) ) limsup
eK0

Fe (V , u), for every u�L p (V) ,

and define the function fhom by

fhom : z�Rn O infms
Y

f (y , z1Dv) dy : v�W 1, p
per (Y)n ,(1.14)

then it is clear that fhom may take the value 1Q and that, by (1.11), fhom turns
out to be convex.

Our goal is to prove that, if W f is the Y-periodic function given by

W f : x�Rn O sup ]NzN : f (x , z) E1Q((1.15)

and if one of the following assumptions

(1.16) NzNpGf (x , z) for a.e. x�Rn , every z�Rn and some p�]1 , 1Q[

or

W f �L p (Y) for some p� [1 , 1Q](1.17)
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is fulfilled, then for every convex bounded open set V, u�W 1, p (V) the func-
tionals in (1.13) are equal and their common value agrees with the integral
s

V

fhom (Du) dx ; obviously this last integral includes the gradient constraint

Du (x) �dom fhom for a.e. x�V , where

(1.18) dom fhom4mz�Rn : there exists v�W 1,p
per(Y) with s

Y

f (y,Dv) dyE1Qn .

We recall that when f in (1.11) is just real valued, the following homoge-
nization result holds (cf. [A2], [BLP], [CS], [CEDA1], [DM], [DGS], [M], [MS],
[MT], [SP], [T], [ZKON]).

THEOREM 1.4. – Let f be as in (1.11), p� [1 , 1Q], Fe (eD0) be given by
(1.12) and fhom by (1.14). In addition assume that

i) pE1Q

f (x , z) GL(11NzNp ) for a.e. x�Rn , every z�Rn and some LD0 ,

ii) if p41Q

for every z�Rn f (Q , z) �L Q (Y) ,

then for every V�A with Lipschitz boundary the family ]Fe (V , Q)(eD0

G2 (L p (V) )-converges on W 1, p (V) as e goes to 0 and

G2 (L p (V) ) lim
eK0

Fe (V , u) 4s
V

fhom (Du) dx for every u�W 1, p (V) .

Finally we prove the following result that will be used in the sequel.

PROPOSITION 1.5. – Let f be as in (1.11), W f be given by (1.15), and let fhom be
defined by (1.14). Assume that W f �L 1 (Y), then dom fhom is bounded and

NzNGs
Y

W f dx for every z�dom fhom .

PROOF. – Let z�dom fhom and let w�W 1, p
per (Y) be such that s

Y

f (y , z1

Dw) dyE1Q, then obviously f(x , z1Dw(x) )E1Q for a.e. x�Y and

Nz1Dw(x)NGW f (x) for a.e. x�Y ,(1.19)
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therefore, by using the Y-periodicity of w and (1.19), we have

NzN4 Ns
Y

z dxN Gs
Y

Nz1Dw(x)Ndx1Ns
Y

Dw(x) dxN 4

s
Y

Nz1Dw(x)NdxGs
Y

W f (x) dx ,

from which the thesis follows. r

2. – A representation result for piecewise affine functions.

Given x , y�Rn we set s[x , y] 4 ]tx1 (12 t) y : t� [0 , 1 ](; similar defini-
tions are given for s]x , y], s[x , y[, s]x , y[.

In the present section we want to prove a representation result concerning
piecewise affine functions, more precisely that every piecewise affine function

u4 !
j41

m

(uzj
1sj ) x Pj

can be represented in a convex open set V by means of a

finite combination of last upper bounds and greatest lower bounds of those of
its “components” uzj

1sj for which Pj OV is nonempty.
Finally we discuss some examples showing that in general the convexity

assumption on V cannot be dropped.
The result we prove is the following (cf. also [CEDA3] for the analogous in

the one dimensional case).

THEOREM 2.1. – Let u4 !
j41

m

(uzj
1sj ) x Pj

be in PA(Rn ), then for every con-

vex open set V there exist k�N and N1 , R , Nk ’ ] j� ]1, R , m(: Pj OVc

¯( such that

u(x) 4 sup
i� ]1, R , k(

inf
j�Ni

(uzj
(x)1sj ) for every x�V .(2.1)

PROOF. – Let V be a convex open set, I be the set of the indexes corre-
sponding to the different components of u, namely I4 ]1(N] j�
]2, R , m( : uzj

1sjcuzi
1si for every i� ]1, R , j21(( and, for every a�I ,

set Ea4] j� ]1, R , m( : uzj
1sj 4uza

1sa ( .
Let A4Rn 0]x�Rn : there exist a , b�I with acb and uza

(x)1sa4

uzb
(x)1sb(, then it is clear that A is open, dense in Rn and that it possesses a

finite number of connected components, say A1 , R , Ah , that turn out to be

pairwise disjoint open polyhedra with A4 0
n41

h

An , moreover let k�N and

n 1 , R , n k � ]1, R , h( be such that AnOVc¯ if and only if n� ]n 1 , R , n k (.
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Then, by using the connectedness of An 1
, R , An k

, it is easy to see that

(2.2) for every i� ]1, R , k( there exists a(i) �I , j(i) �Ea(i)

such that u4uza(i)
1sa(i) in An i

, Pj(i) OVc¯ and u4uzj(i)
1sj(i) in Pj(i) .

Let us prove that for every i� ]1, R , k( there exists a nonempty subset
Mi of I such that by defining

vi : x�Rn O inf
a�Mi

(uza
(x)1sa )(2.3)

then

vi (x) 4u(x) for every x�Avi
(2.4)

and

vi (x) Gu(x) for every x�V .(2.5)

To do this let i� ]1, R , k(, set

Mi 4 ]a�I : uza
(x)1saFu(x) for every x�An i

and there exists j�Ea with Pj OVc¯( ,

and observe that by (2.2) Mi c¯ and that (2.4) holds.
Let us prove (2.5), by contradiction let us assume that (2.5) does not hold,

then the set B4 ]x�V : vi (x) Du(x)( turns out to be open and nonemp-
ty.

Obviously, being A open and dense in Rn, it results that BOAc¯. Let x1 �
BOA , eD0 be such that Be (x1 ) ’BOA and take x0 �An i

OV .
Since Rn 0A is made up by a finite numbers of pieces of flat surfaces and

Be (x1 ) ’BOA , we can choose x2 �Be (x1 ) such that

(2.6) s [x0 , x2 ]O (V0A) contains only a finite numbers of points

and again vi (x2 ) Du(x2 ).
Let S4 ]x�s[x0 , x2 ] : vi Gu on s[x0 , x](, then obviously S turns out to be

closed and by (2.4) x0 �S . Let x *�S be such that Nx0 2x *N4 max
x�S

Nx0 2xN ,
then

u(x *) 4vi (x *) .(2.7)

Being V convex it turns out that x *�V but, in general, it is not sure that
x *�A , nevertheless, by using also (2.6), we can find x3 �s[x *, x2 ] such that
s]x *, x3 ] ’AOV . Since now x3 �A , there exists one and only one index a*�
I for which u(x3 ) 4uza*

(x3 )1sa* , moreover, being u affine on s[x *, x3 ], we
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also have that

u4uza*
1sa* on s[x *, x3 ] .(2.8)

On the other side the fact that x3 �S yields the existence of x4 �s]x *, x3 ]
such that vi (x4 ) Du(x4 ) and by this, taking also (2.8) into account, we conclude
that

uza*
(x4 )1sa* 4u(x4 ) Evi (x4 ) .(2.9)

We now observe that (2.3) implies that if a�Mi then vi (x) Guza
(x)1sa for

every x�Rn, therefore by (2.9) we deduce that a*�Mi . By virtue of this, since
by (2.8) and the inclusion of s]x *, x3 ] in V there exists at least one j�Ea* such
that Pj OVc¯ , we conclude that it must result

uza*
(x)1sa* Eu(x) for some x�An i

.(2.10)

At this point we recall that u is affine on An i
and that by definition of An i

ei-
ther u is identically equal to uza*

1sa* on An i
or u(x) cuza*

(x)1sa* for every
x�An i

, therefore by virtue of this, of (2.10) and of (2.4) we obtain

uza*
(x0 )1sa* Eu(x0 ) 4vi (x0 ) .(2.11)

By (2.3) vi turns out to be concave, hence by (2.9) and (2.11) we deduce
that

uza*
(x)1sa* Evi (x) for every x�s[x0 , x4 ]

and in particular that

uza*
(x *)1sa* Evi (x *) .(2.12)

Inequality (2.12) yields a contradiction since by (2.7) and (2.8) we have
that

uza*
(x *)1sa* 4u(x *) 4vi (X *) ,

therefore (2.5) holds.
By (2.4) and (2.5) we conclude that

u(x) 4 sup
i� ]1, R , k(

vi (x) for every x�V .(2.13)

The theorem is now essentially proved, indeed (2.1) follows by (2.13) if we
choose, for every a�Mi , j(a) �Ea such that Pj(a) OVc¯ , if we define Ni 4

] j(a): a�Mi ( and observe that vi 4 inf
j�Ni

(uzj
1sj ) for every i�

]1, R , k(. r

In the example below we show that in general the convexity assumption in
Theorem 2.1 cannot be dropped.
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EXAMPLE 2.2. – Let n41 and u be the piecewise affine function given by

u : x�R O xx ]2Q , 1[ (x)1 (22x) x [1 , 2[ (x)1 (x22) x [2 , 1Q[ (x) ,

then, in relation to the notations of Theorem 2.1, m43, z141, s140, z242 1,
s2 42, z3 41, s3 42 2, P1 4]2Q , 1[, P2 4 [1 , 2[ and P3 4 [2 , 1Q[.

Let V4]0 , 1[N]2 , 3[, then ] j� ]1, 2 , 3(: Pj OVc¯( 4 ]1, 3( and The-
orem 2.1 cannot hold for such choice of V since whenever we take k�N and k
subsets N1 , R , Nk of ]1, 3( it is easy to verify that sup

i� ]1, R , k(

inf
j�Ni

(uzj
(x)1

sj )4x or sup
i� ]1, R , k(

inf
j�Ni

(uzj
(x)1sj )4x22 for every x�R .

The following example shows that Theorem 2.1 can be false even for con-
nected non convex open sets.

EXAMPLE 2.3. – Let n42 and u be the piecewise affine function given
by

u : (x , y) �R2 O yx P1
(x , y)1xx P2

(x , y)2yx P3
(x , y) ,

where P1 4 ](x , y) �R2 : xD0, 0 EyEx(, P2 4 ](x , y) �R2 : yFNxN(, P3 4

](x , y) �R2 : xE0, 0 EyE2 x(, then, in relation to the notations of Theo-
rem 2.1, m44, P4 4 ](x , y) �R2 : yG0(, z1 4 (0 , 1 ), z2 4 (1 , 0 ), z3 4 (0 , 21),
z4 4 (0 , 0 ) and s1 4s2 4s3 4s4 40.

Let V4 ](x , y) �R2 : 21 ExE1, 21EyENxN(, then ] j� ]1, 2 , 3 , 4( :
Pj OVc¯(4 ]1, 3 , 4( and Theorem 2.1 cannot hold for such choice of V
since whenever we take k�N and k subsets N1 , R , Nk of ]1, 3 , 4( the func-
tion sup

i� ]1, R , k(

inf
j�Ni

(uzj
1sj ) does not depend on the x variable whilst so does u.

REMARK 2.4. – We observe that examples 2.2 and 2.3 are even more shrink-
ing, indeed they prove that convexity assumptions on V in Theorem 2.1 cannot
be dropped even if one tries to represent on an open set V a piecewise affine

function u4 !
j41

m

(uzj
1sj ) x Pj

by means of combinations in arbitrary order, and

not as in (2.1), of last upper bounds and greatest lower bounds of those of its
“components” uzj

1sj for which Pj OV is nonempty.

3. – The homogenization formula.

Let f be as in (1.11), p� [1 , 1Q] and let fhom , Fe (eD0) be given respect-
ively by (1.14) and (1.12).

I n t h e p r e s e n t s e c t i o n w e p r o v e t h a t f o r e v e r y c o n v e x b o u n d e d o p e n
s e t V, u�W 1 , p (V) th e l i m i t s G 2 (L p (V) ) l i m i n f

eK0
Fe (V , u) an d

G2 (L p (V) ) limsup
eK0

Fe (V , u) agree with the integral s
V

fhom (Du) dx . To do
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part of this we will follow an argument proposed in [A1] and [A2] by first ap-
proximating f from below with an increasing sequence of real valued inte-
grands ] fk (, by applying known results on homogenization of integral func-
tionals for these integrands and then by taking the limit as k diverges.

For every k�N let us set

f k : (x , z) �Rn 3Rn O min ] f (x , z), k(11NzN)( ,(3.1)

fk : (x , z) �Rn 3Rn O ( f k (x , Q) )**(z)(3.2)

and

fk , hom : z�Rn O inf ms
Y

fk (y , z1Dv) dy : v�W 1, p
per (Y)n(3.3)

then fk , hom turns out to be convex and finite on Rn ; moreover for every
V� A and eD0 let Fk , e (V , Q) be the functionals defined by

Fk , e (V , Q): u�L p (V) O
.
/
´

s
V

fkg x

e
, Duh dx if u�W 1, p

loc (Rn ) ,

1Q if u�L p (V) 0W 1, p
loc (Rn ) .

By virtue of (3.1) and (3.2) it turns out that for every k�N it results
that

fk (x , z) Gk(11NzN) for a.e. x�Rn and every z�Rn,(3.4)

therefore by (1.11), (3.4) and the obvious inequality, if pE1Q,

k(11NzN) G2k(11NzNp ) for every z�Rn ,

it turns out that the assumptions of Theorem 1.4 are fulfilled by fk , hence
we have

(3.5) G2 (L p (V) ) lim
eK0

Fk , e (V , u) 4s
V

fk , hom (Du) dx

for every V� A with Lipschitz boundary, u�W 1, p (V) .

Moreover, since obviously

(3.6) Fk , e (V , u) GFe (V , u) for every V� A , every k�N and u�L p (V) ,

if F 8hom is defined in (1.13), by (3.5) and (3.6) we deduce that

sup
k�N

s
V

fk , hom (Du) dxGF 8hom (V , u) for every V� A , u�W 1, p (V) .(3.7)
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In order to evaluate the left-hand side of (3.7) we need to prove some
lemmas.

LEMMA 3.1. – Let f be as in (1.11), and let, for every k�N , fk be given by
(3.2), then

(3.8) sup
k�N

fk (x , z)4 lim
kK1Q

fk (x , z)4f (x , z) for a.e. x�Rn and every z�Rn .

PROOF. – By (1.11) there exists a subset N of Rn such that NNN40 and for
every x�Rn 0N f (x , Q) is convex.

Let x�Rn 0N , z0 �Rn and let aE f (x , z0 ). Since f (x , Q) is convex and lower
semicontinuous there exist a�Rn and b�R such that

.
/
´

( i ) a Qz1bG f (x , z) for every z�Rn ,

( ii ) aEa Qz0 1bG f (x , z0 ) .
(3.9)

Let k�N be such that

a Qz1bGk(11NzN) for every z�Rn ,(3.10)

then by (3.1), (3.9) and (3.10) we obtain that

.
/
´

( i ) a Qz1bG f k (x , z) for every z�Rn ,

( ii ) aEa Qz0 1bG f k (x , z0 ) .
(3.11)

At this point by (3.2), (3.11) and (1.10) we obtain that

.
/
´

( i ) a Qz1bG fk (x , z) for every z�Rn ,

( ii ) aEa Qz0 1bG fk (x , z0 ) G f k (x , z0 ) G f (x , z0 ) ,
(3.12)

therefore by (ii) of (3.12) we have proved that for every aE f (x , z0 ) there
exists k�N such that

aE fk (x , z0 ) G f (x , z0 ) .(3.13)

By (3.13), taking into account that the sequence ] fk (x , z0 )( is increasing,
we deduce (3.8). r

We now prove the analogue of (3.8) for fk , hom and fhom .

LEMMA 3.2. – Let f be as in (1.11) verifying (1.16) or (1.17), fhom be given by
(1.14) and, for every k�N , fk , hom by (3.2), then

sup
k�N

fk , hom (z) 4 lim
kK1Q

fk , hom (z) 4 fhom (z) for every z�Rn .(3.14)
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PROOF. – It is clear that for every z�Rn the sequence ] fk , hom (z)( in in-
creasing and that by (3.1), (3.2)

sup
k�N

fk , hom (z) 4 lim
kK1Q

fk , hom (z) G fhom (z) for every z�Rn .(3.15)

Let z�Rn, in order to prove the reverse inequality in (3.15) we can assume
that the left-hand side of (3.15) is finite, moreover let us first consider the case
in which (1.16) holds.

For every eD0 and k�N let vk �W 1, p
per (Y) such that

1QD sup
k�N

fk , hom (z)1eF fk , hom (z)1eDs
Y

fk (y , z1Dvk ) dy ,(3.16)

moreover, since we can always assume that s
Y

vk dy40 for every k�N , we get

from (3.16), (1.16) and Poincaré-Wirtinger inequality that ]vk ( is bounded in
W 1, p (Y) and that there exists v�W 1, p

per (Y) such that, up to subsequences, vk K

v weakly in W 1, p (Y).
Let us fix now k0 �N , then by (3.16), the monotonicity of ] fk ( and the

sequential weak-W 1, p (Y)-lower semicontinuity of the functional u�

W 1, p (Y) O s
Y

fk0
(y , z1Du) dy we obtain that

(3.17) sup
k�N

fk , hom (z)1eF liminf
kK1Q

s
Y

fk (y , z1Dvk ) dyF

liminf
kK1Q

s
Y

fk0
(y , z1Dvk ) dyFs

Y

fk0
(y , z1Dv) dy .

By (3.17), Lemma 3.1 and the monotone convergence theorem we infer first
as k0 increases to 1Q and then as e decreases to 0 that

sup
k�N

fk , hom (z) Fs
Y

f (y , z1Dv) dyF fhom (z) .(3.18)

By (3.15) and (3.18) equalities in (3.14) follow if (1.16) holds.
If (1.17) holds in place of (1.16) the proof remains almost the same, the only

difference is in the fact that the weak-W 1, p (Y) (weak*-W 1, p (Y) if p41Q) -
compactness of ]vk ( is achieved by observing that NDvk (y)NGW f (y) for al-
most every y�Y and every k�N and by using the summability properties of
W f , and that, if p41Q , the sequential weak*-W 1, Q (Y)-lower semicontinuity
of the functional u�W 1, Q (Y) O s

Y

fk0
(y , z1Du) dy must be taken into

account. r

REMARK 3.3. – We observe that if f is as in (1.11), if (1.16) or (1.17) holds and
fhom is given by (1.14), then by Lemma 3.2 it turns out that fhom is lower
semicontinuous.
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If f and fhom are as in Remark 3.3 and (1.16) or (1.17) holds, by Remark 3.3 it
soon follows that for every V� A , u�W 1, p (V) the function fhom (Du(Q) ) is non-

negative and measurable on V , and hence that the integral s
V

fhom (Du) dx is
well defined.

We can now prove the estimate from below.

PROPOSITION 3.4. – Let f be as in (1.11) verifying (1.16) or (1.17), and let
fhom , F 8hom be given by (1.14) and (1.13), then for every V� A , u�L p (V) it
results

.
/
´

s
V

fhom (Du) dx if u�W 1, p (V)

1Q if u�L p (V) 0W 1, p (V)

G F 8hom (V , u) .(3.19)

PROOF. – Let V� A .
For every k�N let fk and fk , hom be given respectively by (3.2) and (3.3);

since the sequence ] fk , hom ( is increasing, by (3.7), the monotone convergence
theorem and Lemma 3.2 we infer that

(3.20) s
V

fhom (Du) dx4 lim
kK1Q

s
V

fk , hom (Du) dxGF 8hom (V , u)

for every u�W 1, p (V) .

Let us observe now that by (1.16) or (1.17) it follows that if u�L p (V) is
such that F 8hom (V , u) E1Q then there exists a sequence in W 1, p

loc (Rn ) bound-
ed in W 1, p (V) and converging to u in L p (V), this implies that

F 8hom (V , u) E1Q ¨ u�W 1, p (V) ,(3.21)

therefore by (3.20) and (3.21) inequality (3.19) follows. r

We now study the estimate from above.

LEMMA 3.5. – Let f be as in (1.11), p� [1 , 1Q], and let fhom , F 9hom be given
by (1.14) and (1.13), then

F 9hom (V , uz ) GNVN fhom (z) for every V� A , z�Rn .(3.22)

PROOF. – Let V, z be as above and let ]e h ( be a sequence of positive num-
bers converging to 0.

Obviously we can assume that fhom (z) E1Q . By virtue of this and of (1.18),
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given hD0, let v�W 1, p
per (Y) be such that

s
Y

f (y , z1Dv) dyG fhom (z)1h(3.23)

and define, for every h�N , the function vh by vh 4e h vg Q

e h
h.

Clearly vh �W 1, p
loc (Rn ) and vh K0 in L p

loc (Rn ), moreover by the Y-periodicity
of f( Q, z1Dv(Q) ) and by (3.23) we have

(3.24) G2 (L p (V) ) limsup
hK1Q

Fe h
(V , uz ) G limsup

hK1Q

s
V

f g x

e h

, z1Dvhh dx4

limsup
hK1Q

s
V

fg x

e h

, z1Dvg x

e h
hh dx4NVNs

Y

f (y , z1Dv) dyGNVN( fhom (z)1h) .

As h decreases to 0, by (3.24), the arbitrariness of ]e h ( and (1.7) inequality
(3.22) soon follows. r

In order to extend inequality (3.22) to PA (Rn ) we need to prove the follow-
ing result.

LEMMA 3.6. – Let f be as in (1.11), p� [1 , 1Q], and let F 8hom , F 9hom be given
by (1.13). Let g : Rn K [0 , 1Q] be a lower semicontinuous function, V� A

and U ’W 1, p
loc (Rn ) be such that

F 8hom (V , u) Fs
V

g(Du) dx for every u�W 1, p
loc (Rn )(3.25)

and

F 9hom (V , u) Gs
V

g(Du) dxE1Q for every u� U ,(3.26)

then for every m�N and every u1 , R , um � U it results that

(3.27)m F 9hom (V , u)Gs
V

g(Du) dxE1Q with u4 inf ]uj : j� ]1, R , m((

and

(3.28)m F 9hom (V , u)Gs
V

g(Du) dxE1Q with u4 sup ]uj : j� ]1, R , m(( .

PROOF. – Let us prove the inequalities in (3.27), the proof for those in (3.28)
being similar.

We argue by induction on m.
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If m41 clearly (3.26) implies (3.27)1 .
Let now m�N and prove that (3.27)m implies (3.27)m11 .
Let ]e h ( be a sequence of positive numbers converging to 0,

u1 , R , um11 � U , u4 inf ]uj : j� ]1, R , m11(( , and define the function v
by v4 inf ]uj : j� ]1, R , m(( .

Since um11 � U , by (3.26), (3.27)m and (1.7) there exist two sequences
]uh

m11 ( and ]vh ( in W 1, p
loc (Rn ) such that uh

m11 Kum11 in L p (V), vh Kv in
L p (V) and

.
`
/
`
´

1QDs
V

g(Dum11 ) dxF limsup
hK1Q

s
V

fg x

e h

, Duh
m11h dx ,

1QDs
V

g(Dv) dxF limsup
hK1Q

s
V

fg x

e h

, Dvhh dx .

(3.29)

Let us observe now that inf ]vh , uh
m11 ( Ku and sup ]vh , uh

m11 ( K

sup ]v , um11 ( in L p (V) and that

(3.30) fg x

e h

, D(inf ]vh , uh
m11 ()(x)h4

fg x

e h

, Dvh (x)h1 fg x

e h

, Duh
m11 (x)h2 fg x

e h

, D(sup ]vh , uh
m11 ()(x)h

for a.e. x�V ,

therefore by (3.30), (3.29) and (3.25) we have

(3.31) G2 (L p (V) ) limsup
hK1Q

Fe h
(V , u)Glimsup

hK1Q

s
V

fg x

e h

, D(inf ]vh , uh
m11 ()h dxG

limsup
hK1Q

s
V

fg x

e h

, Dvhh dx1 limsup
hK1Q

s
V

fg x

e h

, Duh
m11h dx2

liminf
hK1Q

s
V

fg x

e h

, D(sup ]vh , uh
m11 ()h dxG

s
V

g(Dum11 ) dx1s
V

g(Dv) dx2F 8hom (V , sup ]v , um11 () G

s
V

g(Dum11 ) dx1s
V

g(Dv) dx2s
V

g(D(sup ]v , um11 () ) dx4s
V

g(Du) dx .

By (3.31), the arbitrariness of ]e h ( and (1.7), inequality (3.27)m11 and the
thesis follow. r
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LEMMA 3.7. – Let f be as in (1.11) verifying (1.16) or (1.17), and let fhom , F 9hom

be given by (1.14) and (1.13), then

(3.32) F 9hom (V , u) Gs
V

fhom (Du) dx for every convex V� A , u�PA(Rn ) .

PROOF. – Let V be as in (3.32) and u�PA(Rn ) be as in (1.9), then by Theo-
rem 2.1 we obtain the existence of k�N and of N1 , R , Nk ’] j�
]1, R , m(: Pj OVc¯( such that (2.1) holds.

Let us observe that it is not restrictive to assume that s
V

fhom(Du) dxE1Q ,
that is

(3.33) fhom (zj ) E1Q for every j� ]1, R , m( such that Pj OVc¯ .

Let i� ]1, R , k(, a i be the cardinality of Ni and vi 4 inf
j�Ni

(uzj
1sj ), then by

Remark 3.3, Proposition 3.4, Lemma 3.5, (3.33) and (3.27)a i
of Lemma 3.6 ap-

plied with g4 fhom and U 4 ]uzj
1sj : j�Ni ( we obtain

F 9hom (V , vi ) Gs
V

fhom (Dvi ) dxE1Q for every i� ]1, R , k( .(3.34)

At this point by (3.34) and (3.28)k of Lemma 3.6 applied with g4 fhom and
U 4]vi : i� ]1, R , k(( we deduce (3.32). r

If V� A , u is in L p (V) and F 9hom (V , u) is given by (1.13) we denote by
(F 9hom )2 (V , u) the inner regular envelope at V of the increasing set function
F 9hom (Q , u).

LEMMA 3.8. – Let f be as in (1.11) verifying (1.16) or (1.17), and let fhom , F 9hom

be given by (1.14) and (1.13), then

(3.35) (F 9hom )2 (V , u) Gs
V

fhom (Du) dx for every convex V� A , u�C 1 (Rn ) .

PROOF. – Let V, u be as in (3.35).
Let us observe that the set dom fhom is convex and that we can obviously as-

sume that it is nonempty and that Du (x) �dom fhom for every x�V .
If dom fhom contains only a single point then the thesis follows by Lemma

3.5, therefore it is not restrictive to assume that the dimension n of
aff (dom fhom ) is bigger than zero.

We first consider the case in which

0 �ri ( dom fhom ) .(3.36)
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Let R be the identity matrix if n4n and an orthogonal matrix such
that

R(aff ( dom fhom ))4Rn3 ]0(n2n) ((3.37)

if nEn , and let us define the function uA by

uA: y�Rn O u(R 21 y) ,(3.38)

then

Dy uA(y) 4RDx u(R 21 y) for every y�Rn .(3.39)

By (3.39) and (3.37), since Du (x) �dom fhom for every x�V , we infer that
DuA(y) has the last n2n entries equal to zero for every y�RV and hence, tak-
ing into account the convexity of RV , that uA depends only on (y1 , R , yn ) when
(y1 , R , yn ) varies in RV.

Let us set V (n) 4Prn (RV), let A, B� A with A convex, A%%B%%V and de-
fine A (n) 4Prn (RA), B (n) 4Prn (RB), then obviously A (n) %%B (n) %%V (n).

If nEn let s be the multivalued function defined by s : y�V (n) O ]z�
Rn2n : (y , z) �RV( and let b be a continuous selection of s , i.e. a function in
C 0 (V (n) ; Rn2n ) such that b(y) �s(y) for every y�V (n) (take for example b(y)
to be the barycentre of s(y) for every y�V (n)).

Since (y , b(y) )�RV for every y�V (n) and RV is open, we can find a func-
tion b 1 �C 1 (Rn ; Rn2n ) such that (y , b 1 (y) )�RV for every y�B (n).

By virtue of this we can define the function u× by

(3.40) u× : (y1 , R , yn ) �Rn O
.
/
´

uA(y1 , R , yn ) if n4n ,

uA(y1 , R , yn , b 1 (y1 , R , yn ) ) if nEn ,

then obviously u×�C 1 (Rn ) and, being Du (x) �dom fhom for every x�V, by
(3.38), (3.39) and (3.40) we obtain that Du×(y) �Prn (R(dom fhom )) for every
y�B (n).

By virtue of this and by (3.36) we infer that there exists a compact subset
Hn of ri (Prn (R( dom fhom ))) such that

D(su×)(y) �Hn for every s�]0 , 1[ and y�B (n) .(3.41)

Let s� [0 , 1[ and let ]u×h ( ’PA(Rn ) be such that u×h Ksu× in W 1, Q (V (n) ),
then by (3.41) we obtain that

(3.42) Du×h (y) �Kn for every y�A (n) and every h�N large enough ,

Kn being a suitable compact subset of ri (Prn (R( dom fhom ))) .
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For every h�N let us now define the functions uAh and uh by

uAh : (y1 , R , yn ) �Rn O u×h (y1 , R , yn )

and

uh : x�Rn O uAh (Rx) ,

then obviously uh �PA (Rn ) for every h�N and

uh Ksu in W 1, Q (V) ,(3.43)

moreover by (3.42) we deduce the existence of a compact subset K of
ri ( dom fhom ) such that

Duh (x) �K for every x�A and every h�N large enough .(3.44)

At this point by the convexity of A and Lemma 3.7 we obtain

(3.45) F 9hom (A , uh ) Gs
A

fhom (Duh ) dx for every h�N large enough ,

moreover by (3.43), (3.44) and the local Lipschitz continuity of fhom in
ri ( dom fhom ) we have

lim
hK1Q

s
A

fhom (Duh ) dx4s
A

fhom (sDu) dx ,(3.46)

therefore by (3.45), (3.46) and the convexity of fhom we obtain

liminf
hK1Q

F 9hom (A , uh ) Gss
V

fhom (Du) dx1 (12s)NVNfhom (0)(3.47)

and by (3.43), (3.47) and (1.2) that

F 9hom (A , su) Gs
V

fhom (Du) dx1 (12s)NVNfhom (0) .(3.48)

Taking now the limits in (3.48) first as s tends to 1 and then as A increases
to V, by (3.36), (3.48) and the convexity of V we obtain (3.35) if (3.36)
holds.

In conclusion if (3.36) does not hold we only have to take z0 �ri ( dom fhom )
and consider the function f0 defined by f0 : (x , z) �Rn 3Rn O f (x , z0 1z). We
have, with the obvious meaning for the symbols adopted,

f0, hom (z) 4 fhom (z0 1z) for every z�Rn ,(3.49)

(3.50) F 90, hom (V , u) 4F 9hom (V , uz0
1u) for every V� A and u�L p (V)
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and

0 �ri ( dom f0, hom ) ,(3.51)

therefore by (3.51) and (3.35) applied to f0 we infer that

(3.52) (F 90, hom )2 (V , u) Gs
V

f0, hom (Du) dx for every V� A , u�C 1 (Rn ) .

In conclusion by (3.52), (3.50) and (3.49), inequality (3.35) follows also in the
general case. r

LEMMA 3.9. – Let f be as in (1.11) verifying (1.16) or (1.17), and let fhom , F 9hom

be given by (1.14) and (1.13), then

(F 9hom )2 (V , u) Gs
V

fhom (Du) dx for every V� A , u�W 1, p
loc (Rn ) .(3.53)

PROOF. – Let V, u be as in (3.53).
Let a be a mollifier, i.e. a�C 1 (Rn ), aF0, spt (a) ’B1 (0) and s

Rn

a(x) dx4

1. For every hD0 and x�Rn let us set a h (x) 4
1

h n
ag x

h
h, denote by uh (x)

the regularization of u at x defined by uh (x) 4 (a h * u)(x) 4s
Rn

a h (x2

y) u(y) dy and set V h4 ]y�V : dist (y , ¯V) Dh(, then it is well known that
for every hD0 uh�C 1 (Rn ) and that uhKu in W 1, p (V) as hK0, moreover, by
the convexity of fhom and Jensen inequality, we have

s
V h

fhom (Duh ) dxGs
V

fhom (Du) dx for every hD0 .(3.54)

Let now A� A with A%%V , A being also convex, and take hD0 so small
that A%%V h , then by the convexity of A, Lemma 3.8 and (3.54) we infer

(3.55) (F 9hom )2 (A , uh ) Gs
A

fhom (Duh ) dxG s
V h

fhom (Duh ) dxG

s
V

fhom (Du) dx for every hD0 small enough .

Taking the limits in (3.55) first as h tends to 0 and then as A increases to V,
by (1.2) and the fact that the set function (F 9hom )2 (Q , u) is increasing, we de-
duce (3.53). r

We can now prove the representation result for the G2 (L p (V) )-limit of the
functionals in (1.12).
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THEOREM 3.10. – Let f be as in (1.11) verifying (1.16) or (1.17), let Fe

(eD0) be the functionals defined in (1.12) and fhom be given by (1.14), then fhom

turns out to be convex, lower semicontinuous and for every convex bounded
open set V, u�L p (V) the limit G2 (L p (V) ) lim

eK0
Fe (V , u) exists and

(3.56) G2 (L p (V) ) lim
eK0

Fe (V , u) 4
.
/
´

s
V

fhom (Du) dx if u�W 1, p (V) ,

1Q if u�L p (V) 0W 1, p (V) .

Moreover, if (1.17) holds, dom fhom turns out to be bounded and the right-

hand side of (3.56) is equal to
.
/
´

s
V

fhom (Du) dx if u�W 1, p (V) ,

1Q if u�L p (V) 0W 1, p (V).

PROOF. – Let V be as above and let F 8hom (V , Q), F 9hom (V , Q) be given by
(1.13).

By (1.11), Remark 3.3 and Proposition 1.5 the properties of fhom and of
dom fhom follow.

Let us first prove that

F 9hom (V , u) Gs
V

fhom (Du) dx for every u�W 1, p (V) .(3.57)

To do this we can assume that dom fhom c¯ , moreover, as in Lemma 3.8, it
is not restrictive to assume that

0 �dom fhom .(3.58)

Let u�W 1, p (V), then, since V has Lipschitz boundary, we can extend u to
a function in W 1, p (Rn ) and call again u such extension.

Let x0 �V , tD1 and let ut be the function defined by ut : x�Rn O u(x0 1

(x2x0 ) /t), then obviously ut �W 1, p (Rn ) and ut Ku in L p (V) as tK1; more-
over by the convexity of V and Lemma 3.9 we have

(3.59) F 9hom (V , ut ) G (F 9hom )2 (x0 1 t(V2x0 ), ut )G s
x01 t(V2x0 )

fhom (Dut ) dx .



HOMOGENIZATION OF NEUMANN PROBLEMS ETC. 487

By performing the change of variable y4x0 1 (x2x0 ) /t in the right-hand
side of (3.59) and by exploiting the convexity of fhom we obtain

(3.60) F 9hom (V , ut ) G

t ns
V

fhomg 1

t
Duh dyG t n21s

V

fhom (Du) dy1 t ng12
1

t
hNVNfhom (0) ,

therefore by (1.2) and (3.58) we infer (3.57) by taking the limit as tK1 in (3.60).
Let now u�L p (V), then by (3.57) we have immediately

F 9hom (V , u) G
.
/
´

s
V

fhom (Du) dx if u�W 1, p (V) ,

1Q if u�L p (V) 0W 1, p (V) ,

(3.61)

therefore by (3.61), Proposition 3.4 and (1.1) equality (3.56) follows.
Finally, if (1.17) holds, Proposition 1.5 yields the boundedness of dom fhom

from which, together with (3.56), the last statement of the thesis follows. r

4. – Convergence of minima.

In the present section we deduce by Theorem 3.10 a result on the conver-
gence of minima for Neumann problems for the functionals in (1.12) and, as a
corollary, the convergence result exposed in the introduction.

THEOREM 4.1. – Let f be as in (1.11) verifying (1.16) or (1.17), and let fhom be
given by (1.14), then fhom turns out to be convex, lower semicontinuous and for
every convex bounded open set V, b�L Q (V), lDVbVL Q (V) the values

(4.1) me (V , b , l) 4

min{s
V

fg x

e
, Duh dx1s

V

bu dx1ls
V

NuNdx : u�W 1, p (V)} eD0

converge as e tends to 0 to

mhom (V , b , l) 4minms
V

fhom (Du) dx1s
V

bu dx1ls
V

NuNdx : u�W 1, p (V)n .

Moreover, if (1.17) holds, dom fhom turns out to be bounded and

(4.2) mhom (V , b , l)4minms
V

fhom (Du) dx1s
V

bu dx1ls
V

NuNdx : u�W 1, Q (V)n .

Finally, if ]e h ( is a sequence of positive numbers converging to 0 and, for
every h�N , uh is a solution of me h

(V , b , l) then ]uh ( is compact in L p (V)
and its converging subsequences converge to minimizers of
mhom (V , b , l).
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PROOF. – Let V , b , l be as above and, for every eD0, let Fe be given by (1.12).
The properties of fhom and of dom fhom follow by Theorem 3.10.
Let V be a convex bounded open set and ]e h ( be a sequence of positive

numbers converging to 0, then by Theorem 3.10, (1.7), (1.8) and (1.1) we de-
duce that

(4.3) G2 (L p (V) ) lim
hK1Q

Fe h
(V , u) 4s

V

fhom (Du) dx for every u�W 1, p (V) ,

therefore by (4.3), the L p (V)-continuity of the functional u�

L p (V) O s
V

bu dx1ls
V

NuNdx and Proposition 1.2 we infer that

(4.4) G2 (L p (V) ) lim
hK1Q

{Fe h
(V , u)1s

V

bu dx1ls
V

NuNdx}4

s
V

fhom (Du) dx1s
V

bu dx1ls
V

NuNdx for every u�W 1, p (V) .

At this point we observe that by (1.16) or (1.17) and the choices of b and l
the functionals in brackets in (4.4) are L p (V)-lower semicontinuous and
L p (V)-equicoercive on W 1, p (V), hence by (4.4) and Theorem 1.3 we deduce
that minima in (4.1) do exist, that

lim
hK1Q

me h
(V , b , l) 4mhom (V , b , l)(4.5)

and that if for every h�N uh is a solution of me h
(V , b , l) then ]uh ( is compact

in L p (V) and its converging subsequences converge to minimizers of
mhom (V , b , l).

In conclusion, being ]e h ( arbitrarily chosen, by (4.5) we deduce that

lim
eK0

me (V , b , l) 4mhom (V , b , l) .

Finally, if (1.17) holds, by the boundedness of dom fhom (4.2) soon
follows. r

We now prove the convergence result stated in the introduction. To do this
we denote by I[0 , 1Q[ the function defined by I[0 , 1Q[ (t) 40 if t� [0 , 1Q[,
I[0 , 1Q[ (t) 41Q if t�]2Q , 0[.

COROLLARY 4.2. – Let f, m be as in (0.3), (0.4) verifying (0.9) or (0.10), and
let f p

hom be given by (0.13), then f p
hom turns out to be convex, lower semicontin-

uous and for every convex bounded open set V, b�L Q (V), lDVbVL Q (V) the
values ] j p

e (V , b , l)(eD0 in (0.11) converge as e tends to 0 to j p
hom (V , b , l) in

(0.12).
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Moreover, if (0.10) holds, dom f p
hom turns out to be bounded and

j p
hom (V , b , l) 4minms

V

f p
hom (Du) dx1s

V

bu dx1ls
V

NuNdx : u�W 1, Q (V)n .

Finally, if ]e h ( is a sequence of positive numbers converging to 0 and, for
every h�N , uh is a solution of j p

e h
(V , b , l) then ]uh ( is compact in L p (V)

and its converging subsequences converge to minimizers of j p
hom (V , b , l).

PROOF. – If f and m are given as in (0.3) and (0.4), by setting f (x , z) 4

f(x , z)1I[0 , 1Q[ (m(x)2NzN) it turns out that f verifies (1.11), that W f in (1.15)
agrees with m and that fhom in (1.14) is equal to f p

hom , moreover by (0.9) or
(0.10) it soon follows that (1.16) or (1.17) are fulfilled.

By virtue of this we obtain that the assumptions of Theorem 4.1 are ful-
filled, and the thesis follows by Theorem 4.1. r
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