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On the Variety of Quadrics of Rank Four Containing
a Projective Curve (*)

ALEXIS G. ZAMORA

Sunto. – Sia X%P(H 0 (X , L)* ) una curva proeittiva e lissa, generali nel senso di Brill-
Noether, indichiamo con R4 (X) l’insieme algebrico di quadrici di rango 4 contenen-
do a X. In questo lavoro noi descriviamo birazionalmente i componenti irriducibile
di R4 (X).

1. – Introduction.

Let X be a smooth, complete, and irreducible curve of genus gF3 over C ,
general in the Brill-Noether Theory sense.

Let L be a line bundle on X , L 4 OX (D), the associated invertible sheaf,
d4degLF2(2g21). Under these hypotheses the map f L : XKP(H 0(X , L)* )
is an embedding.

We shall denote without distinction by X both the abstract smooth curve
and its image under the map f L .

Define:

Rn (X) »4 ]Q�PS 2 (H 0 (X , L)* )Nrank QGn and X%Q( ,

the set of quadrics of rank less or equal to n containing the image of X in
P(H 0 (X , L)* ) .

The aim of this paper is to study the variety R4 (X). First of all, note that
R4 (X) is a closed algebraic set in PS 2 (H 0 (X , L) ) . Indeed, it is the intersec-
tion of Q(X), the linear variety of quadrics containing X and R4 , the variety of
rank four quadrics in PH 0 (X , L)* . Our main result states that R4 (X) is a pure
dimensional variety of dimension 2d23g24, the irreducible components of
R4 (X) are described in terms of fibered products on the Picard variety of X of
some varieties parametrizing pencils on X .

More precisely, a pair ( ga
1 , gb

1 ) satisfying a1b4d and Nga
1 1gb

1 N4NDN

will be denoted by ( ga
1 , gb

1 )0 . The study of the variety R4 (X) is equivalent to
the study of the pairs ( ga

1 , gb
1 )0 , as the following lemmas explain:

(*) Partially supported by CONACyT Grant 3936-E and UNAM-PAPIIT Grant
IN108996.
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LEMMA 1.1. – Given Q� R4 (X), denote B4X . Sing Q , then:

1) Given any pair ( ga
1 , gb

1 )0 , it can be constructed an element Q� R4 (X)
such that Ll . X2B4ga

1 2Ba and Mm . X2B4gb
1 2Bb , where Ll and Mm are

the rulings of Q , , and Ba (resp. Bb ) denotes the base locus of ga
1 (resp.

gb
1 ).

2) Conversely, given Q� R4 (X), such that X . Sing Q4¯ , we obtain a
pair ( ga

1 , gb
1 )0 by intersecting X with Ll and Mm . If acb this is the inverse of

the previous map for the case of base point free pencils.

3) If a4b , the pairs ( ga
1 , ga

1 )0 and (ga
1 , ga

1 )0 determine the same element
of R4 (X).

PROOF. – 1) Let s1 , s2 be a basis of the two dimensional space of sections
Va %H 0 (X , M) determined by ga

1 , (M4 OX (Da ), Da �Nga
1 N), analogously let t1 ,

t2 be a basis of Vb %H 0 (X , M 8 ), M 84L7M 21 .
Then si 7 tj �H 0 (X , L) and Qab 4 ]det (si 7 tj ) 40( is a rank four quadric

in the space P(H 0 (X , L)* ) . It is trivial to check that Qab � R4 (X). The rulings
of Qab are given by the equations:

.
/
´

s1 (t1 1lt2 ) 40 ,

s2 (lt2 1 t1 ) 40

and

.
/
´

t1 (s1 1ms2 ) 40 ,

t2 (ms2 1s1 ) 40 .

So, we see that Ll . X4ga
1 1Bb and Mm . X4gb

1 1Ba .
On the other hand Ba1Bb4B . Indeed, Ba1Bb coincides with (LlOMm). X ,

and for any (l , m), (LlOMm ) 4Sing Q . This proves the first part of the
lemma.

2) Let Q� R4 (X). Let Ll , Mm , be the two rulings of Q . The intersections
Ll . Q , Mm . Q determine two pencils on X : ga

1 , gb
1 . If q�Q the tangent hyper-

plane Tq Q4 [Ll1Mm ] for some values of l and m ( [] denotes the linear span).
So, we must have Nga

1 1gb
1 N4NDN , where L4 OX (D). In particular, a1b4

deg L .

It is easy to check that on the set of base locus free pencils with acb these
two maps are inverse to each other.

3) It is obvious. r

LEMMA 1.2. – A pair ( ga
1 , gb

1 )0 determines a rank 3 quadric if and
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only if gb
1 1Ba 4ga

1 1Bb . In particular, if Bb 4¯ , then ( ga
1 , gb

1 )0 gives
rise to a rank 3 quadric if and only if a4d/2 and ga

1 4gb
1 .

PROOF. – Assume ( ga
1 , gb

1 )0 gives rise to a rank 3 quadric, then we must
have a relation of the type

(s1 7 t2 ) 4l(s2 7 t1 ) , l�C .

From this it follows that gb
1 1Ba 4ga

1 1Bb . The other implication is trivial.
If Bb 4¯ , gb

1 1Ba 4ga
1 is impossible, unless a4b and deg Ba 40. r

Previous lemmas give the set theoretical description of the variety R4 (X).
After this, we need an algebro-geometric description; this description will be
developed in the next section. As a Corollary of Theorem 2.1 we obtain that the
linear space Q(X) of quadrics in PH 0 (X , L)* containing X intersects the varie-
ty R4 of quadrics of rank four with the expected dimension.

In section 3 we study R4 (X) in the case X is the bicanonical curve of genus
3. In this case we are not under the hypothesis deg LF2(2g21) and some
strange features occur.

The main part of this work was written during a visit of the author to the
Departamento de Matemáticas Puras y Aplicadas of the Universidad de Sala-
manca, Spain. I would like to give thanks to Prof. J. Muñoz-Porras for many
useful comments. Prof. R. Varley has kindly pointed out to me that Theorem
2.1 implies that Q(X)O R4 has the expected dimension. The whole idea of the
work was inspired by the reading of a paper by S. Recillas ([5]).

2. – Construction of R4 (X).

THEOREM 2.1. – R4 (X) is a pure dimensional variety of dimension
2d23g24. If g is odd R4 (X) is the union of irreducible components
Va ,

R4 (X) 40
a

Va ,

where ( g13) /2 GaG [d/2 ].
If g is even, then R4 (X) is the union of irreducible components:

R4 (X) 40
a

Va 0
j

Vg12/2 , j ,

where ( g12) /211 GaG [d/2 ], 1 G jGg!/( g/2 ) !( g/211) ! .

PROOF. – We know that the elements Q� R4 (X) are parametrized by pairs
( ga

1 , gb
1 ) such that Nga

1 1gb
1 N4NDN ; we need to give this parametrization

algebraically.
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We assume in the sequel, without loss of generality, that aGb . Let Ga
1 (X)

be the variety of linear system on X of degree a and projective dimension 1. As
X is general in the Brill Noether sense, Ga

1 (X) will be: non-singular and
irreducible of dimension r42a2g22, if rD0; g!/( g/2 ) !( g/211) ! reduced
points if r40 and empty otherwise. Thus we have Ga

1 (X) c¯ if and only if
[g12/2] Ga ([1]). Moreover, aGb implies aGd/2 . We denote by Sa the uni-
versal bundle on Ga

1 (X).
Consider on Pica (X) the locally free sheaf La84 La

21 7p 1* L , where

p 1 : X3Pica (X) KX

is the projection onto the first factor.
By the assumption on the degree of L and the convention aGb we have

that p 2,* La8 is a locally free sheaf on Pica (X) ([4], page 53). Let G(2 , p 2,* La8 ) be
the corresponding Grassmanian. If Sa8 denotes the universal bundle on
G(2 , p 2,* La8 ) we have an inclusion:

0 KSa8Kp 8* p 2,* La8 ,(2.1)

where p 8 : G(2 , p 2,* La8 ) KPica (X) is the natural projection. In order to sim-
plify the notation let us call Ga8 (X) to G(2 , p 2,* La8 ). The projections

Ga
1 (X)

pI
Pica (X) J

p 8
Ga8 (X) ,

allow us to define the fibered product

Ga (X) »4Ga
1 (X)3Pica (X) Ga8 (X) .

We obtain a commutative diagram:

Ga

p1I
Ga

1 (X)

K
p2

7p

K
p

Ga8 (X)

Ip 8

Pica (X) .

Consider the natural multiplication map:

0 Kp1* Sa 7p2* Sa8KH 0 (X , L)7 OGa (X) .

Let s1 , s2 , (resp. t1 , t2 ) be local generators on an open set U%Ga (X) of the



ON THE VARIETY OF QUADRICS ETC. 457

locally free sheaf of rank two Sa , (resp. Sa8 ). Define

f U : UK (S 2 H 0 (X , L) ) ,

uKdet (si 7 tj )(u) .

It is easy to see that if s18 , s28 , t18 , t28 are other sets of local generators
then

det (si87 tj8 ) 4det A Qdet B Qdet (si 7 tj ) ,

where A , B�GL(2 , OU* ) satisfies

gs1

s2
h4Ags 81

s 82
h , gt1

t2
h4Bgt 81

t 82
h .

So, we have a projective morphism:

F a : Ga (X) KP(S 2 H 0 (X , L) ) .

The image of a point of Ga (X) is, just by construction, an element of
R4 (X).

Call Va 4F a (Ga (X) ) , our next claim is:

LEMMA 2.6. – a) For all a , Ga (X) is an irreducible variety of dimension
2d23g24,

b) F a is a birational morphism for all acd/2 ; if a4d/2 , F a is generi-
cally a two-sheeted covering.

c) If aca 8 , then Va cVa8 .

PROOF OF LEMMA 2.6. – We start by remarking that, if Z0 %Ga (X) is the set
corresponding to ( ga

1 , gb
1 ) with either Ba c¯ or Bb c¯ (we use the same nota-

tion as in Lemma 1.1), and Z1 %Ga (X) is the set of elements in Ga (X) such that
the associated quadric is of rank 3, then Z0 NZ1 is a proper closed set.

Indeed, consider on Ga (X)3X the natural evaluation map:

s 1*(p 8* Sa87p * Sa ) K (p 83 id)* (p* L) ,

(s 1 being the projection of Ga (X)3X onto the first factor). The support of the
cokernel of this map corresponds to ( ga

1 , gb
1 , p) such that p is a base point of ei-

ther ga
1 or gb

1 . This is a closed proper set of Ga (X)3X and its projection on
Ga (X) is Z0 , which is, thus, a proper closed set.

By lemma 1.2 Z1 %Z0 , unless a4d/2 and ga
1 4gb

1 . In this case we must con-
sider, moreover, Z18%Z1 , the diagonal of the projection Ga (X) KPica (X),
which is, again, a closed set, since the projection is a proper morphism. r
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A point of Ga
1 (X) will be denoted by (M , W), with M�Pica (X) and

W%H 0 (X , M) a subspace of dimension two.

a) Consider the projection

p1 : Ga (X) KGa
1 (X) ,

since X is general in Mg , Ga
1 (X) is irreducible and non-singular; moreover, the

fiber over a point (M , W) �Ga
1 (X) is the Grassmanian G(2 , H 0 (X , M 8 ) ) , where

M 84M 21 7L .
Once again, as deg M 84bD2g21 the dimension of the fibers of p1 is con-

stant; furthermore, each fiber is non-singular and irreducible. We conclude
that Ga (X) is irreducible and

dim Ga (X) 4dim G(2 , H 0 (X , M 8 ) )1dim Ga
1 (X) 42(b2g21)12a2g22 .

So, we obtain part a).

b) By Lemma 1.1 it will be sufficient to prove that on the open set of pairs
of free base locus linear series determining a rank four quadric in PH 0 (X , L)*
the map F a separates tangent vectors.

In order to study the injectivity of the tangent maps we must analize the
behavior of the composite map F a i a , with

a�Hom (Spec C[e]O(e)2 , Ga (X), w) , w�Ga (X) .

Following our notation for elements in Ga
1 (X) and Ga8 (X), w will be denoted by

w4 (M , W , M 8, W 8 ).
The morphism a gives rise to an infinitesimal first order deformation of w . If

Ua is an open covering of X and gab the transition functions of M , a first order
deformation is given by a family Me of line bundles with transition fun-
ctions

gAab4gab (11ef ab ) , ]f ab( �H 1 (X , OX ) .(2.2)

Moreover, if s1 , s2 are a basis of W we must have relations

.
/
´

sA1a4s1a1es 81a ,

sA2a4s2a1es 82a ,
(2.3)

satisfying sAia4gAab sAib .
Analogously, we must have a family Me8 of degree b line bundles with transi-

tion functions

hAab4gab
21 fab (11eW ab ) ,

where fab are the transition functions of L . Moreover, Me7Me8`L impose the
condition W ab42f a .
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Finally, if t1 , t2 is a basis of W 8 we must have the relations:

tAia4 tia1et 8ia , tAia4hAab tAib .

The transition conditions imply:

sia8 4gab s 8ib1f ab gab sib , tia8 4hab t 8ib2f ab gab tib .

The composition of F a and a will be given by det (sAi 7 tAj ). Locally the expres-
sion is:

det (sAia7 tAja ) 4det (sia7 tja )1eEa (si , tj , si8 , tj8 ) ,

where

Ea (si , tj , si8 , tj8 ) 4w11
a w22

a 81w11
a 8 w22

a 2w12
a w21

a 82w12
a 8 w21

a ,

wij
a4sia7 tja , wij

a 84sia8 7 tja1sia7 tja8 .
On UaOUb the following identities hold:

sia8 7 tja1sia7 tja8 4 fab (sib8 7 tb1sib7 tb8 ) ,

thus, the data ]wij
a( gives rise to an element of H 0 (X , L). Then, we conclude

that the tangent space to F a at det (wij ) will be the vector space:

]E4w11 w228 1w22 w118 2w12 w218 2w21 w128 (Odet (wij ) .

We claim that the relation

w11 w228 1w22 w118 2w12 w218 2w21 w128 4k det (wij ) ,(2.4)

implies that the associated infinitesimal deformation is trivial.
Indeed, if det (wij ) 40 is a rank four quadric then (2.4) implies wij84wij .

Thus, we have locally:

sia8 7 tja1sia7 tja8 4sia7 tja

but then sia (p) 40 implies sia8 (p)7 t1a (p) 4sia8 (p)7 t2a (p) 40 and on the set of
free base locus pencils this implies sia8 (p) 40. On the other hand sAia4

sia1esia8 (2.3), so (sAi )0 F (si )0 , since deg M4deg Me ; this implies M4Me and
sAi 4k Qsi , k�C . The same argument is valid for tj .

c) Let us calculate the intersection of Va and Va 8 . Assume a 8Da . Let
Q4v 11 v 22 2v 12 v 21 be a quadric in the intersection Va OVa 8 . The two rulings
of Q are given by the equations:

.
/
´

v 11 4lv 12 ,

lv 22 4v 21 ,

.
/
´

v 11 4mv 21 ,

mv 22 4v 12 ,
(2.5)
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since Q is in the image of F a , v ij 4si 7 tj , where si �H 0 (X , M), deg M4a
and tj �H 0 (X , L7M 21 ). The intersection of (2.5) with X determines a pair
( ga

1 1Bb , gb
1 1Ba ), where ga

1 is given by the zeroes of ls1 1ms2 , gb
1 is given by the

zeroes of lt1 1mt2 , B is the base locus of gb
1 and A the base locus of ga

1 .
On the other hand, thinking of Q as a point in the image of F a 8 , we obtain
si �H 0 (X , M), deg M 4a 8 tj �H 0 (X , L7M21 ), deg M 4a 8 determining a
pair ( ga 8

1 1B 8b , gb 8
1 1B 8a ). Intersecting the rulings of Q with X we obtain:

ga
1 1Bb 4ga 8

1 1B 8b .

From a 8Da it follows that either Bb or B 8b is non-empty and deg Bb D

deg B 8b . We conclude that deg Bb D0. Using an analogous reasoning for the re-
lation gb

1 1Ba 4gb 8
1 1B 8b it follows that deg B 8a D0. Thus, we conclude that if

Q�Va OVa 8 (a 8Da), then both gb
1 and ga 8

1 have non-empty base locus.
Now, if Va 4Va 8 , then for every ( ga 8

1 , gb 8
1 ) �Ga 8 , ga 8

1 has non-empty base lo-
cus, but it is impossible because for X general the set

]ga 8
1 �Ga 8

1 (X)Nga 8
1 has non-empty base locus(

is a proper closed set. r

In the case that g is even and a4g12/2 , the same construction can be
applied to it. In this case the varieties Gg12/2 , j correspond to the product
pj 3G(2 , H 0 (X , M 8 ) ) where the pj are the points representing the gg12/2

1 on
X .

Finally, we observe that the Lemma implies Theorem 2.1. In fact, a) and b)
imply that Va are irreducible families in R4 (X), c) implies that these varieties,
being all of the same dimension, are irreducible components of R4 (X). By Lem-
ma 1.1 every element of R4 (X) occurs in one of these components. r

As an easy consequence of Theorem 2.1 we obtain that Q(X) and R4 intersec-
ts in the expected dimension:

COROLLARY 2.13. – dim R4 (X)4dim Q (X)1dim R42dim S 2 H 0 (X , L)21.

PROOF. – We know that R4 (X) is pure dimensional of dimension 2d23g24.
On the other hand the dimension of Q (X) 4dim S 2 H 0 (X , L)2h 0 (X , L 72 ).
This follows from the fact that under our choice for d , the projective curve X is
projectively normal ([3], page 520). The dimension of R4 is well known to be
(N(N11))O2212 ((N23)(N24))O2, where N4d2g11 4h 0 (X , L) ([2],
page 299). The Corollary follows after a simple computation. r
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3. – The bicanonical curve of genus 3.

In this section we study the structure of R4 (X) in the case where X is the
image under the bicanonical embedding of a non-hyperelliptic curve of genus 3.
This example was the original motivation for studying the generic case treated
above. Moreover, this discussion illustrates how the general theory of the pre-
vious section can be used, with some ad hoc modification, to study particular
cases which do not satisfy the hypothesis of Theorem 2.1.

Thus, our L will be the bicanonical sheaf L4v X
2 . This is a degree 8 sheaf,

then, we are not in the hypothesis of Theorem 2.1, since 8 E2(2g21).
As before, R4 (X) is parametrized by two varieties: G3 (X) and G4 (X). The

first strange feature in this case is that G4 (X) is not irreducible:

CLAIM 3.1. – G4 (X) is the union of two irreducible components G1 and G2 ,
where the image of G1 under F 3 is birationally equivalent to the Kummer va-
riety of X and G2 is isomorphic to S 2 (PH 0 (X , v X )* ) .

In fact, in this case G4
1 (X) CG48 (X) C PicA4 (X), the blowing-up of Pic4 (X)

with center at [v X ], since for every degree 4 line M on X , h 0 (X , M) 42 if and
only if Mcv X . The fibered product G4 (X) K

p
Pic4 (X) is described away from

the fiber on [v X ] as the pairs ](M , M 8 )NM , M 8�Pic4 (X), M7M 84v X
2 (, so

we conclude that the open set U4G4 (X)2p 21 ( [v X ] ) is 3-dimensional.
On the other hand the fiber on [v X ] coincides with the symmetric product

S 2 (G(2 , H 0 (X , v X ) )) . But G(2 , H 0 (X , v X ) )4PH 0 (X , v X )* , since g(X) 43.
This fiber is, thus, a four dimensional variety and we conclude that G4 (X) split
out in to two irreducible components: the closure of the open set U , that will
be denoted by G1 and the fiber on [v X ], that will be denoted by G2 . That the
image of G1 is birationally equivalent to the Kummer variety of X is almost im-
mediate from the previous description via the identification

Pic4 (X) K
A

Pic0 (X) , MKM7v X
21 . r

Call V1 (resp. V2 ) to the image of G1 (resp. G2 ) under the morphism F 4 .
Another exceptional property is:

CLAIM 3.2. – The image V3 of G3 (X) under the map F 3 is contained in
V2 .

First of all, we will show that for every element ( g3
1 , g5

1 ) �G3 (X), g5
1

has a nonempty base locus. In fact, every g3
1 on X is given by a pencil

of lines through p�X 8, where X 8 is the canonical curve. The condition
Ng3

1 1g5
1 N4v X

2 implies that the eight points in any divisor in this linear
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system must be on a conic, so Ng5
1 N4Nv X N1p . This proves that every

element of V3 is included in V2 . r

The conclusions can be summarized as follows:

THEOREM 3.3. – Let X be a bicanonical non-hyperelliptic curve of genus 3.
Then R4 (X) 4V1 NV2 , where dim V1 43 and dim V4 44. V1 is birationally
equivalent to the Kummer variety of X, and V2 is birationally equivalent to
the symmetric product S 2 (PH (0 , v X )* ) .

A more detailed description of the projective properties of the varieties V1

and V2 can be found in [6].
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