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A Canonical Map between Hecke Algebras.

ANDREA MORI (*) - LEA TERRACINI (*)

Sunto. – Sia D un corpo di quaternioni indefinito su Q di discriminante D e sia G il
gruppo moltiplicativo degli elementi di norma 1 in un ordine di Eichler di D di li-
vello primo con D. Consideriamo lo spazio Sk (G) delle forme cuspidali di peso k ri-
spetto a G e la corrispondente algebra di Hecke HD. Utilizzando una versione della
corrispondenza di Jacquet-Langlands tra rappresentazioni automorfe di D 3 e di
GL2 , realizziamo HD come quoziente dell’algebra di Hecke classica di livello ND .
Questo risultato permette di ottenere informazioni sulla struttura dell’algebra HD e
di definire una struttura intera per lo spazio Sk (G).

Introduction.

In their study of congruences between modular forms, Ribet [16], and Dia-
mond and Taylor [3], [4], use the fact that a certain quotient of the classical wei-
ght 2 Hecke algebra can be identified with an algebra constructed analogously
from a quaternion division algebra. Experts regard this identification as true in
any weight, because it depends solely on the Jacquet-Langlands corresponden-
ce. Nonetheless, to the best of our knowledge, no proof has ever appeared in the
literature.

Let D be an indefinite quaternion algebra over Q , of discriminant Dc1. Let
R be an Eichler order of level N in D , and let G be the multiplicative group of the
elements in R of norm 1. Also, let x be a Dirichlet character modulo N . As for
the classical (i.e. GL2 ) case, it is defined an Hecke algebra HD (N , x) acting on
the space Sk (G , x) of G-modular forms of weight k and character x . The main re-
sult of this paper is a canonical identification between HD (N , x) and the quo-
tient of the classical Hecke algebra of level ND and character x , obtained by re-
stricting the Hecke operators to the D-new cuspforms.

Our methods are purely representation theoretic. The identification is deduced
from a non-canonical translation of the Jacquet-Langlands correspondence in ter-
ms of cuspforms (not just representations). We take the opportunity to write down
in detail, in the preliminary sections, a few well-known facts relevant to the Jac-
quet-Langlands correspondence, whose proofs are usually omitted.

A byproduct of our construction is that the space Sk (G , x) inherits from

(*) The authors are members of the G.N.S.A.G.A. of C.N.R. (Italy).
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Sk (G 0 (N), x) a family of Hecke invariant Z[x]-structures, all Hecke isomorphic
to each other. Also, the usual duality properties hold for these structures.

The study of the relations between these structures and the integral struc-
tures that can be defined more directly using either the geometry of the Shimu-
ra curve, [15], or group cohomology, as in [18], Chapter 8, is the subject of on-
going research. It involves a deeper analysis of their structure as Hecke modu-
les, in particular with regard to the Gorenstein property for the relevant Hecke
algebras. A starting point in this direction is Ribet’s work [17].

NOTATIONS AND CONVENTIONS. – The symbols N , Z , Q , R , C denote, as alwa-
ys, respectively the natural numbers, the integers and the fields of rational, real
and complex numbers. The symbol A denotes the ring of rational adeles.

Let p be a prime number. The ring of p-adic integers and the field of p-adic
numbers are denoted respectively Zp and Qp . Given a Q-vector space V and a lat-
tice L%V let L p 4L7 Z Zp and Vp 4V7 Q Qp .

For an algebraic group G and a ring R , G(R), or GR , denotes the group of R-
rational points of G . We shall use a special notation for G4GL2 , namely we let
Kp 4GL2 (Zp ). Moreover, for an m�N let

Kp (m) 4{g a

mc

b

d
h such that a , b , c , d�Zp and ad2bmcg0 mod p} .

The Borel subgroup B of GL2 is the subgroup of upper-triangular matrices, i. e.

B(R) 4{ga

0

b

d
h�GL2 (R)} .

We shall use the special notation Bp for B(Qp ).
Finally, let H 4 ]x1 iy�C such that yD0( and GL2

1 (R) 4 ]g�GL2 (R)
such that det gD0(. The group GL2

1 (R) acts on H via linear fractional transfor-
mations, namely

ga

c

b

d
hQz4

az1b

cz1d
.

For g4ga

c

b

d
h�GL2

1 (R) and z� H let j(g , z) 4cz1d .

1. – Modular forms.

Let D be a Q-central quaternion algebra with reduced norm n . The algebra
D supports a canonical anti-involution, the quaternionic conjugation, which we
shall denote a O a. The set S consisting of the primes p (including p4Q and ta-
king QQ4R) such that Dp is the unique quaternion division algebra over Qp is
finite and even. The discriminant D4D(D) is defined as the product of the fini-
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te primes in S . The isomorphism class of D is completely determined by its di-
scriminant. We shall assume that D is indefinite, i. e. that Q� S .

Fix an Eichler order R in D of level N , with (N , D) 41, and set

G4G R »4 ]g�R such that n(g) 41( .

Since D is indefinite any two Eichler orders of level N are conjugate. In particu-
lar, if D41 (i. e. D4M2 (Q) ) we may assume that

G4G 0 (N) 4{ga

c

b

d
h�SL2 (Z) such that cf0 mod N} .

For each prime p not dividing D (including p4Q) fix an isomorphism

ip : Dp KM2 (Qp )

such that for finite p ,

(1.2) ip (Rp )4
.
/
´

M2 (Zp ) ,

{g a

Nc

b

d
h�M2 (Zp ) such that a , b , c , d�Zp} ,

if p=ND ,

if pNN ,

(when D41, ip is the identity). From now on, by an abuse of notation, we shall
write a for ip (a) whenever no confusion may arise. Recall that DA

34

D 3gGL2
1 (R)3»

q
Rq

3h, e.g. [14], Theorem 5.2.11. For each prime p , including

the primes dividing D , set

Ep 4
.
/
´

]r�Rp such that n(r) c0( ,

{g a

Nc

b

d
h�Rp such that a�Zp

3 and ad2Nbcc0},

if p=N ,

if pNN ,

and let

ER 4ROER (A)

where ER (A) 4gGL2
1 (R)3»

p
EphODA

3 . Note that

G%ER %ER (A) .(1.3)

Let x be a Dirichlet character modulo N . It gives rise to a Größencharachter
whose local component at p is denoted x p . For g4 (g Q , g p ) �ER (A), write
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g p 4uap

cp

bp

dp

v for p not dividing D and define

x(g) 4 »
pNN

xp (ap ) .(1.4)

Because of (1.3), x restricts to a character of G . Observe that if D41 the exten-

sion of x to G 0 (N) can be defined directly as x(g) 4x( [d] ), if g4ga

c

b

d
h and [d]

is the class of d modulo N . This definition is consistent with (1.4) because
[a][d] 41.

The map iQ in (1.1) identifies G with a discrete subgroup of SL2 (R), and we
can make G act on the upper halfplane H via the usual fractional transforma-
tions. The quotient space G0H is a Riemann surface which is compact when DD1
and not compact when D41. In the latter case, it can be compactified by adding
in a suitable way a finite set of points called cusps. For a detailed proof of these
facts see [14], chapters 1 and 5, or [18], chapters 1 and 9.

DEFINITION 1. – A modular form f of weight k�Z and character x for G , is a
holomorphic function f : H KC such that:

(1) the identity fNg(z) »4 f(g(z)) j(iQ(g), z)2kx(g)4f(z) holds for all g�G .

(2) f extends holomorphically in a neighborhood of each cusp.

Note that the second condition is non-empty only when D41 and in this ca-
se f is called a cuspform if it vanishes at the cusps. When Dc1 we shall use the
terms modular forms and cuspforms interchangeably. Since the space of cusp-
forms (any D) does not depend, up to isomorphism, on the choice of the particu-
lar order R of level N , we generally speak of cuspforms of level N and denote
this space S D

k 4S D
k (N , x) (we shall drop the superscript D if D41). It is a well-

known fact that the spaces S D
k are finite dimensional and actually trivial for

kE0.

Let us now assume D41. Since g1 1

0 1
h�G , each f�Sk satisfies the identity

f (z11) 4 f (z) and thus admits an expansion of the form

f (z) 4 !
nF1

an ( f ) q n , q4e 2piz .(1.5)

The expression (1.5) is called the q-expansion of f at Q . Analogous q-expansions
can be defined for each cusp.

More general spaces of modular forms and cuspforms can be obtained by re-
placing G in Definition 1 with arbitrary Fuchsian groups of the first kind
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(see [18], Chapter 1). Of particular interest is the group

G 1 (N) 4{ga

c

b

d
h�SL2 (Z) such that cf0 mod N , afdf1 mod N} ,

which is a normal subgroup of G 0 (N). Note that G 0 (N)OG 1 (N) C (ZONZ)3 ,
and

Sk (G 1 (N) )4 5
x

Sk (N , x) ,(1.6)

where the sum ranges through the group of characters of (ZONZ)3 , i.e. the Di-
richlet characters modulo N .

2. – The Jacquet-Langlands correspondence.

For more facts and details about the material in this section, see [6] and the
references quoted therein.

To each cuspform f �Sk (N , x) is associated an automorphic representation
p f of the adelization GL2 (A). Consider the function

W f (gQ gQ k) »4 f(gQ (i) ) j( gQ , i)2k ( det gQ )kO2 x(k)

on GL2 (A), where gQ �GL2 (Q), gQ�GL2
1 (R) and k�KN 4 »

p finite
Kp (N). It defi-

nes a function, denoted W f again, in L 2 (GL2 (Q)0GL2 (A) ) . The adele group
GL2 (A) acts on L 2 (GL2 (Q)0GL2 (A) ) by right translation: r(g)W(x) 4W(xg).
Then, the representation p f is the subrepresentation of the regular right repre-
sentation r of GL2 (A) generated by the right translates of W f .

Similarly, to each f D �S D
k (N , x) is associated an automorphic representa-

tion p f D of DA
3 . Start with the function

W f D (dgQ k) »4 f D (gQ (i) ) j(gQ , i)2k ( det gQ )kO2 x(k)

on DA
3 , where d�D 3 , gQ�GL2

1 (R) and k�KN 4 »
p finite

Rp
3 . As for the split ca-

se, W f D defines a function in L 2 (D 3 0DA
3 ), and p f D is the subrepresentation of

the right regular representation r of DA
3 on L 2 (D 3 0DA

3 ) generated by the
translates of W f D .

The automorphic representations of GL2 and D 3 have the property that
they can be decomposed as infinite tensor products of their local components
(this is a general fact, see [5]). This means that we can write

p f 4 7
p

p f , p , p f D 4 7
p

p f D , p ,(2.1)

where, including p4Q , p f , p (resp. p f D , p ) is an admissible representation of
GL2 (Qp ) (resp. of Dp

3 ). Observe that if pND the representation p f D , p is finite di-
mensional because Dp

3 modulo its center is compact.
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The admissible representations of GL2 (Qp ) have been completely classi-
fied [6], [10]. There are three families of such representations.

(i) The principal series representations p(m 1 , m 2 ), where m 1 and m 2 are
characters of Qp

3 such that m 1 m 2
21

c N QN61 . The representation p(m 1 , m 2 ) is rea-
lized as right translation on the space of the locally constant functions c on
GL2 (Qp ) such that

cggt1

0

x

t2
h kh4m 1 (t1 ) m 2 (t2 ) N t1

t2
N

1O2
c(k) , for all k�K .(2.2)

(ii) The special series representations s(m 1 , m 2 ), where m 1 and m 2 are
characters of Qp

3 such that m 1 m 2
21 4 N QN61 . This time the space of locally con-

stant functions on GL2 (Qp ) satisfying (2.2) is not irreducible and s(m 1 , m 2 ) is
realized as its unique irreducible subquotient.

(iii) The supercuspidal representations, characterized by the fact that
their matrix coefficients are compactly supported modulo the center.

Special and supercuspidal representations are square-integrable.
Let p be a prime dividing D . By making use of the local Weil representation

associated with Dp and its local norm, it is possible to associate to each irreduci-
ble representation p 8p of Dp

3 an irreducible representation p(p 8p ) of
GL2 (Qp ) [10], § 1. On the other hand, if p does not divide D the isomorphism ip

allows to identify the representations of Dp
3 with those of GL2 (Qp ), i.e. put

p(p 8p ) 4p 8p in this case.
The Jacquet-Langlands correspondence between automorphic representa-

tions of DA
3 and automorphic representations of GL2 (A) is defined by

p 847p 8p O JL(p 8 ) »47p(p 8p ) .

This correspondence preserves central characters and L-functions, i.e. L(p8 , s)4
L(JL(p 8 ), s) .

3. – Oldforms and newforms.

Let M be a divisor of N , x a Dirichlet character modulo M , and let S be the
Eichler order of level M obtained replacing N with M in (1.2). For each divisor d
of NOM the order R 8 4DOgGL2

1 (R)3»
p

Rp8h, where

Rp84
.
/
´

gd

0

0

1
h Rpgd

0

0

1
h21

,

Rp ,

if p=D ,

if pND ,
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is an other Eichler order of level N contained in S . Let h�DA
3 be the adele

such that h p 4 ip
21gd

0

0

1
h if pNN , and h p 41 otherwise. By [14], Theorem

5.2.10, there exists an element a d �D (in fact a d belongs to a maximal order con-

taining S) such that n(a d ) 4d and ip (a d ) fgd

0

0

1
h modulo N 2 M2 (Zp ) for all

pNN . Then a d
21 h�GL2

1 (R)3 »
p=N

Rp
33 »

pNN
(11NM2 (Zp ) ) and R 8 4a d Ra d

21 .

The association f (z) O f (a d z) j(a d , z)2k defines an embedding

jd
D : Sk

D (M , x) KSk
D (N , x) .(3.1)

Note that if D41 then a d 4gd

0

0

1
h and j(a d , z) 41, so that the embedding

(3.1) is the more familiar f (z) O f (dz). The subspace of Sk
D (N , x) spanned by the

images of the maps (3.1) is denoted Sk
D (N , x)old . Its elements are called

oldforms.
The space Sk

D (N , x) is endowed with a canonical inner product, the Peters-
son product, defined as

a f , gb 4s
F

f (z) g(z) y k22 dx dy

where z4x1 iy and F is a fundamental domain for the action of G on H . So, we
can consider the orthogonal decomposition

Sk
D (N , x) 4Sk

D (N , x)old 5Sk
D (N , x)new ,(3.2)

where Sk
D (N , x)new 4 (Sk

D (N , x)old )» . We shall use later the finer decomposi-
tion

Sk
D (N , x) 4 5

MNN
k 5

dNNOM
jd

D (Sk
D (M , x)new )l ,(3.3)

where the blocks in square brackets are orthogonal to each other. Mind that
when the conductor of x does not divide M , the corresponding spaces in (3.3) are
trivial. We can obtain more decompositions as in (3.2) by picking a suitable
subset of the maps (3.1). Assume that N4AB with A and B positive integers
with (A , B) 41. Then considering oldforms constructed only from the divisors
M of N with B=M , we define a subspace Sk

D (N , x)B-old . It gives rise to a decom-
position analogous to (3.2) together with its orthogonal Sk

D (N , x)B-new . In terms



ANDREA MORI - LEA TERRACINI436

of the decomposition (3.3),

Sk
D (N , x)B-new = 5

BNMNN
k 5

dNNOM
jd

D (Sk
D (M , x)new )l .(3.4)

The maps jd
D can be described in a simple way from the adelic point of view. Na-

mely, If h is the idele considered above, then

W jd
D ( f ) 4p f (h21 ) W f .(3.5)

Indeed, gQ gQ kh214 (gQ a d
21 )(a d gQ)(a d kh21 ) and we can check that the left and

right hand sides of (3.5) coincide. Note that k 8 4a d kh21�» Kp(M) and x(k) 4

x(k 8 ). The left hand side is W jd
D ( f ) (gQ gQ k) 4 f(a d gQ (i) ) j(a d gQ , i)2k x(k). The

right hand side is f(a d gQ (i) ) j(a d gQ , i)2k x(k 8 ).
Let f �Sk

D (N , x) and assume that p f is irreducible. Then there exists a divi-
sor M of N and a g�Sk

D (M , x)new such that f4 jd
D (g) for some divisor d of NOM .

The well-defined number Cond ( f ) 4M is called the conductor of f . In terms of
the representation p f , the conductor can be computed locally. Namely, if p f , p is
the local component of p f for p=D , as in (2.1), with representation space Vp ( f ),
the theory of Atkin-Lehner [1] asserts that there is an n4n(p) such that the
space

Wp ( f ) 4(3.6)

{v�Vp ( f ) such that pga

c

b

d
hv4 x(a) v for all ga

c

b

d
h�Kp (p n )}

is 1-dimensional and that the same space for Kp (p m ) is trivial for all 0 GmEn .
Moreover, if we let Cond (p f , p ) 4p n(p) then, thanks to our assumption that
(N , D) 41,

Cond ( f ) 4Cond (p f ) 4»
p

Cond (p f , p ) .(3.7)

Mind that, according to the general theory, n(p) 40 for all but a finite number
of p , so that the product in (3.7) is actually a finite product.

4. – Hecke operators.

We shall now recall the definition of the Hecke operators acting on the space
Sk

D (N , x). Let p be a prime number, choose arbitrarily an element a�ER with
n(a) 4p and consider the double coset GaG . This double coset decomposes as a
finite disjoint union of left cosets

GaG40
j

Ga j(4.1)
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for some set of representatives a j �R . Let f �Sk
D (N , x). A straightforward

computation shows that the formula

Tp
D f (z) 4p k21!

j
x(a j ) j(a j , z)2k f(a j (z) )(4.2)

defines an element in Sk
D (N , x) which does not depend on the choice of the re-

presentatives a j . Operators Tn
D for any integer nF1 can be defined in a similar

way [14]. To simplify the notation, we shall drop the superscript D in Tn
D unless

Dc1 and some ambiguity may arise. It turns out that

(4.3) Tmn 4Tm Tn 4Tn Tm if (m , n) 41 and Tp k11 4Tp Tp k 2p k21 x(p) Tp k21

if p is prime and kF1 .

When D41 (i.e. G4G 0 (N) ) it is possible to produce explicit elements a and a j

as above. Namely (4.1) and (4.2) become respectively

(4.4) G 0 (N)g1

0

0

p
h G 0 (N)4

.
`
/
`
´

0
b40

p21

G 0 (N)g1

0

b

p
h ,

0
b40

p21

G 0 (N)g1

0

b

p
hNG 0 (N)gp

0

0

1
h ,

if pNN ,

if p=N ,

and

Tp f (z) 4

.
/
´

p k21 !
b40

p21

fg z1b

p
h ,

p 21 !
b40

p21

fg z1b

p
h1p k21 x(p) f (pz) ,

if pNN ,

if p=N .

(4.5)

In particular, this permits to compute the action of each Tp (and consequently of
Tn , for all n�Z , nF1) on q-expansions at Q . Namely,

am (Tn f ) 4 !
dN(m , n)

x(d) d k21 amn/d 2 ( f ) ,(4.6)

with the convention that at 40 if t�Z . It is important to remark that, in particu-
lar,

a1 (Tn ( f ) )4an ( f ) .(4.7)

DEFINITION 2. – The Hecke algebra HD 4HD (N , x) is the Z[x]-subalgebra of
End (Sk

D (N , x) ) generated by the operators Tp
D , for all primes p.
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Equivalently, by formulae (4.3), the Hecke algebra HD (N , x) may be defi-
ned as the Z[x]-subalgebra of End (Sk

D (N , x) ) generated by the operators Tn ,
for all n�Z , nF1. Again, we shall drop the superscript D when D41.

Let p be a prime. For f �Sk
D (N , x) and p=D let

TAp
D W f (g) 4dp s

Kp (N)

x(kp ) W f ggkpgp

0

0

1
hh dkp 4!

j
W f (ga j )(4.8)

where the a j are representatives of the right cosets in the decomposition

Kp (N)gp

0

0

1
h Kp (N) 40

j
a j Kp (N), dp 4deggKp (N)gp

0

0

1
h Kp (N)h is the

number of such representatives and the Haar measure dkp is normalized so that
the volume of Kp (N) is 1. If pND , let

TAp
D W f (g) 4 s

Rp
3

W f (gkp p) dkp 4W f (gp)(4.9)

where p is any uniformizer of Dp
3 , that is n(p) 4p . As for the Hecke operators,

we shall write TAp for TAp
D when there is no risk of confusion.

REMARK 3. – The expressions (4.8) and (4.9) show that under the decomposi-
tion (2.1), the operator TAp acts only on the p-th component of p f .

The following result links Tp to TAp .

THEOREM 4. – Let f�Sk
D (N , x). Then, for any prime p, p kO221 TAp W f 4

x p (p) W Tp f .

This result follows from the fact that the action f O fNg of GL2
1 (Q) on the full

space of modular forms and on L 2 (GL2 (Q)0GL2 (A) ) coincide up to a character.
Instead of following this way, we shall give a less illuminating but perhaps more
direct proof in the following section.

5. – Proof of Theorem 4.

To prove the formula of Theorem 4, we need first the following two prelimi-
nary results.

LEMMA 5. – Let k4gx

z

y

w
h�Kp , and m40, 1 , R , p21.
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a) If p=mz1w let bm f (mx1y)O(mz1w) mod p . Then

kgp

0

m

1
h4gp

0

bm

1
hux2bm z

pz

mx1y2bm (mz1w)

p

mz1w

v .

b) If pNmz1w , then

kgp

0

m

1
h4g1

0

0

p
hupx

z

mx1y

mz1w

p

v .

PROOF. – The result is obtained by a straightforward computation. r

LEMMA 6. – Consider the decomposition Kp(N)gp

0

0

1
h Kp(N)4 0

i�I
a i Kp(N),

and let k�Kp (N). Then there exists a permutation s4s(k) of I such that

ka i 4a s(i) k 8 with x p (k) 4x p (k 8 ).

PROOF. – Suppose first that p=N . The representatives a i can be chosen

either of the form gp

0

m

1
h for some m40, 1 , R , p21, or g1

0

0

p
h. Write k4

gx

z

y

w
h�Kp and apply the previous lemma. If p=mz1w then kgp

0

m

1
h4

gp

0

bm

1
h k 8 for some k 8�Kp , and if pNmz1w then kgp

0

m

1
h4g1

0

0

p
h k 8 for

some k 8�Kp . Moreover

kg1

0

0

p
h4

.
`
/
`
´

g1

0

0

p
hg x

zOp

py

w
h ,

gp

0

b

1
hg(x2bz)Op

z

y2pw

pw
h ,

if pNz ,

if p=z and xfbz mod p .

Now observe that if pNz then p=mz1w so that the permutation we look for fi-

xes g1

0

0

p
h and on the other representatives is the one induced by the permu-

tation m O bm of the set ]0, 1 , R , p21(. If p=z , there exists exactly one m
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such that pNmz1w . In this case the permutation is

gp

0

m

1
hOgp

0

bm

1
h if mcm , gp

0

m

1
hOg1

0

0

p
h , g1

0

0

p
hOgp

0

xOz

1
h .

If pNN the only a i that appear are the matrices gp

0

m

1
h for m40, 1 , R , p21.

If k�Kp (N) is as above, we always have pNz and we can apply the previous argu-
ment again. Finally, the equality x p (k) 4x p (k 8 ) follows by inspection. r

We now proceed with the proof of Theorem 4. Suppose first that p=D and

consider the decomposition Rp
3gp

0

0

1
hRp

34 0
i�I

a i Rp
3 . Note that we could be

more explicit about the representatives a i , but choose not to be, since we want
to treat the cases pNN and p=N simultaneously.

We shall now use again the decomposition DA
34D 3gGL2

1 (R)3»
q

Rq
3h.

For each i�I consider the adele aAi such that (aAi )Q41, (aAi )q 41 for all qcp and
(aAi )p 4a i and write

aAi 4d i g i
Q k i ,(5.1)

with d i �D 3 , g i
Q�GL2

1 (R) and k i 4»
q

k i
q �»

q
Rq

3 . Put d i 4p(d i )21 �D 3 .

Pick an element a with the property that the double coset GaG is the one that
defines the Hecke operator Tp as in section 4. Then GaG4 0

i�I
Gd i . This follows

from (5.1) because d i g i
Q41, d i k i

p 4a i and d i k i
q 41 for all qcp . Note that

GaG4D 3OgGL2
1 (R)3Rp

3g1

0

0

p
h Rp

33 »
qcp

Rq
3h. Thus, if the a i are repre-

sentants of the right cosets of Rp
3gp

0

0

1
h Rp

3 , the elements pa i
21 are repre-

sentatives of the left cosets of Rp
3g1

0

0

p
h Rp

3 . Therefore the d i are represen-
tatives for the left cosets of GaG .

Let g�DA
3 and write its usual decomposition g4dgQ k . Using Lemma 6, we

write:

ga i 4dgQg »
qcp

kqh kp a i 4dgQg »
qcp

kqh a j kp84d(d j g j
Q k j ) gQg »

qcp
kqh kp84

4dd j gQ
j gQg »

qcp
kq

j kqh kp
j kp84dd j gQ

j gQ k j k 8
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where x(k 8 ) 4x(k) and we set j4s(i). Therefore

W f (ga i ) 4 f(gQ
j gQ (i) ) j(gQ

j gQ , i)2k det (gQ
j gQ )kO2 x(k j ) x(k) 4

f(gQ
j gQ (i) ) j(gQ

j , gQ (i) )2k j(gQ , i)2k det (gQ
j )kO2 det (gQ )kO2 x(k j ) x(k) 4

f(p 21 d j gQ (i) ) j(p 21 d j , gQ (i) )2k j(gQ , i)2k p 2k det (d j )kO2 det (gQ )kO2 x(k j ) x(k) 4

p kO2 f(d j gQ (i) ) j(d j , gQ (i) )2k j(gQ , i)2k det (gQ )kO2 x(k j ) x(k) .

To evaluate the last expression assume that qNN and pcq . Then xq (kq
j ) 4

xq ((d j )21 )4x q (p 21 ) x q (d j )21 . Note that, according to the chosen conventions,

x q (r) 4 xqggr

0

0

r
hh, for all r�Zq . If pNN , xp (kp

j ) 4 xp ((d j )21 a j )4

x p (a j
21 d j ) 4x p (d j )21 , since x p (pa j

21 ) 41. We conclude that

x(k j ) 4 »
qNN , qcp

x q (p 21 ) x q (d j )21 4x p (p) x(d j )21 .

Plugging this value into the previous computation yields

W f (ga i ) 4p kO2 f(d j gQ (i) ) j(d j , gQ (i) )2k j(gQ , i)2k det (gQ )kO2 x p (p) x(d j ) x(k) .

Putting everything together,

TAp W f (g) 4 !
i�I

W f (ga i ) 4

p kO2 det (gQ )kO2 x p (p) x(k) j(gQ , i)2k !
i�I

f(d j gQ (i) ) j(d j , gQ (i) )2k x(d j ) 4

p 12 (kO2) det (gQ )kO2 x p (p) x(k) j(gQ , i)2k (Tp f ) (gQ (i) )4p 12 (kO2) x p (p) W Tp f (g) .

We now deal with the case pND . Pick a�ER as in section 4 and let aA be the
adele which is 1 at all places except aAp 4a . Then

TAp W f (g) 4W f (gaA) 4 ( using the decomposition g4dgQ k again ) 4

W f g(da)(a21 gQ )g »
qcp

a21 kqh(a21 kp a)h4

f(a21 gQ (i) ) j(a21 gQ , i)2k det (a21 gQ )kO2 x(k) x(a21 aA) .

Since GaG4GaG , the last expression is equal to

4 f(a21 gQ (i) ) j(a21 gQ , i)2k det ( (a)21 gQ )kO2 x(k) x(a21 a
A) 4

( note that a21 4p 21 a) 4p kO2 f(agQ (i) ) j(agQ , i)2k det (gQ )kO2 x(k) x p (p) x(a) .
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On the other hand, the expression Tp f(z) 4p k21 f(az) j(a , z)2kx(a) for the Hec-
ke operator shows that W Tp f(g) 4p k21 f(agQ(i)) j(gQ , i)2k det (gQ)kO2 x(a) x(k)
and the result follows. r

6. – The Jacquet-Langlands correspondence revisited.

Let f�S D
k (N , x). We have already remarked (section 2) that the local com-

ponent p f , p for pND is finite dimensional. We now give a better statement.

LEMMA 7. – Suppose that p f is irreducible and pND . Then p f , p is one
dimensional.

PROOF. – Write W f 4 !
i41

t g7
q

vq
ih� 7

q
Vq ( f ). This vector is invariant under

the action of the group Kp
D 4 ]x�Dp

3 such that Nn(x)Np 41( embedded in the
p-th component of DA

3 . Let w i 4 7
qcp

vq
i . Up to rewriting W f with a smaller num-

ber of terms, we may assume that the w i are linearly independent. Then each

vector vp
i is Kp

D-invariant, as follows from the identity !
i41

t

(p f(k) vp
i2 vp

i )7w i40.
Hence, Wp ( f ) 4Vp ( f )Kp

D
c (0).

Observe that K D
p is normal in Dp

3 . Therefore, the subspace Wp ( f ) is stable
under the action of Dp

3 . It follows from the irreducibility that Wp( f )4Vp( f ).
Finally, note that Dp

3 OKp
D is abelian. Thus p f , p is an irreducible representa-

tion of an abelian group in a finite dimensional vector space. Therefore p f , p is
one dimensional. r

REMARK 8. – If p f is irreducible then f is an eigenform for almost all Hecke
operators Tp . Indeed, the starting argument in the proof of Lemma 7 shows that
if q=ND then the vector vq

i belongs to the Atkin-Lehner space Wq( f ). It follows
from Lemma 5 that the q-th Hecke operator acts as a scalar on this space.

Note that in the course of the proof of Lemma 7 we have defined 1-dimensio-
nal local spaces Wp ( f ) of invariants also for pND .

COROLLARY 9. – If f is an eigenform for HD then Wp ( f ) is TAp-stable for all p.

PROOF. – If f is an eigenform for HD , Theorem 4 shows that the function W f is
TAp-eigen for all p . The assertion follows at once. r

The Jacquet-Langlands correspondence is defined in terms of representa-
tions. Since the notion of «normalized forms» is meaningless in S D

k (N , x),
(when Dc1) due to the absence of q-expansions, it is impossible to define a di-
rect canonical correspondence between forms. Nonetheless, it is possible to de-
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fine in a non-canonical way a Jacquet-Langlands correspondence which is well-
behaved with respect to the action of the Hecke operators.

PROPOSITION 10. – There is an isomorphism Sk
D (N , x)new CSk (ND , x)new as

Hecke modules.

REMARK 11. – The statement is actually ambigous because the Hecke alge-
bras acting on the two spaces which are identified are different. We simply
mean that if f D corresponds to f , then, for all p , Tp

D f D corresponds to Tp f .

PROOF. – If f D �Sk
D (N , x) is a newform which is an eigenvector of the Hecke

algebra, p f D is an irreducible automorphic representation of D 3
A and JL(p f D ) is

an irreducible automorphic representation of GL2 (A). Let M be the conductor
of JL(p f D ). By [6], Chapter 5, there exists a unique normalized newform
fA �Sk (M , x), eigenvalue of the Hecke algebra, such that p fA 4JL(p f D ).

When pND Lemma 7 applies and so p f D , p 4c i n , where c is a character of
Qp

3 , [10] §4. Since n : Kp
D KZp

3 is surjective, c is unramified. It follows from [1],
p. 125, that p(p f D , p ) is the special representation s(cV

1O2 , cV

21O2 ) of GL2 (Qp ),
which has conductor p . Since Cond (JL (p f D ) )4 »

pEQ
Cond (p(p f D , p ) ) , we con-

clude that Cond (JL (p f D ) )4D Cond (p f D ).
To define the identification which is to be proved, start with a basis of

Sk
D (N , x)new consisting of eigenforms for HD and to each f D in this basis associa-

te the form fA �Sk (ND , x)new as above.

CLAIM. – The form fA is an eigenfunction for the Hecke algebra H . Moreover
the eigenvalues of Tp

D for f D and of Tp for fA coincide for all primes p .

PROOF OF CLAIM. – The assertion is clear for p=D because then Wp (f D ) 4

Wp ( fA ) and the operators TAp are the same.
Let now p be a prime dividing D . We have already seen that, in consequence

of Lemma 7, p f D , p 4c i n where c is an unramified character of Qp
3 . The formu-

la (4.9) and the Corollary 9 show that on Wp ( f D ) the operator TAp
D acts as multi-

plication by c i n(p) 4c(p).
To compute the eigenvalue of TAp for W fA we shall use the explicit model of

p fA, p 4s(cV

1O2 , cV

21O2 ) of [10], §3. Let B be the space of locally constant C-
valued functions W on GL2 (Qp ) such that

Wggt1

0
*
t2
h gh4c(t1 t2 ) N t1

t2
NW(g)(6.1)

for all t1 , t2 �Qp
3 . The group GL2 (Qp ) acts on B by right translation. Then, a

model for s(cV

1O2 , cV

21O2 ) is the subspace of B consisting of the functions W

such that s
Kp

W(k) c21 ( det k) dk40. Since the character c is unramified, the
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condition just stated is actually simpler: it reads

s
Kp

W(k) dk40 .(6.2)

Let W 0 be the function on Kp defined as

W 0 (k) 4
.
/
´

1

21Op

if k�Kp (p) ,

if k�Kp (p) .

It is a standard fact that the group GL2 (Qp ) decomposes as GL2 (Qp ) 4Bp Kp .
Then, formula (6.1) used as definition permits to extend W 0 to a function on B

denoted W 0 again (it is easy to check that the extension to the whole of GL2 is
well-defined). Now

(6.3) s
Kp

W 0(k) dk4 s
Kp(p)

W 0(k) dk2 s
Kp2Kp(p)

W 0(k) dk4m(Kp(p))2
1

p
m(Kp2Kp(p)) .

The formulae NGL2 (Fp )N 4 (p 2 2p)(p 2 21) and

[K : Kp (p) ] 4 [ GL2 (Fp ): B(Fp ) ] 4
(p 2 2p)(p 2 21)

p(p21)2
4p11

yield m(Kp ) 4 (p11) m(Kp (p) ) and so (6.3) vanishes. The condition (6.2) is thus
met: W 0 does belong to s(cV

1O2 , cV

21O2 ). Observe that W 0 is right Kp (p)-inva-
riant (but obviously not Kp-invariant). According to the general theory of Atkin-
Lehner, the space of right Kp (p)-invariant functions in B is 1 dimensional. The-
refore, W 0 generates Wp ( fA ) because fA is a newform. In particular W 0 is eigen for
the p-th Hecke operator. To compute the eigenvalue, use (4.8) (and Remark 3)
to write

TAp W 0 (g) 4 !
m mod p

W 0gbkgp

0

m

1
hh ,(6.4)

where g4bk is again the decomposition GL2 (Qp ) 4Bp Kp . If k�Kp (p), then
p=mz1w for all m40, 1 , R , p21. Apply part a) of Lemma 5 to write

!
m mod p

W 0gbkgp

0

m

1
hh4 !

m mod p
W 0gbgp

0

bm

1
hg *

pz
*
*
hh4

!
m mod p

W 0gbgp

0

m

1
hh4 !

m mod p
c(p)NpNW 0 (b) 4c(p) W 0 (g) .

If, on the other hand, k�Kp (p) there exists a unique m mod p such that
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mz1wf0 mod p . Now apply part b) of Lemma 5 to write

!
m mod p

W 0gbkgp

0

m

1
hh4W 0gbg1

0

0

p
hg *

z
*
*
hh1

!
m mod p
mc m

W 0gbgp

0

bm

1
hg *

pz
*
*
hh42p 21 Np 21 Nc(p) W 0 (b)1

1(p21) c(p)NpNW 0 (b) 42p 21 c(p) W 0 (b) 4c(p) W 0 (bk) 4c(p) W 0 (g) .

In any event the eigenvalue is c(p) and the claim is proved. r

The association f D O fA between Hecke eigenforms extends by linearity to a
map JL: Sk

D (N , x)new KSk (ND , x)new .

Injectivity of JL. Since the Jacquet-Langlands correspondence between
representations is injective, the various representations p fA constructed above
are all distinct. As such, they have distinct systems of Hecke eigenvalues. The-
refore the forms fA are linearly independent.

Surjectivity of JL. Let us start by observing that if f �Sk (ND , x)new and
pND , the p-th component p f , p is special. Indeed, it cannot be supercuspidal
because the conductor of a supercuspidal representation is at least p 2 , but p 2

does not divide D . It cannot be principal either, because if p f , p 4p(m 1 , m 2 ),
then its central character would be m 1 m 2 and its conductor would be
Cond (m 1 ) Cond (m 2 ), see [2]. But, since x is a Dirichlet character modulo N ,
which is prime to p , the central character of p f , p is trivial, so m 2 4m 1

21 and p4

Cond (p f , p ) 4Cond (m 1 )2 , a contradiction.
Hence p f , p is square-integrable, and one knows [6], Theorem 10.5 that the

Jacquet-Langlands local correspondence is surjective onto square-integrable
representations. Thus, there exists a reprentation p p of Dp

3 such that p(p p ) 4

p f , p . The representation p p must be one dimensional a fortiori, or, else, p f , p

would be supercuspidal [10], Lemma 4.2. As already recalled, a one dimensional
representation of Dp

3 is of the form c i n , where c is a character of Qp
3 . Since

Cond (p f , p ) 4p , c is unramified, [2]. Thus p p is Kp
D-invariant.

Consider the representation p D 4 g7
p=D

p f , ph7 g7
pND

p ph of DA
3 . It follows

from the above discussion that p D 4p f D for f D �Sk
D (N , x)new and that, up to a

constant, JL ( f D ) 4 f . r

Our next goal is to extend the isomorphism of Proposition 10 to a map from
the whole space Sk

D (N , x). The result is:
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THEOREM 12. – There is an isomorphism Sk
D (N , x) CSk (ND , x)D-new as

Hecke modules.

PROOF. – Consider the decomposition (3.3) of Sk
D (N , x). Define JL ( f ) for

f in the old subspace by requiring that JL i jd
D 4 jd i JL. The Proposition 10,

together with the characterization (3.4) of the D-new space, shows that
JL: Sk

D (N , x) KASk (ND , x)D-new as vector spaces. It is left to prove that JL is an
isomorphism of Hecke modules.

It is enough to prove that if f�Sk
D (M , x)new for some MNN , and if dN(NOM)

then

Tp (JL ( jd
D f ) )4JL (Tp

D ( jd
D f ) )(6.5)

for all p . Suppose first that p=N . In this situation Tp
D and jd

D commute, so
Tp (JL ( jd

D f ) )4Tp ( jd (JL ( f ) ))4 jd (Tp (JL ( f ) ))4 (since f is a newform) 4

jd (JL (Tp
D ( f ) ))4JL ( jd

D (Tp
D ( f ) ))4JL (Tp

D ( jd
D ( f ) )) , which proves (6.5).

For pNN , let Yp
D ( f ) 4 5

p e N(NOM)
p f , p (h D

p e , p ) Wp
D ( f ), where h D

d is the idele defi-

ned in section 3 (note that p p (h b , p ) Wp 4p p (h p e , p ) Wp if p e
Vb). The space

Yp
D ( f ) is TAp

D-stable. Under the JL map the function

W ( jd
D f ) � g7

p=N
Wp

D ( f )h7 g7
pNN

Yp
D ( f )h

corresponds to

W jd (JL ( f ) )� g7
p=N

Wp (JL ( f ) )h7 g7
pNN

Yp (JL ( f ) )h .

In fact, the spaces Yp
D ( f ) and Yp (JL ( f ) ) are actually the same, because, under

the Jacquet-Langlands correspondence the local representations coincide at
these p (since d and D are coprime) and h d , p

D 4h d , p . Moreover, under the iden-
tification Yp

D ( f ) 4Yp (JL ( f ) ) the p-th Hecke operators coincide. The identity
(6.5) follows immediately. r

7. – Consequences for the Hecke algebras.

For a subring A’C and M�N let

Sk (M , x ; A) »4 ] f �Sk (M , x) such that an ( f ) �A for all n�N( .

We shall use the notation Sk (A) as a shorthand for Sk (M , x ; A) if there is no
ambiguity about the level and the character under consideration.

PROPOSITION 13. – There exists a basis of Sk (M , x) in Sk (M , x ; Z[x] ).
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PROOF. – It is well-know [18], Theorem 3.52, that the space Sk (G 1 (M) ) has a
basis with Fourier coefficients in Z . By projecting this basis in Sk (M , x) by
means of the projector ex4f(M)21 !

g� (ZOMZ)3
x(g)agb we obtain a set of genera-

tors of Sk (M , x) with coefficients in Q(x). The operator agb in the expression of
the projector is the diamond operator f O fNs g

where s g �SL2 (Z) is congruent to

gg

0

0

g 21h modulo M . To conclude it is enough to observe that f(M)ex is Z[x]-

integral on q-expansions. r

DEFINITION 14. – Let A be a subalgebra of C . Let W be an A-submodule of
Sk (A) which is Hecke stable. The Hecke algebra of W, denoted H(W)A , is the A-
subalgebra of EndA (W) generated by the operators TpNW .

PROPOSITION 15. – Let A be a Z[x]-subalgebra of C . Then

Sk (M , x ; A) 4Sk (M , x ; Z[x] )7A and Hk (M , x)A 4Hk (M , x)7A .

PROOF. – See for instance [9], Theorem 6.3.2, where the assertion on the spa-
ce of modular forms is proved using cohomology, and the final argument of the
proof of [9], Corollary 5.4.1, which shows that the assertion for the Hecke alge-
bra is then automatic. r

From now on, A will always be a Z[x]-subalgebra of C . Proposition 15 asser-
ts that the spaces of classical cuspforms are naturally endowed with an integral
structure. We now list a few useful properties of this integral structure.

Recall that the existence of the q-expansion (1.5) of modular forms in Sk 4

Sk (M , x) allows to define a pairing

H(M , x)3Sk (Z[x] ) KZ[x] , (h , f ) O a1 (h( f ) ) .(7.1)

This pairing is non-degenerate [9], page 142, and defines maps

r H : HA KSk (A)S4HomA (Sk (A), A)(7.2)

and

r S : Sk (A) KHA
S4HomA (HA , A) .(7.3)

LEMMA 16.

1) The map r H is injective.

2) The map r S is an isomorphism.
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PROOF. – The injectivity of r H and r S is the non-degeneracy of the pairing
(7.1). The surjectivity of r S is clear with A replaced by C (or simply by its field of
quotients). Let l�HA

S%HC
S and let f�Sk be such that r S ( f ) 4l . Then an ( f ) 4

a1 (Tn ( f ) ) 4l(Tn ) �A and f�Sk (A). r

DEFINITION 17. – We say that the algebra A is a dualizing algebra ( for the
pair (M , x) ) if the map r H is an isomorphism.

Note that if HA is free over A , then HA C (HA
S )SCSk (A)S . Thus r H is an

isomorphism.

REMARK 18. – Any principal ideal domain A*Z[x] (in particular any field) is
a dualizing algebra. This follows from the general fact that any finitely genera-
ted torsion-free module over a PID is free.

PROPOSITION 19. – If f(M)21 �A then A is a dualizing algebra for the pair
(M , x).

PROOF. – Since Z is a PID, the pairing (7.1) for G 1 (M) defines an isomorphism
H(G 1 (M))ZCSk (G 1 (M); Z)S . The decomposition (1.6) is defined over A , so that
there is a surjection Sk (G 1 (M); A)SKSk(M , x ; A)S . Thus, a linear form l on
Sk(M , x ; A) can be lifted to an element h�H(G 1 (M))A . The restriction h 8 4

hNSk(M , x ; A) is a well-defined element of H(M , x)A and r H(h 8) 4l . r

We shall now derive from Theorem 12 some consequences for the Hecke
algebra HD . We shall denote H(ND , x)D-new 4H(Sk (ND , x)D-new ).

THEOREM 20. – There is a canonical isomorphism C : H(ND , x)D-new KA

HD (N , x) of Z[x]-algebras.

PROOF. – Observe that the isomorphism proved in Theorem 12 implies the
existence of a canonical map of Z[x]-algebras H(ND , x) KHD (N , x), which is
simply Tp O Tp

D and thus obviously surjective. The kernel of this map is the
ideal of the elements that restrict to 0 on the space Sk (ND , x)D-new . r

We shall use the isomorphism of Theorem 20 to deduce some properties of
the quaternionic Hecke algebra from analogous properties of the full Hecke al-
gebra H(N , x).

PROPOSITION 21. – There exists a basis of Sk (ND , x)D-new in Sk (ND , x ; Z[x] ).

PROOF. – By the decomposition (3.4) in our situation, and the fact that the
maps jd preserve the ring of Fourier coefficients, it is enough to prove the asser-
tion for spaces of newforms. To conclude apply Proposition 13, observing that the
assertion holds for spaces of oldforms, again by using the maps jd . r
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We shall now consider the following somewhat general situation. Let Sk 4

X5Y be a decomposition of Hecke modules. Let XA »4XOSk (A) and YA »4

YOSk (A). We shall assume that

XA ( resp. YA ) contains a basis of X( resp. Y) .

Note that under this assumption we have that XA 5YA is a A-cotorsion submo-
dule of Sk (A), but not necessarily equal to Sk (A). On the other hand, if A is a
field the equality Sk (A) 4XA 5YA is trivial (by a dimension argument) and the
projectors eX , eY are elements of HA . Indeed, by duality (Lemma 16), eX corre-
sponds to the linear form that kills YA and is f O a1 ( f ) on XA (same for eY).

Associated to a decomposition Sk 4X5Y and an algebra A , there is an in-
jective map of Hecke algebras

p X , Y : HA KH(X)A 3H(Y)A ,

given by restriction of endomorphisms, which is not an isomorphism in general
(it is an isomorphism if and only if the projectors eX and eY are defined over A).

The pairing (7.1) induces a pairing

XA 3H(X)A KA ,(7.4)

and thus maps r H(X) and r X as above.

PROPOSITION 22.

1) The map r X is an isomorphism.

2) The map r H(X) is injective.

PROOF. – Suppose r H(X) (h) 40. Then for every nF1 and for every f�XA ,
an (h( f ) )4a1 (h(Tn f ) )40, so h( f ) 40. If r X ( f ) 40 then an ( f ) 4

a1 (Tn ( f ) )40, so f40. To show the surjectivity of r X , extend a linear form f on
H(X)A to H(X)C by linearity and then to H by composing with the canonical quo-
tient map p X : HKH(X). Then by Proposition 16, f(h) 4a1 (h( f ) ) for some
f�Sk and all h�H . Note that f(eY ) 40 because eY O 0 under the canonical quo-
tient map p X . Thus f�X . Finally, an ( f ) 4a1 (Tn ( f ) )4f(Tn ) �A . r

PROPOSITION 23.

1) If p X , Y is an isomorphism, then Sk (A) 4XA 5YA .

2) If A is a dualizing algebra, then p X , Y is an isomorphism if and only
Sk (A) 4XA 5YA .

PROOF. – If p X , Y is an isomorphism, then the projectors eX , eY are in HA , so
that XA 4eX Sk (A) and YA 4eY Sk (A) and the first assertion follows.
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Now suppose that Sk (A) 4XA 5YA and A dualizing. Let f be the linear form
on Sk (A) which kills Y and that is f O a1 ( f ) on X . By surjectivity of the map r H ,
there exists h�HA mapping to f . This element is the projector on X (i.e. h4eX ).
The same argument yields the projector eY . Then p X , Y (h) 4 (eX h , eY h) is an
isomorphism. r.

It is well-known that the fact that XA 5YA cSk (A) can be rephrased in ter-
ms of congruences between XA and YA as follows. Let a�A . There exists a non-
zero element in Sk (A)O(XA 5YA ) killed by a if and only if there are elements f�
XA 2aSk (A) and g�YA 2aSk (A) such that f2g�aSk (A).

The problem of finding independent criteria for the existence of congruen-
ces between modular forms has been discussed by several authors, with a parti-
cular attention for the case where A is a ring of integers, possibly localized at so-
me prime.

When X is the subspace generated by a newform f together with its Galois
conjugates f s , the support of Sk (A)O(XA 5YA ) has been related by Hida [7], [8],
to the special value at s4k of the symmetric square L-function Z( f , s) 4

»
s

L2 ( f s , s) associated to f .

More explicit results have been obtained by Ribet, [16], for weight 2 and tri-
vial character, and by Diamond and Taylor [3], [4]. Let f be a normalized ne-
wform in S2 (Np) with p=N . Ribet gives a criterion for the existence of a ne-
wform in S2 (N) congruent to f modulo a prime of Q over p in terms of the local
properties of the Galois representation attached to f . The work of Diamond and
Taylor points to the opposite direction: they start with a normalized newform in
Sk (G 1 (N) ) and find conditions for the existence of a newform g of higher level
congruent to f modulo a prime of Q over a prime p=N . Again, their result is in
terms of the Galois representation attached to f .

The problem of the determination of congruences between forms of non-pri-
me to p different levels is the subject of recent work of Khare [11], [12], [13].

Finally, it is shown in [17] that an exceptional behaviour of the Galois repre-
sentation associated to the Shimura curve of discriminant D4pq is responsible
for congruences between newforms and oldforms of weight 2 and level pq .

We shall now apply the previous results to the quaternionic modular forms
and Hecke algebras by taking X4Sk (ND , x)D-new and for Y its Petersson ortho-
gonal subspace Sk (ND , x)D-old . Choose one map JL as in Theorem 12 and let

Sk
D (A) 4JL21 (Sk (ND , x ; A) )4JL21 (Sk (ND , x ; A)D-new )

and HD
A the A-subalgebra of EndA (Sk

D (A) ) generated by the operators Tp
D .

Mind that the space Sk
D (A) does depend on the actual choice of JL.
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We can define a pairing Sk
D (A)3HD

A KA by ( f , h) O a1 (C21 (h) (JL ( f ) )) ,
and the associated maps r D

S : S D
k (A) K (HD

A )S and r D
H : HD

A KS D
k (A)S as

usual.

THEOREM 24.

1) There exists a basis of Sk
D in Sk

D (A).

2) The map r D
S is an isomorphism. The map r D

H is injective.

3) If HD
A is a factor of HA , then Sk (ND , x ; A) 4Sk (ND , x)D-new

A 5
Sk (ND , x)D-old

A .

4) If A is dualizing for (ND , x) then the converse of 3) holds.

PROOF. – Points 1), 2) and 4) follow at once from Propositions 21, 22 and part
2) of 23 respectively. To prove 3), write HA 4HD-new 3H , where H is an HA alge-
bra. Dualizing, Sk (A) 4Sk (A)D-new 5M for some Hecke module M . Then M7C
is an Hecke complement of Sk

D-new . The subalgebra of HA generated by the ope-
rators corresponding to primes not diving ND acts semisimply on Sk , and so
M7C4Sk

D-old . Thus M4Sk (A)D-old . r
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