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Bollettino U. M. 1.
(8) 2-B (1999), 401-428

Minimal Sections of Conic Bundles (*).

ATANAS ILIEV

Sunto. — Sia p: X— P? un fibvato in coniche standard con curva discriminante A di
grado d. La varieta delle sezioni minime delle superfici p ~1(C), dove C é una curva
di grado d — 3, si spezza in due componenti C, e C_. Si prova che, mediante la map-
pa di Abel-Jacobi @, una di queste componenti domina la Jacobiana intermedia JX,
mentre Ualtra domina il divisore theta © c JX. Questi risultati vengono applicati ad
alcuni threefold di Fano birazionalmente equivalenti a un fibrato in coniche. In par-
ticolare si prova che il generico threefold di Fano di grado dieci é birazionale a una
ipersuperficie di tipo (2, 2) nel prodotto di Segre di due piani proiettivi.

0. — Introduction.
Conic bundles - definitions and general results.

(0.1) Let p: X— S be a surjective morphism from the smooth projective three-
fold X to the smooth surface S. The morphism p is called a standard conic bundle if:

(@) for any seS, the scheme-theoretic fiber f,=p ~1(s) is isomorphic
over the residue field k(s) to a conie in Pﬁ(s);

(i) for any irreducible curve Cc S the surface Sp=p ~1(C) is irreducible.

(0.2) More generally, let q: Y— T be a rational map from the smooth three-
fold Y to the smooth surface 7. Then q is called a conic bundle if the general
fiber f, = ¢ ~1(t) is a smooth rational curve over k(t).

(0.3) Two conic bundles g: Y—T and p: X— S are called birationally equi-
valent if there exist birational maps g: Y—>Xand h: T—S suchthat hog=pog.
By results of A. A. Zagorskii and V. G. Sarkisov (see e.g. [Z]).

(0.4) Any conic bundle is birationally equivalent to a standard one.
Let p: X— S be a standard conic bundle, let

A={seS:p'(s) is singular}

(*) Partially supported by the Bulgarian Foundation for Scientific Research.
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be the discriminant of p, let A # ¢, and let A be the «double diseriminant curve»
of p, i.e. the curve parametrizing the components of the fibers f, =p ~1(s), se 4.
Let t: A — A be the corresponding double covering. Then:

(0.5) A and A4 are curves with at most double points, and 7: A — A is a Beau-
ville covering (see [B]). In particular, if A is smooth then A is smooth and 7 is
unbranched.

By results of A. S. Merkur'ev and V. G. Sarkisov ([Mer], [S]):

(0.6) For any Beauville covering 7: A — 4, and for any embedding Ac S,
where S is a smooth rational surface, there exists a standard conic bundle
p: X— S with a discriminant pair (4, 4). Any two such standard conic bundles
are birationally equivalent over S (see [Iskl, Lemma 1 (iv)]).

(0.7) Throughout this paper we assume that S = P? and 4 is smooth.

Let p: X— P? be such a standard conic bundle. Being a rational fibration
over a rational surface, X is a threefold with a non-effective canonical class, i.e.
h3%(X) =h"X, 2%) = 0. Therefore the complex torus (the Griffiths interme-
diate jacobian) J(X) of X does not contain a (3, 0)-part. In particular

JX)=H*»Y(X)*/(Hs(X, Z) mod torsion)

is a principally polarized abelian variety (p.p.a.v.) with a principal polarization
(p.p.) defined by the intersection of real 3-chains on X (see [CG]). The divisor @
of this polarization is called the theta divisor of J(X). Since p: X — P? is stan-
dard and 4 is smooth, the splitting p ~(s) = P'\/ P!, s e A defines a unbran-
ched double covering 7: 4 — A of the smooth diseriminant curve A. Therefore
the pair (4, A) defines in a natural way the p.p.a.v. P(4, A)—the Prym variety
of m: A—A, and by the well-known result of Beauville ((B]) (J(X), ®) and
P(4, A) are isomorphic as p.p.a.v.

(0.8) More generally, let X be a smooth threefold with 2% ° = 0, let (J(X), ©)
be the p.p. intermediate jacobian of X, and let 4, (X) be the group of rational equi-
valence classes of algebraic 1-cycles C on X which are homologous to 0. Then the
integrating over the real 3-chains y s.t. d(y) = (the boundary of y) = C, Ce A;(X)
defines the natural map @: A;(X) —J(X)—the Abel-Jacobi map for X (see e.g.
[CG]). In addition, if Cis a smooth family of homologous cycles C on X, and C is a
fixed element of @, then the composition of @ and the cycle-class map ¢— A, (X),
C—[C — Cy], defines a map @ .: C—J(X).

Let Alb (©) be the Albanese variety of F. By the universal property of the Al-
banese map a: ¢— Alb (©), @ . can be factorized through a, and defines the map
@D : Alb (C) = J(X). Both @ . and @, are called the Abel-Jacobi maps for the
family of 1-cycles C.

For a large class of such threefolds X (especially—for conic bundles), the
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transpose ‘@ of the Abel-Jacobi map for X defines an isomorphism between the
Chow group A;(X) and J(X) (see [BM]), and one may expect that for some
«rich» families of curves € on X the Abel-Jacobi map @ . will be surjective.
Moreover, one can set the following problem:

(*) Find a family Cy of algebraically equivalent 1-cycles on X such that the
Abel-Jacobi map P, sends Cy surjectively onto a copy of the theta
divisor ©.

Assume the existence of such a family ©,. One can formulate the following
additional question:

(**) Describe, in terms of Cy and X, the structure of the general fiber of @ ,.

Summary of the results in the paper.

In this paper we give a positive answer of the problems (*) and (**) if p: X —
P2 is a standard conic bundle with a smooth discriminant curve A of degree
d > 3. More concretely, we prove the existence of two naturally defined families
€, and C_ of connected 1-cycles C on X, such that their Abel-Jacobi maps @ ,
and @ _ send one of these two families onto the intermediate jacobian J(X) and
the second—onto a copy of the theta divisor @ of J(X) (see Theorem (4.4)).

The general element of ©,,_ is a smooth curve C'e X which is mapped iso-
morphically onto the plane curve p(C) of degree d — 3, and C can be treated as a
minimal section of a well-defined ruled surface S(C). In §2,3 we prove that,
independently of the choice of X, the invariant e of the general S(C) is always
one of the numbers (e, , e_) = (¢g(C), g(C) — 1), being the invariants of the ge-
neral elements of the even and the odd versal families of ruled surfaces over a
curve of genus g(C) (see [Se]). The general C'e C, can be treated as a minimal
non-isolated section of S(C), and the general C' e ¢_—as a minimal isolated sec-
tion of S(C). This interpretation makes it possible to describe the geometric
structure of the general fibers of the Abel-Jacobi maps of ¢, and C_ on the base
of the Lange and Narasimhan’s description [LN] of maximal subbundles of
rank two vector bundles on curves (see Theorem (5.3)).

In the examples (6.1), (6.2) and (6.3) we find the families ¢, and C_ for the
natural conic bundle structures on the bidegree (2,2) threefold 7'c P? X P2, on
the nodal quartic double solid (q.d.s.) B, and also—on the less-known nodal
Fano 3-fold X, of genus 6. It turns out that for 7" and for X, the family which pa-
rametrizes @ is C, , while this family for B is C_, which answers the question (*)
in each of these three cases—see (6.1.3), (6.2.4) and (6.3.7)-(6.3.8). By Theorem
(4.4) we know that the «residue» family ¢_ for T and X;,, and €, for B, parame-
trizes the intermediate jacobian of the variety. Now, the answer of (**) for T, for
the nodal B and for the nodal X, follows automatically from Theorem (5.3) —
see (6.1.4), (6.2.5) and (6.3.9). For the nodal q.d.s., the same «theta»-family has
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been found by Clemens in [C] via degeneration from the Tikhomirov’s family of
Reye sextics which parametrizes @ for the general q.d.s. (see [T]).

In (6.1.5), (6.2.6) and (6.3.10) we describe natural families of degenerate sec-
tions which parametrize the components of stable singularities of @ for 7' (see
also [Ve] and [11]), for the nodal B (see [Vo], [C], [De]), and for the nodal X;,. In
addition, we show that the general nodal X, is birational to a bidegree (2,2)
threefold T'.

1. — Minimal sections of ruled surfaces.

Here we collect some known facts about ruled surfaces and rank2 vector
bundles over curves (see [H], [LN], [Se]).

(1.1) Minimal sections of ruled surfaces and maximal subbundles of
rank 2 vector bundles on curves (see [H], [LN], [Se]).

Any ruled surface S over a smooth curve C can be represented as a projecti-
vization P (E) of a rank 2 vector bundle £ over C. Clearly, P (E) is a ruled sur-
face for any such E, and Po(E) =P (E") iff E =E' ® £ for some invertible
sheaf £; here we identify vector bundles and the associated free sheaves.

Call the bundle E normalized if h°(E) =1, but h°(E ® £) = 0 for any inver-
tible £ such that deg (£) <0 ( see [H, Ch. 5, §2]).

The question is:

(*) How many normalized rank 2 bundles represent the same ruled surface?

The answer depends on the choice of the curve C (especially—on the genus
g = g(C) of C), and on the choice of the ruled surface S over C. Let p: S— C be
the natural fiber structure on S. We shall reformulate the question (*) in the
terms of sections of p.

(1.2) DEFINITION. — Call the section Cc S minimal if C is a section on S for
which the number (C. C)g is minimal. Let C be a minimal section of S. The num-
ber e =e(S) = (C. C)gis an integer invariant of the ruled surface S. The number
e(8S) coincides with deg (E) := deg (det (E)), where E is any normalized rank 2
bundle which represents S (i.e.—such that S = P(F)) (see e.g. [H, Ch. 5, § 2]).
We call the number e = e(S) the nvariant of S.

(1.3). — Remark. — Here, in contrast with the definition in use, we let

e(S) := — (the invariant of S).

The new question is:

(**) How many minimal sections lie on the same ruled surface?
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The two questions are equivalent in the following sense: Let £ be normali-
zed and such that P(E) = S. By assumption 2°(E) = 1. Therefore E has at least
one section s € H°(E). The bundle section s defines (and is defined by) an em-
bedding 0 — O;— E. The sheaf £, defined by the cokernel of this injection, is
invertible, and .2 defines in a unique way a minimal section C = C(s) of the ruled
surface S = P.(E) (see e.g. [H, Ch. 5, §2: (2.6), (2.8)]). If h°(E) = 1, the bundle
section se H°(E) is unique, and the corresponding minimal section C(s) is
unique. In contrary, if 1°(E) = 2, the map

P(H°(E))— {the minimal sections of S}, s—C(s),

defines a linear system of minimal sections of S (e.g., if S is a quadric). Therefore,
the set of minimal sections of S is the same as the projectivized set of the bundle
sections of normalized bundles which represent S. In fact, if g(C) =1 and S is
general, then h°(E) =1 for any normalized E which represents S. In this case
the questions (*) and (**) are equivalent.

(1.4) DEFINITION. — Call the line subbundle I c E a maximal subbundle of
E, if 91t is a line subbundle of £ of a maximal degree.

Let E be a fixed normalized bundle which represents S, and let Jitc £ be a
maximal subbundle of E. Clearly deg(J1t) =0, since O-CE. Assume that
deg (91) > 0. Then, after tensoring by I}, we obtain the embedding O.c
E®on .

In particular, h°(EQN 1) =0, EQJ ! represents S, and deg(EQ®I 1) <
deg (E). However E is normalized, hence deg (K ® 9" !) cannot be less than
deg (E)—contradiction. Therefore deg (911) = 0, and the maximal subbundle It
of E defines the normalized bundle E ® 91t ! which also represents S.

Therefore, we can reduce the question (*) to the following question:

(***) How many maximal subbundles has a fixed normalized rank 2 bundle E
which represents a given ruled surface S?

REMARK. — The answer of (*)-(***) for S-decomposable, is given in [H, Ch. 5,
Examples 2.11.1, 2.11.2, 2.11.3]. In particular, this implies the well known de-
scription of the set of minimal sections of a rational ruled surface p: S— P*.
For S is indecomposable—see (1.7)-(1.8).

(1.5) LEMMA (see [Se, Theorem 5]). — Let S—C and S'—C’ be two ruled
surfaces. Then S and S' can be deformed into each other iff C and C' have the
same genus, and the invariants e(S) and e(S') have the same parity.

(1.6) LEMMA (see [Se, Theorem 13]). — The general surface in the versal de-
SJormation of a rational ruled surface is a quadric if e is even, and the surface
F, if e is odd.
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The general surface of a versal deformation of a ruled surface over elliptic
base is a surface represented by the unique indecomposable rank 2 vector bun-
dle of degree 1 if e is odd, and a decomposable ruled surface represented by a
sum of two (non-incident) line bundles of degree 0 if e is even.

The general surface of a versal deformation of a ruled surface over a curve
of genus g = 2 is indecomposable. The invariant of such S is g —1 if e = g mod 2,
orgife=g—1mod2.

(1.7) LEMMA (see [H, Ch. 5, Example 2.11.2 and Exer. 2.7]). — Let C be an el-
liptic curve, and let S be the unique indecomposable ruled surface over C with
mvariant e(S) = 1. Then the set C, (S) of minimal sections of S form a 1-di-
mensional family parametrized by the points of the base C. In particular, all
the minimal sections of S are linearly non equivalent.

Let C be an elliptic curve, and let the ruled surface S be represented by the
normalized bundle E = O ® £, where deg (L) =0 and £ # Oc. Then S has
exactly two minimal sections: the section C = C(sg) defined by the unique
bundle section sy of E, and the section C defined by the unique section sg of the
second normalized bundle E = O @® £~ which represents S.

DEFINITION (see [LN, § 1]). — The line bundle @ on C of degree e is called an
e-secant line bundle of a(C) e P" which passes through the point [E]e P", if
the linear system || contains an effective divisor D such that the space
Span (a(D)) passes through the point [E].

DEFINITION. — Call the section Cy of the ruled surface S isolated if S contains
only a finite number of sections C such that C*= C¢. Otherwise, call Cy non-
isolated (or continual) section of S.

(1.8) LEMMA (see [LN, Proposition 2.4]). — Let S be an indecomposable ruled
surface over a curve C of genus g=2. Let E be a fixed normalized rank?2
bundle over C which represents S, and let [E]e P(H* (K, ® £)) be the point
which corresponds to the extension 0 —O,—FE—£—0 defined by E. Let
a: C—P(H"(K;® L)) be the map defined by the linear system |Ko® £|, and
let a(C) be the image of C. Then the set of maximal line subbundles I of E,
which are different from O¢, is naturally isomorphic to the set See, (a(C),[E])
of e-secant line bundles of a(C) which pass through the point [E].

In particular, if S =P(E)—C is «versal» (see (1.6)) then a is an embed-
ding, and:

(+) either e(S) =g, and the family Sec, (a(C),[E]) is 1-dimensional; in par-
ticular, the minimal sections of S are non-isolated.

(=) ore(S) =g —1, and Sec,_(a(C),[E]) is finite; in particular, the mini-
mal sections of S are isolated.
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2. — The conic bundle surfaces S..

(2.1) Let p: X— P? be a standard conic bundle with a smooth discriminant
A. Without any substantial restriction we may assume that deg A > 3.

Let Cc P? be a general plane curve of degree k < d. Then S; :=p "1(C)is a
smooth surface, and p: So— C defines a conic bundle structure on S;.

Let w;,1=1,2, ..., kd be the intersection points of C and A. Then ¢; =
p ~1(x;) are the degenerate fibers of p: p ~1(C) —C. Let [; and [; be the compo-
nents of ¢;, 1 =1, ..., kd; in particular ; and [; are (—1)-curves on S;. Let I =
{1y -y T}, 1 <...<1, be any ordered (possibly empty) subset of {1, 2, ..., kd}.
Any such a multiindex I defines a morphism o;: Sp— Sc(I), where o is the
composition of all the blow-downs of [;, ie I and [;, je I = {1, ..., kd} — I. The
map p: S¢— C induces a P'-bundle structure p;: Sc(I) —>C.

(2.2) Let 0;: S¢c—Sc(I), ete., be as above, and let s, ..., s,g€Sc(I) be the
images of the exceptional curves /; e I and Z]- e 1. Call the section C' c S¢(1) non-
singular if the sets C' and {sy, ..., s34} are disjoint.

If C’ is non-singular, then ¢ ~* maps C' isomorphically onto the proper prei-
mage of C' on S;. With a possible abuse of the notation, we denote this proper
preimage also by C'.

(2.3) DEFINITION. — A nonsingular section of the conic bundle surface S; is
defined to be any proper preimage C' of a nonsingular section on some of the
ruled surfaces Sq () defined by S¢.

(2.4) REMARK. — Although any ruled surface has minimal sections, it might
be possible that some of S-(/) has no nonsingular minimal sections.

Let Fy=py: P(O® O(—3))— P!, let C, be the minimal section of F', and let
the conic bundle surface S be defined by the composition p = py-o: S— P!
where o: S— Fj is a blow-up of a point s € F; — Cy. If ¢ = [ + [ is the singular fi-
ber over s, and if [ is the exceptional divisor of o, then the blow-down of [ defines
a morphism o: S — F,. In this case the unique minimal section C' of F, is singu-
lar: the preimage o ~1(C’) = Cy + [, where C{ is the isomorphic proper preima-
ge of Cy on S. However:

(2.5) LEMMA. — Any non-singular conic bundle surface S — C which has de-
generate fibers has a non-singular isolated minimal section.

Proor. — See Remark (2.4) which can be generalized straightforwardly to
the case of a conic bundle surface over an arbitrary smooth curve with a non-
empty set of degenerate fibers. In fact, if S(/) — C is one of the ruled minimal
models of S over C, for which e(S(I)) = e_(S) is minimal, then any mininmal
section of S(C(I)) is non-singular (see e.g. (2.4) where e_(S) = —3).
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(2.6) COROLLARY. — Let C be a general plane curve of degree k < d = deg A,
let e_ = e(Sc) be the minimal invariant of the ruled surfaces Sq(I), and let I be
the multiindex for which e(Sc(I)) = e. Then Sc(I) has only a finite number of
manimal sections, t.e. all the minimal sections of Sc(I) are isolated.

(2.7) COROLLARY. — Let C be a general plane curve of degree k <d = deg 4,
and let e :=min{e(Sc(I)): Ic{1,2,..., kd}}. Thene_=g—1, where g= (k—1)-
(k—2)/2 1s the genus of C.

Proor. — Clearly, the integer e_ is an invariant of the threefold X. This
makes it possible to define the family of all these minimal sections on X as
follows:

Call a quasi-section of p: X— P? any connected 1-cycle C” on X such that
C"=C"+F,where C' is a section of X (i.e. p: C'—p(C") is an isomorphism),
and F' is a sum of fibers and components of fibers of p.

Let Ulk]c |Op2(k) | be the set:

Ulk]={C: Sc=p '(C) is smooth and e _(Sp) =e¢_},
and let
C_[k] = (the closure of) {C': C=p(C’) e Uk] &C’

is a nonsingular section of Sgst. C%|g.=e_},

where the closure is defined in the family of all the quasi-sections of X. On the
one hand dimce_[k]=dimUlk]l = (k+ 1)k +2)/2—1= (k?+3k)/2. On the
other hand, by (2.6), the general element C’ is an isolated section of Si, where
C=p(C"), and Sc=p ~1(C). In particular e_ <g—1, where g=(k—1)(k—2)/2
is the genus of C'. We shall prove this.

Suppose that e_ =g; then e_ =g (see [H, Ch. 5, Exercise (2.5.d)]). Let
S(C") :=S;(I) — C be the ruled surface for which C'' is a nonsingular minimal
section. Since the invariant e(S¢(I)) = e_ = g, the surface S-(/) must have at
least a 1-dimensional family of minimal sections. In order to see this, we use:

(1) for g =0 (i.e. k =1, 2)—the known property that any of the ruling of
the smooth quadric is a P'-family of minimal sections;
(2) for g =1 (i.e. k =3)—Lemma (1.7);
3) for g =2 (i.e. k =4)-Lemma (1.8).
Let e.g. k=4. Then according to (1.8), the ruled surface S(C') =Sq(1)
must have at least a 1-dimensional family of minimal sections. Indeed, the

«versal» ruled surface of invariant g has a 1-dimensional family of minimal
sections (since the family of g-secant planes through [E] for the «versal»
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surface is exactly 1-dimensional (see (1.8) and [LN]). That is, in all the cases
C' can’t be isolated. Therefore e_ < g — 1.

In order to see that e = g — 1, we consider the normal bundle sequence for
C'cSccX:

0—>N¢is,—Nex—>Ngx |C'—0.

On the one hand, the map p: C' — C = p(C"') sends family C_ [k] surjectively
onto the open subset Ulk]c |Op:2(k) |; therefore dim C_[k] = dim |Op2(k) | =
(k+1)k+2)/2—1=(k?+3k)/2. On the other hand,

dim €_[k] =x(N¢x) =x(Neys,) + x(Ngyx | o) =

(e.—g+D+k*—g+D=(e_+k*)+2-2g9=(e_+k*)—(k*—3k)=e¢_+3k.
Therefore e = (k> +3k)/2 -3k = (k?-3k)2=(k—1)k—-2)2—-1=g—1.

3. — The families ¢_[k] and ¢, [k].

(3.1) The family ¢_[k] was defined in the proof of (2.7). We call ¢_[k] the fa-
mily of isolated minimal sections of X (over the plane curves of degree k). Ac-
cording to the proof of (2.7), the invariant e_ of this family must be g — 1 =
(k? —3k)/2, where g = g(k) is the genus of the general plane curve of degree k.

Let {1,2, ..., kd} be as in (2.1), and let Ic {1, 2, ..., kd} be such that
e(Sc(I))=e_=g—1. Without any restriction we may assume that =0 (i.e. that
the map o;=0,: Sc—Sc(I) = Sc(¥) blows down the (—1)-curves Iy, ..., li).

Let Jc {1, 2, ..., kd} be a multiindex which differs from / by only one en-
try; in our case J = {i} for someie {1, 2, ..., kd}. Let z; € Sc(I) = S¢(9) be the
image of I; on S¢(#)—see (2.2). Then the surface S¢(J) =S¢ ({i}) is obtained
from Sq (@) by an elementary transformation centered at z;. Since all the mini-
mal sections of S¢(0) are nonsingular, the point z; does not lie on any of these
sections. Therefore the ruled surface S¢(J) = S¢({i}) has invariante_ +1=g¢g
(see e.g. [LN, Lemma 4.3]). In particular, the surface So(J) =S¢ ({i}) has at
least a 1-dimensional family of minimal sections (see (1.8)). Now, the same argu-
ments as in the proof of (2.7), and simple combinatorial considerations imply the
following:

(3.2) ProPOSITION. — Let C be a general plane curve of degree k, let S¢=
p 1(C), and let X be the set of all the multiindices 1c {1, 2, ..., kd}. Then
2=X_UX_, st

(1) For any I €X _, the ruled surface Sc(I) has mvariant e_ =g —1 =
(k% —-3k)/2.

) Forany I eX ., the ruled surface Sc(I) has invariant e, =g= (k—1)-
(k—2)/2.
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(3) Let |I| be the cardinality of I. Then Iy, I, belong to the same compo-
nent of X iff |1 | = |1z | (mod 2).

(3.3) The surfaces S(C') and the map y: C'— L(C").

Let S, =p ~1(4) be the preimage of the discriminant curve A. The surface
S, is ruled by the components I, and [, of the degenerate fibers of p: X — P2 and
these components parametrize the points of the double discriminant curve A.
The Steiner map

St: A—St(A), w—Stx)=1,N1,

embeds 4 as a double curve of S,cX.

Let C'c X be a connected curve such that p: C'—C =p(C"') is an isomor-
phism. By definition (2.3) C' is a nonsingular section if C' does not intersect the
Steiner curve St(A4). Indeed if C’ does not intersect St(4) then C’' N S, defines
the kd lines Iy, ..., l; (k= deg C). If I, = p 1 (p(l;)) — l; are their complimentary
lines, then C' can be regarded as a section of the ruled surface S(C') := Sq(9)
(defined by contracting all the lines /,—see §2). Moreover, the lines [;, as well
their complimentary I; can be regarded as points of A. In particular, if C’ is a
nonsingular section, and if degp(C) =k, then L=L(C') =1, + ... + ;4 is a
well-defined effective divisor on A.

This way, any nonsingular section C' of X defines:

(1) the effective divisor L = L(C") =y(C") =C'N S ,;
(2) the ruled surface S(C') (see above).

Now, (3.2) implies the following:

(8.4) PROPOSITION. — Let p: X — PZ be a smooth standard conic bundle such
that the discriminant curve A c P?is smooth, and let d = deg A. Then, for any
k<d, there exist two families of connected 1-cycles on X: C_[k] and C,[k]
such that:

(1) The general element C'e C_[k] is a nonsingular isolated section of the
conic bundle surface Sc=p 1(C), C=p(C"), and if S(C") is the ruled surface
defined in (3.3) then e(S(C"))=g—1, where g=g(C")=g(C)=(k—1)k—2)/2.

(2) The general element C'e C,[k] is a nonsingular non-isolated sec-
tion of the conic bundle surface Sc=p ~*(C), C=p(C"), and e(S(C")) =g.

(3.5) REMARK. — It was proved in (2.7) that dim ¢_[k] = dim |Op2(k) | . Since
the image of map C'— C =p(C’) covers the open subset U[k] of |Op2(k) |,
the map p sends C_[k] surjectively onto |Opz(k)|. Similar arguments, based
on the normal bundle sequence for C'cS,¢,cX, imply that dimC, [k] =
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dim |Op2(k) | + 1, and the general fiber of the surjective map p: ¢, — |Opz(k) |
is 1-dimensional.

4. — The intermediate jacobian (J(X), @)= P(4, A) and the families ¢,
and C_.

4.0) The jacobian (J(X), ®) = P(4, A) and the sets Supp (@) and Supp (P 7).

Let (A A) be the discriminant pair of p: X — P? andlet x: A — A be the in-
duced double covering. Since A is smooth, A is smooth and z is unbran-
ched—see (0.5).

It is well-known that the principally polarized intermediate jacobian
(J(X), ©) can be identified with the Prym variety P(4, A) defined by the double
covering z: A — A (see e.g. [B]). Here we recall the Wirtinger description of
P4, A) by sheaves on A (see e.g. [W).

Let d =deg(4), and let g = (d — 1)(d — 2)/2 = g(A4) be the genus of 4. The
map & induces the Norm map Nm: Pic (4) = Pic(A) (see [ACGH, p. 281]).

Let w , be the canonical sheaf of A. Then the fiber Nm ~(w ,) splits into two
components:

T = {eePic¥ 2(A): Nm(£)=w, & h°(L) even},

P~ ={eePic¥ 2(A): Nm(L)=w, & h°(£) odd}.

Both P* and P~ are translates of the Prym variety P = P(4, A) c J(A) =
Pic’(A); P is the connected component of © in the kernel of Nm’: Pic’(d) —
Pic’(A).

The general sheaf e P " is non effective, i.e. the linear system |.C| is em-
pty. The set @ = {LeP": |£| =0} ={LeP": h"(£) =2} is a copy of the
theta divisor of the p.p.a.v. P, = P. Since the general sheaf £e P ~ is effective,
this suggests to introduce the following two subsets of S/~ 2A:

Supp (@) = {Le |L|: £Le®}, Supp(P~)={Le|L|:LeP }.

Clearly, dim Supp (©)=dim Supp(P ~) =dim (P) =¢g—1. Indeed, the general
fiber ¢ ;1(2) of the natural map ¢ : Supp (@) — O coincides with the linear
system |£| =P, and the general fiber of ¢ .: Supp(P ") =P is |£| =P°

We shall use the same notations for the effective sheaf .¢ and the set of effec-
tive divisors {L: L e | £]|}.

Let S2~27: 829721 — 82972 A be the (29 — 2)~ " symmetric power of 7,
and let w4 | = |04(d—3)| = |Op2(d —3) | = PY ! be the canonical system of
A. We shall use equivalently any of the different interpretations of the ele-
ments of this system, as it is written just above.



412 ATANAS ILIEV

(4.1) The canonical families C, and C_ of mon-isolated and isolated
minimal sections of p: X — P2,
We define:

C_:=C_[d-3], C, :=C,[d-3].

Let S, =p “1(4). Identify, as usual, the component of a degenerate fiber
lc S, and the corresponding point [ e A. Let

P CLUC.—S¥ 24, yYC)—LIC)=CNS,,

be the map defined in (3.3). More precisely, by (3.3), v is defined on the open
subsets U,,_ c C,,_ of non-singular minimal sections. By (3.4), we can assume
in addition that the open subset U, (resp. U_) is such that if Ce U, (resp. if
CeU_) then the surface S(C) is of invariant e, = g(C) (resp.—of invariant
e_=¢g(C)—1). Now, v can be defined correctly on @, — U, andon C_ — U_,
since: (1) The families C,,_ are the closures of U,,_ by algebraically equiva-
lent connected 1-cycles on X. (2) The map y is defined on U.,_ by intersection
of eycles on X, and since the algebraic equivalence implies numerical equivalen-
ce.
Denote by C, = ¢(¢, ), and C_ = y(C_) the y-images of ¢, and C_.

(4.2) LEMMA. — TZL@ non-ordered pairs {C,, C_} and {Supp (®), Supp (P ")}
of subsets of S?972A coincide.

PROOF. — It rests to note that C, UC_ =Supp (@) USupp (P ~) = {LeS* ~%A:
(L) e|wy|} qed.

(4.3) The Abel-Jacobi 1mages of the families C, and C_.

Let J(X) = H> Y (X)* /(H;(X, Z) mod torsion) be the intermediate jacobian
of X, provided with the principal polarization @ x defined by the intersection of
3-chains on X. It is well known (see [B]) that (J(X), @ x) is isomorphic, as a
p.p.a.v., to the Prym variety (P, @) of the discriminant pair (4, 4). Let

D,.:C,—»JX)=P and P_:C_—-JX)=P

be the Abel-Jacobi maps for the families ©, and ©_ of algebraically equivalent
l-cycleson X. Let Z, =& . (C,) and Z_ = @ _(C_) be the images of @ , and
@ _. We shall prove the following

(4.4) THEOREM. — Omne of the following two alternatives always takes
place:

1) R’ (yp(C)) =2 for the general CeC, <h’((C)) =1 for the general
Cec_, and then:

(i) Z. is a copy of the theta divisor O y;
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(ii) Z_ coincides with J(X).

2) h°(y(C)) =1 for the general CeC,<=h’(W(C))=2 for the general
Cec_, and then:

(i) Z. coincides with J(X);
(i) Z_ 1s a copy of the theta divisor O .

REMARK. — The map ¢ = ¢ »: Supp (®) U Supp (P ~)—> 6O U P~ introduced
above, can be regarded as the (Prym)-Abel-Jacobi map from the sets of alge-
braically equivalent (2¢ —2)-tuples of points Supp(@)cS* 24 and
Supp (P ) cS29724, to the Prym variety P = J(X).

ProOF OF (4.4). — According to Lemma (4.2), C, = y(C, ) coincides either
with Supp (0), or with Supp (P 7). Alternatively, C_ = y(C_) coincides either
with Supp (P ~), or with Supp (®).

Let e.g. C. = Supp (@) (= case (1)). Then 2°(y(C)) = 2 for the general C e
C,, h°((C)) =1 for the general C e C_; and we have to see that Z, = @, and
Z_=JX)=P.

Let C e @, be general, and let z = @ | (C) € J(X) be the Abel-Jacobi image of
C. Since C is general, C is a nonsingular section of the conic bundle surface
S,yc X, and the effective divisor L = L(C) = y(C) € Supp (@) is well defined.

We can also assume that p(C) is nonsingular, and p(C) intersects A tran-
sversally. In particular, the effective divisor L = L(C) does not contain multiple
points. We shall prove the following

(*) LEMMA. — Let C'" and C" e @, be such that w(C') =y¢(C") =L, and let
2'=0 (C"),2"=® _ (C"). Then z'=2z".

ProOF OF (*). — Since y(C') = ¢(C"), the curves C' and C” have the same
image by p: Cy=p(C') =p(C"), and C’' and C” are non-isolated sections of
the conic bundle surface S¢, =p Cy). Let L=1+ ... + lyy -2, and x; = p(1;),
t=1, ..., 29 — 2. The degenerate fibers of p: S;,— C, are the singular conics
q(x;,) =p (x;) =1; + I;. By assumption C' and C" intersect simply any of the
components /;, and does not intersect any of 7;.

Let C be any nonsingular section of S¢, such that ¥(C) =CNS, =L, e.g.
C=C'. Then Div(S¢,) =p*(Div(C)) +Z. I, + ...+ Z. 1y, »+Z.C.

Since (C'=C").q=1-1=0,and (C'=C").[;=0,(=1, ..., 29 — 2), the
divisor C'—C" belongs to p*(Div(Cy)); i.e. C'—C"=p*S for some de
Div (Cy).

Obviously, deg (6) = 0. Represent 0 as a difference of two effective divisors
(of the same degree): 6 = 0, — 0. Without loss of the generality we can assume
that the sets Supp(d;) and Supp(d,) are disjoint. Therefore, p*(C'— C") =
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p 18;) —p 1(0,) is a sum of fibers of p, with positive and negative coeffi-
cients, and of total degree 0.

Since all the fibers of p: X — P? are rationally equivalent, the rational cycle
class [p ~1(8)], of p ~1(0), is 0, in the Chow ring A.(X). Since the Abel-Jacobi
map for any family of algebraically equivalent 1-cycles on X factors through the
cycle class map, the curves C' and C” have the same Abel-Jacobi image, i.e.
z'=z". This proves (*).

It follows from (*) that the Abel-Jacobi map @ . factors through v, i.e., the-
re exists a well-defined map @, : Supp (@) —Z , such that ® = &, o .

Let Ce e, be general, and let L = L(C) = y(C). Let £ = ¢(L) be the sheaf
defined by the 1-dimensional linear system of effective divisors linearly equiva-
lent to L. Let @, (£) =y ~( | £]) be the preimage of |.| in C, . Since @ , fac-
tors through vy, and @ | is a map to an abelian variety (the intermediate jaco-
bian J(X) of X), the map @, contracts rational subsets of Supp (@) to points.
However, y(C, (L)) = |e| = P!. Therefore, there exists a point z = 2(£) e Z,
such that @ , (¢ () =@, (€, (L) =D, (|L|])={=}cZ,.

Clearly z = @ , (C), and the uniqueness of the sheaf .2 defined by C, implies
that the correspondence ¥ = {(z, £): 2=® ,(C), L=¢ o y(C), CeC, } is ge-
nerically (1:1).

Let i: ¥ —Z, and j: 2 — O be the natural projections. The general choice
of Ce C,, and the identity y(C, ) = Supp (@), imply that j is surjective. There-
fore Z, and O are birational. In particular, 7 is a divisor in J(X) = P. It is not
hard to see that the map i0j ~!: @ —Z, is regular. In fact, let .© be any sheaf
which belongs to @. The definition of ¢ implies that ¢ ~!(.£) coincides with the
linear system |.£|, which is an (odd dimensional) projective space. Therefore,
@, contracts the connected rational set ¢ ~1(.2) to a unique point z = z(L), i.e.
10 ~!is regular in 2. It follows that Z is biregular to the divisor of principal
polarization @, i.e. Z, is a translate of ©.

The coincidence Z_ = J(X) follows in a similar way.

In case (2), the only difference is that the general fiber of v is finite, since
the minimal sections C e ¢_ which majorate the general L e Supp (@), are isola-
ted. Theorem 4.4 is proved.

5. — The fibers of the Abel-Jacobi maps @ , and @ _.
(5.1) The general position of the ruled surfaces S(C').

Let d =deg4 =4, and let g = (d — 4)(d — 5)/2 be the genus of the smooth
plane curve of degree d — 3.

Let C' e, UEC_ be general. In particular, C' is smooth and nonsingular
(see (2.2), (2.3)), the ruled surface S(C"’) (see (3.3)) is well defined, and the inva-
riant e(S(C")) =g (f C'e.), or e(S(C")) =g —1 (if C' € @_)—see Corollary
(2.6) and Proposition (3.2). It follows from Remark (3.5) that the general fiber of
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the natural surjective map p: ¢, — |Opz(d — 3) | is one dimensional, and the
general fiber of the same map for C_ is finite. This implies that if C' € @, is ge-
neral then the family of minimal sections of S(C') is one-dimensional, and if
C'e C_ is general then the set of minimal sections of S(C') is finite.

Let e.g. d = degA =1. Then g = 3(= 2). Let, as in Lemma (1.8), ¥ be a nor-
malized rank 2 bundle such that P(E) = S(C’), let a(C’) and [E] be as in (1.8),
and let e = ¢(S(C")) be the invariant of S(C”). We say that [E'] is in a general po-
sition with respect to a(C") if the family of e-secant line bundles of a(C) which
pass through [£] is of the expected minimal dimension (=1 if e =g, and =0 if
e=g—1).

The last and Lemma (1.8) imply that if S(C'') comes from a general minimal
section then [£] is in a general position with respect to a(C").

If d = 6 (<=g = 1) then we say that S(C"’) is general if S(C"') is one of the sur-
faces described in Lemma (1.7). The general ruled surfaces over P! are, of cour-
se, F, and F;—see (1.6). By the same arguments as above the ruled surface
S(C") is general for the general minimal section C"’.

Remember also that if S, =p ~*(4),then L = y(C") =C'N S, e Supp (@) U
Supp (P 7); and also that Cy=p(C") is the unique plane curve such that CoNA=
7t(L). Since S(C') does not depend on the general minimal section C'c S(C")
we let S(L) :=8S(C") if L =y(C").

(5.2) Tt follows from Theorem (4.4) that the fibers of @ , and @ _ depend
closely on the alternative conclusions: Z, = ©, or Z_ = @. The examples show
that any of the two alternatives (4.4)(1)-(4.4)(2) can be true, depending on the
choice of the conic bundle p: X — P2 (see section 6).

In either of the cases (4.4)(1) and (4.4)(2), the considerations in (5.1), connec-
ting the main results in § 2 and § 3, yield the description of the general fibers of
@, and @ _. We shall collect collect these descriptions in the following:

(5.3) THEOREM. — Description of the general fibers of the Abel-Jacobi maps
D, and D _.

Let p: X— P? be a standard conic bundle with a smooth discriminant A of
degree d > 3. Let C, and C_ be the two canonical families of non-isolated and
isolated minimal sections (see (4.1)), and let ¢: C, —C,., ¢: C.—C_,
y: Supp (@) — 0O, and y: Supp (P~ )—P ~ be the families and the natural maps
defined in (4.1). Let @ ,: ¢, —=J(X) and @ _: ¢_—J(X) be the Abel-Jacobi
maps for C, and C_, and let Z, and Z_ be the images of @ , and P _.

Then one of the following two alternatives is true:

(A: +) C, =Supp(®), Z, is a translate of © («C_=Supp(P "), Z_ =
JX)=P).

Let ze Z, be general, and let £=jo1i '(z) € © be the sheaf which corre-
sponds to z. Then:
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(1) The fiber @, (z) := @ ;1(2) is 2-dimensional.

(2) The map vy defines on C,(2) the natural fibration y(z): C, (z) —
|&| =P,

(8) The general fiber C, (L) :=y(z) Y(L) of ¥(z) can be described as fol-
lows (d=4):

Let Cy(L) c P? be the plane curve of degree d — 3 defined by L. Then

() Ifd=deg(4) =4 or 5, then S(L) = P' x P!, and ©, (L) = the fiber
P! of the projection p(L): S(L) — Cy(L) = P! induced by p;

(i) If d=deg(A4) =6, then p(L): S(L)—Cy(L) is the only indecomposable
ruled surface over the elliptic base Cy(L), and the fiber C. (L) of Y (2): C, () —
|e| = P! is isomorphic to Cy(L). In particular, C. (z) is an elliptic fibration
over the rational base curve |L£];

(iii) Let d =deg(A4) =17, let g =d(d —3)/2+ 1 be the genus of Cy(L), let
Ce @, (L) be general, and let S(C) be the ruled surface defined in (3.3). Let E be
a normalized rank 2 bundle over Cy(L) such that S(C) = P¢,(E), and let

OQOCO(L)_)EﬁNﬁo

be the extension defined by C. Let a(Cy) c P(H (K¢, ® X)) be the image of C,
defined by the sheaf K¢, ® N (see (1.8)). Then P(H* (Ko, ® N))=P* % aisa
reqular morphism of degree 1, and the point [E] defined by this extension is in
general position with respect to the set of g-secant line bundles of a(Cy).
Moreover, C, (L) is birational to the 1-dimensional set Sec, (a(Cy),[E]) of g-
secant planes of a(Cy) through the point [E]. In particular, if C' and [E'] is
another pair of this type, then the mnormalizations of the curves
Sec, (a(Cy),[E]) and Sec,(a'(Cy),[E']) are isomorphic to each other.

@) IfzeZ_ is general and £=701"'(2), then |£| =P°. If L = L(z) is
the unique element of | £|, then the fiber @ _(z) = & ~(z) is discrete and:

() If d=deg(A4) =4 or 5, then @ _(z) has exactly one element—defi-
ned by the unique (—1)-section of the ruled surface S(L) = F.

(ii) Ifd = deg(A4) =6, then @ _(z) has exactly two elements—defined by
the two (disjoint) sections of the decomposable ruled surface S;, over the ellip-
tic base Cy(L).

(iii) Let d =deg(A) ="T. Then the fiber @ _(z) is isomorphic to the fiber
v ~Y(L). Let C be some element of this fiber, let S(C) = P, (E) be as in (3)(iii),
let

0—0¢u)y—=E—N—0,

be the extension defined by C, and let a(Cy) and [E] be as in Lemma (1.8). Then
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|Kc®@N| = P73 o is generically of degree 1, and [E] does not lie on an infi-
nite set of (9 — 1)-secant planes of a(Cy). Moreover, the cardinality of C_(z) is
equal to #{(g — 1)-secant planes of a(Cy)} +1 (see (1.8)).

A: =) C_=Supp(®), Z_=0(=C, =8Supp(P "), Z_=JX)=P).

Then the description of the general fibers of @ _ and @ | is similar to this
from (A: +)(1)-(4). We shall mark only the differences:

1)-2)-3) The fiber c_(z) is 1-dimensional. The map Y(z): C_(z)—
| £(2) | = P is finite and surjective, and the fiber of Y(z) has the same descrip-
tion as the fiber C_ (L) =y (L) described in (A: +)(4).

(4) The fiber C, (z) is 1-dimensional. Let £= £(z) =701 1(2), and let L =
L(z) be the unique element of the linear system |L|. Then the sets C. (z) and
C, (L) coincide. In particular, the fiber C . (z) has the same description as the
set @, (L) described in (A: +)(1)-(4).

6. — Examples.

(6.1) THE BIDEGREE (2, 2) THREEFOLD.

(6.1.1) The two conic bundle structures on the bidegree (2, 2) threefold.

Let Wc P8 be the Segre fourfold P2 x P2, and let X be an intersection of W
with a general quadric, i.e. X is a bidegree (2, 2) threefold.

Let p and ¢ be the two standard projections from W to P2 (resp.—from X to
P?). Clearly, p and ¢ define conic bundle structures on X.

Let l=[p*(O(1)] and & = [q*(O(1)] be the generators of Pic W (resp.—of
Pic X). Call the 1-cycle C on X a bidegree (1m, n)-cycle, if C has degree m with
respect to [, and degree n-w.r. to h.

(6.1.2) The families C, and C_ for p.

Fix the projection, say p. Then p: X— PZis a standard conic bundle, and the
discriminant A is a smooth general plane sextic. Therefore, the jacobian J(X) is
a 9-dimensional Prym variety. Let C_ and €, are the canonical families of isola-
ted and non-isolated minimal sections for the conic bundle projection p. By
Theorem (4.4) the Abel-Jacobi image of one of these two families is a copy of ©.
It is proven in [11] that the family which parametrizes the theta divisor is ¢, .
More precisely, the following is true:

(6.1.3) PROPOSITION. — Let C, be the canonical 10-dimensional family of
non-isolated minimal sections, and let C_ be the canonical 9-dimensional fa-
mily of isolated minimal sections for p. Then:
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(1) e, =C§ ¢ (=the family of elliptic curves of bidegree (3,7) on X),
C_=C3 ¢ (=the family of elliptic curves of bidegree (3,6) on X),
and

(2) @, (C3,7)is a copy of O, D _(C}, ) coincides with J(X).
This and Theorem (5.3)(A: +) (see also Lemma (1.7)) imply:

(6.1.4) COROLLARY. — The general fiber of @ . : Cy ;— O is an elliptic fibra-
tion over P'. The surjective map @ _: C3 —J(X) is generically finite of
degree 2.

(6.1.5) Parametrization of Sing** (@) via degenerate sections.

It can be seen that on the bidegree (2,2) divisor X lies a 6-dimensional family
M := C§, 5 of bidegree (3,3) elliptic curves. Any of these curves C can be comple-
ted by many ways to a quasi-section C + two fibers of p € @} ;. Moreover, the
general C e @ lies in a ruling of a rank 6 quadric @ > X such that @ does not con-
tain W. The ruling of @ defines a P3-system of C¢ € M rationally equivalent to C,
and the intersection map v: C: — L: = L(C;) € Symm'*(4) defines a linear
system .2 € Sing**(®). Moreover (see [Ve], [I1]):

The Abel-Jacobi image Z = ®(D) is biregular to a 3-dimensional compo-
nent of Sing*(@). The bidegree (2,2) threefold X coincides with the base locus of
the set of tangent cones of @ at the points ze Z.

Since the fibers of p are rationally equivalent to each other, the last
implies:

Let = {C+fi+f;: Ce @, and f; and f are fibers of p intersecting C'}.
Then Xcet= @é, 7, ond @, (2)=7 is a 3-dimensional component of Sing (O).

(6.1.6) REMARK (see [Ve]). — Let 91t be the moduli space of plane sextics. Let
R be the 19-dimensional space of pairs (4, 1) where A € It is smooth and 5 # O,
is a 2-torsion sheaf on A defining a unbranched 2-sheeted covering 4 — 4.

It was proved by A. Verra that the Torelli theorem does not hold for the Prym
map 9: R—>P=0(R)C Ay (= the space of p.p. avelian 9-folds), o(4, ) :=
P(A, A). More precisely (see [Ve]): dego =2, and: (i). For the general P € & the
fiber o “}(P) = (4, n) U (4', '), where (A4, n) and (4', ') are obtained from
each other by the classical Dixon correspondence. (ii). There exists a unique bi-
degree (2,2) threefold X for which the induced by # and %' double coverings
A—Aand A’ — A’ are the same as the double coverings defined by the two co-
nic bundle projections on X. (iii). Let ®yc R be the subspace of these (4, 7)
which come from nodal quartic double solids, and let $, = o(R,). Then $yc Pis a
component of the 18-dimensional branch locus of o.
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(6.2) THE NODAL QUARTIC DOUBLE SOLID.

(6.2.1) By definition, a quartic double solid (q.d.s.) is a double covering
0: X— P? branched along a quartic surface Bc P3.

The parametrization of © for the general quartic double solid by the 12-di-
mensional family of Reye sextics, and the parametrization of Sing (©) are obtai-
ned by Tikhomirov [T] and Voisin [Vo]. Moreover, the results in [C], [De] imply
actually the descriptions of @ and Sing (®) by means of minimal sections, for
the quartic double solids with < 6 nodes.

The «minimal section» approach imply also a natural parametrization also of
the intermediate jacobian J of the nodal q.d.s. X.

(6.2.2) The conic bundle structure on the nodal q.d.s.

Let S has a simple node o. Denote by o also the node of X—«above» o. Let
B c P c P? be the image of Bc P? by the system of quadrics through o, and let
0: X — P be the induced double covering branched along B. (The threefold P is
a projection of the Veronese image Pc P of P3, through the image of 0. In
particular, P contains a plane P3, and the inverse map o: P — P? is a blow-do-
wn of P%to 0. The restriction o: B — B is a blow-down of a smooth conic ¢, c B to
the node o0.)

The threefold P = Pp:(0@ (1)) has a natural projection p, to P?=
{the lines [ in P? through o}, and P{ is the exceptional section of the projec-
tivized bundle P. The general fiber p ~1(1) of the composition p = p, - g: X — P>
is a smooth conic g(I) = p “*(I) = (the desingularization of ¢ ~!(I) in o).

The restriction p, | 5: B — P? desingularizes the projection from the quartic
B through the node o = Sing (B). Therefore, p, |z is a double covering branched
along a smooth plane sextic 4, and the conic g, is totally tangent to 4. Clearly,
the fiber p ~!(x) is singular for any « € A, and the natural Abel-Jacobi map A —
J = J(X) induces an isomorphism of p.p.a.v. P(A, A) = J (see [B]).

(6.2.3) The families C, and C_.

It is not hard to find the families ©, and ¢_ for p. Since this description does
not differ substantially from the general one, we shall state it in a brief:

Since P c P*%, the degree map deg: {subschemes of P} —Z is well defined.
In particular, deg (P) = deg (P3) —1="1.

Let Zc X be a subscheme of X. Define deg(Z) := deg (5.(Z)).

EXAMPLE. — Let Ic P? be a line through o, let x = [1] € P? be the point repre-
senting [, and let g(x) be the «conic» g(x) =p ~'(x). Then deg (p ~!(x)) =2. In-
deed, 9, (g(x)) = 21" where I’ = p, '(x) c P is the line in P® which represents
the «bundle-fiber» in P over [1]. Note also that ' is the proper preimage of the
line Ic P? under the blow-down o,: P —P3.
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(6.2.4) PROPOSITION.

(1) e, is a component @i, of the family of elliptic curves of degree 10 on X;
C_ is a component C§ of the family of elliptic curves of degree 9 on X.

) a) yp(C_) = Supp (O). Therefore @ _ (})is acopy of @.b) @ , (C,) =J.

ProOF. — The proof of (1) is standard.

(2) The general element Ce C_ lies in a unique S of the 9-dimensional
system |Ox(1)| = | 0% Op(1) | . The elliptic curve C moves in a P'-system C; in
the K3-surface S, this way y(C,) = L, defines a pencil in Nm ~!(K,)—see also
[C, p. 98]. By Theorem (4.4), this implies @) and b).

(6.2.5) COROLLARY (see Theorem (5.3)(A: —) and Lemma (1.7). — The general
fiber of @ _: Ci— O is a disjoint union of two smooth rational curves (see also
[CD.

The general fiber of @ . : Cly—J is an elliptic curve.

(6.2.6) REMARK. — The component Z c Sing ().
Since the result is essentially known (see [Vo], [De], [C]), we shall only state
it (see also (6.1.5)):

There exist elliptic septics on X, and the Abel-Jacobi map sends a compo-
nent C} of this family onto a 4-dimensional variety Z isomorphic to a compo-
nent of stable singularities of @. Equivalently, if

S={C+f: CeC} &f is a fiber of p intersecting C}cCj=C_,
then &(X) = Z (cf. (6.1.5)).

(6.3) THE NODAL SECTION OF THE GRASSMANNIAN G(2, 5).

(6.3.0) Any smooth 3-dimensional intersection X = X, of the grassmannian
G =G(2, 5)c P’ by a subspace P"c P? and a quadric @ is a Fano threefold of
degree 10 and of index 1.

It turns out that the nodal X, acquires a natural conic bundle structure. We
shall describe it, and also we shall find the parametrization of the Abelian part
of the intermediate jacobian of X = X;,, as well the parametrization of @ by
means of the curves on X representing the families ¢_ and €, .

(6.3.1) Shortly about flops and extremal rays (see e.g. [Mo], [K],
[Isk2]).

DEFINITION. — Let pr': X' — X" be an indecomposable birational morphism
from the smooth 3-fold X’ to the normal 3-dimensional variety X", and let D' c
X' be an effective divisor such that:
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(a') the exceptional set Ex(pr') of pr’ is a union of 1-dimensional cycles
l;c X' such that —Ky.l/ =0, Vi;

(b") D'. 1l <0, V.

Let the threefold X be smooth, and let the birational isomorphism
0: X'—=X" (over X") be an isomorphism in codimension 2. Then ¢ is called a
D'flop over X" if the composition pr ¥ = pr’ cp ~': X * — X" is an indecompo-
sable birational morphism, Ex(pr *) is a union of 1-dimensional eycles ;" , and Ky -,
I;* and D * (= the proper image of D' on X *) fulfill the properties:

(a™) —Ky+. ;" =0, Vi;
(b*)YD*. [;F >0, Vi.

By [K], if such X', pr', D', ete. fulfill (a"), (b') then a D '-flop always exists,
and any sequence of such D ’'-flops is finite.

Let X * be a smooth variety, let N(X) = {1 — cycles on X} /= ®;R be the
finite-dimensional real space of numerically equivalence classes of 1-cycles on
X", and let NE(X ") be the closure of the convex cone generated by the effecti-
ve 1-cycles on X . The half-line R =R, .[C " ]is called an extremal ray on X *
if R is an extremal ray of the cone NE(X ") and —Ky+. C* > 0. The rational
curve C*cX™* is called extremal if —Kyx+.C<dim(X*)+1, and R=
R, .[C"]is an extremal ray. By The Cone Theorem [Mo], any extremal ray on
X * is generated by some extremal curve.

The numerically effective divisor D * c X * is called a supporting function of
the extremalray R =R, .[C*]lon X" if D*. C* =0, and if for any effective 1-
ceycle C on X * the identity D *. C =0 implies [C] € R.

By [Mo], any extremal ray R on X * defines a morphism ¢ z: X * — Y, where
Y is a normal variety, and such that ¢ contracts all the irreducible curves
[C*1eR, and any extremal ray R on X * has a supporting function D". Moreo-
ver, by the Theorem of Stable Freedom ([KMM]), the morphism ¢ » can be defi-
ned by |m. D" | for m>>0.

Especially, if dimX* =3, dimY=2, and —Ky+.C " =1 then, by [Mo],
¢ p: X —Yis a standard conic bundle.

(6.3.2) The double projection from o—a birational conic bundle structure
on X.

Let (X, 0) be a general pair of a nodal X;, and a node o on it, let pr: X— X" be
the rational projection from o, let 0: X'— X be the blow-up of o, and let pr' =
proo: X'—X". Let Q" =0 1(0)cX' be the exceptional quadric on X', and let
®" be the image of @' on X". Let H" be the hyperplane section of X", (as well the
proper preimages of H” on X and on X'). Let H be the hyperplane section of X (as
well its proper preimage on X'). Now, the following are standard properties of
the projections (see e.g. [Isk2] discussing the double projection from a line).
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(1) X"c P% is a complete intersection of three quadrics, and Q"c X" is a
smooth quadric surface on X"—see e.g. (6.3.5).

(2) There are finite number of lines [;c X such that o el;; in fact, their
number is 6—see the proof of Lemma (6.3.5)(1).

(3) Let I/ c X' be the proper preimages of [; on X', and let / =1/ N Q.
Then pr': X' — X" is an indecomposable birational morphism (defined by the
linear system of H"~H — Q' on X'), and Ex(pr’'), Ky, I, etc. fulfill the pro-
perty (6.3.1)(a’).

(4) Let xe@"” be the points a =pr'(l;) =pr(x;). Then SingX" =
{®], ..., x¢ }, and all these points are simple nodes of X'—see e.g. the proof of
Lemma (6.3.5)(1).

(5) If D" is any effective divisor of the P?-system |H"—@Q"| (on X"), and
if D' is the proper preimage of D" on X', then D' and [, fulfill the property
(6.3.1)(b" )—Dby the standard properties of blow-ups.

By (6.3.1) there exists a D'-flop o: X' =X * over X".

(6.3.8) The standard conic bundle structure on X *.

Let Pl=P(C?) cP*=P(C®) be the line representing the node o, i.e.
0=P(N*C?), let P2 := {P3cP*: PlcP3?} c (P*)* = P(C*), and let P?e P2
be general. Then the cycle C = C(P?) := oy, 1(P?)N X, being a complete inter-
section of a codimension 2 space and a quadric in the grassmannian o, ;(P?), is
a space quartic curve with an ordinary double point at 0. Let C’, C” and C * be
the proper images of C on X', X" and X *. Then the irreducible curve C " c X *
is rational; and if D * c X " and H “ c X * are the proper images of D'c X' and of
HcX, then:

6) —Ky+.C*=H".C"=1;
M D.C*=0.

The D 'flop o: X' —X " is a composition 9 o... c0g, 0; = T; 0 0;, Where o
is the blow-up of I/, and 7 is the blow-down Q; — ;7 c X * of the exceptional qua-
dric @; = 0; *(l;) along the residue ruling. By construction, D * is numerically
effective on X * (since, e.g. D*. ;" =1 >0). By (6) and (7), R=R_..[C*]is an
extremal ray defining the standard conic bundle

pti=¢r: X —P%(=the base PZ of the family {P?: P*>Pl})

(see also the end of (6.3.1)).

Now, it is not hard to see that D * is a supporting function for R=R,.[C " ].
In particular, the map p * is defined by some multiple m. D *, and we may assu-
me that m is minimal with this property. Then, by the choice of D * = (the pro-
per image on X * of an effective divisor D"c X" of the P*system |Ox.(H"—
Q") |), we obtain m = 1. Since H —2Q'~H"— Q' ~ D"’ (on X'), the rational
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map ¢z 0 0: X' — P%is defined by the linear system |H —2Q'| on X'. Equiva-
lently:

COROLLARY. — The map p= ¢ ro0 oo ': X— P?is a rational conic bundle
structure on X, defined by the non-complete linear system |H —2.0| on X; t.e.
p 1s the double projection from o.

(6.3.4) LEMMA. - If (X, 0) is general, then the discriminant curve A of p ™ is
a smooth plane sextic.

Proor. — By [12, Lemma (3.2.3)], for the general nodal Gushel threefold the
plane curve 4 is a smooth sextic. Therefore the same is true also for the general

nodal X, since any (nodal) Gushel threefold (X(0), o) is a smooth deformation
of a family {(X(¢), 0)} of (nodal) Xy5°.

(6.3.5) The nodal X,y and the plane sextics.

Let G be the grassmannian of lines in P* = P(C?), and let k(G) be the family
of quadrics containing the Pliicker image of G. Any choice of a coordinates («;, e;)
in C® defines a linear isomorphism Pf: P*— k, where Pflx) is the Pliicker
quadric in P? with vertex P2 = o3 ((x). In particular, all the quadrics containing G
are of rank 6. The same is true also for the smooth 4-fold W =G N P".

Let, as above, PLc P* be the line representing the node o of X=X;,=WNQ.

Then Pf=Pf(P}) = {Pf(x): xe P}} is a line of rank 6 quadrics containing
W (hence—containing X e |Oy(2) |), and any such quadric is singular at o. Sin-
ce X is singular at o, we can choose a quadric @ c P such that Q is singular at o
and X = W N Q. In this notation, we can identify @ and Pf(x); x € P}, and the
projections of these quadrics in P°. Therefore X" = pr(X) c P® coincides with
the base locus of the plane of quadrics IT = (Pf, Q).

The Hessian Hess of X" is a plane septic, and since rank Pf (x) = 6, Vx e P},
Hess = Pf+ Hg, where Hg ia a plane sextic.

(1) LEMMA. — Let X" c P be a base locus of a plane I1 of quadrics in P°, such
that the Hessian Hess of X" contains a line L, and let X" be otherwise general.
Then:

(a) X" contains a quadratic surface Q", and X" is singular at 6 points
which lie on Q". Moreover

(b) For any such X", there exists a nodal X = X;, such that X" is the sa-
me as the projection of X from its node o.

PrOOF. — (a) Let W be the base locus of L. Since L is assumed to be general,
the vertices v(Q), Q € L sweep-out a twisted cubic C,, and since W must be sin-
gular along C,, W contains P3 = SpanC,. If Qe IT — L, then X" =Q N W con-
tains the quadric @” = @ N P?>. Since @ can be general, Sing X" = SingWnN Q =
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C,NQ={xf, ..., x¢} (here 6 = deg(Q). deg(C,)), and x; are ordinary nodes
of X"=WnaQ.

(b) X is obtained from X" by blowing-up %/, ..., «¢, then by contracting
any of the obtained 6 exceptional quadrics L; along this ruling, the general line
of which does not intersect the preimage of @”, and then by blowing-down the
proper preimage of Q" (which describes, in fact, the opposite of the projection pr).

(2) COROLLARY.

(@) The general reducible plane septic Hg+ L, such that degL =1, ap-
pears as a component of the Hessian of the projection X" of some modal
X = X;y. Moreover:

(b) (D. Logachev [L]): The natural double covering ﬁﬁ — Hg is unbran-
ched, and if J is the abelian part of the intermediate J(X) (= the abelian part
of J(X")) then J = P(Hg, Hg) as p.p.a.v.

PrOOF. — (a) It is proved by Beauville and Tjurin (see e.g. [F'S, Theorem
(0.1)]) that any smooth plane septic can be realized as a Hessian Hess of a plane
IT of quadrics in P°. By degeneration, the same is true also for Hess = H; + L.
where Hj is e.g. a smooth plane sextic, and L is a general line in /7. Now (2)(a)
follows from (1).

(b) If X" is a projection from a general nodal X;, then the count of the
parameters yields that any quadric containing X” is of rank = 6. Therefore the
same is true also for the general X" containing a smooth quadrie surface. In par-
ticular, the non-trivial component of Hess: Hy = {A: A is a ruling of some
Q € H} is well-defined and Hg— Hj is unbranched. The rest of the proof of (b)
repeats the original one (see [B], [Tju]) for the general intersection of three
quadrics in P°.

(6.3.6) The famailies C, and C_.

Let (X, o) be a general nodal X;,. Denote by ¢§[m](X) the (possibly empty)
family of algebraically equivalent connected 1-cycles C' on X such that the
general element C e C4[k](X) is an irreducible curve C'c X, smooth outside o, of
geometric genus ¢ and of degree d, which passes through the node o with multi-
plicity m.

For example {the P*>—family of fibers of p} is a component of €{[2](X); with
a possible abuse in the notation we denote this component also by ©[2](X). In
this notation, the diseriminant sextic of p (:=the discriminant sextic of p *) is

A={xeP%f,=q+7q, st ¢,qec[11X)}.

By (6.3.5), the discriminant 4 is a smooth plane sextic and (J, @) is isomorphic,
as a principally polarized abelian variety, to the Prym variety P(4, A).
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Let @, and C_ be the two canonical families of minimal sections for the stan-
dard conic bundle p *: X * — P2, We shall find the images of these families on
X" and on X.

Let c4[m](X") be the (possibly empty) family of connected 1-cycles on X",
the general element of which is a smooth irreducible curve C of geometric genus
g, of degree d, and such that C intersects simply the quadric " in m points.

Denote by pr: A;(X) —A;(X") also the natural projection-map from the 1-
cycles on X to the 1-cycles on Y defined by the rational projection pr: X —X". In
this notation, it is evident that pr(C4[m1(X)) = @4 _,,[m](X"), and the existence
of one of these families yields the existence of the other.

Denote by p”: X”— PZthe birational conic bundle structure on X" induced by p.

First, we shall find one family of elliptic curves on X” which are sections
of p”.

Let @ € Hg be a rank 6 quadric which does not lie on the intersection Hg N Pf.
The quadric @ has two rulings 4 = A = P3, and any of these rulings consists of
subspaces P3?c Q. Let A be one of them, and let P? € A be a general element of
A.Then C = C(P?) =Y N P?is a complete intersection of two quadrics, i.e. — an
elliptic quartic on X", and this elliptic quartic intersects @" in one point. Indeed,
if P> C is general then C = X" N P?=C + C on X" is a reducible canonical cur-
ve of degree 8 on X". By the formula for the canonical class of the singular cano-
nical curve C + C, C will be an elliptic quartic on X" intersecting C in four points
which lie on the plane (C N C). Clearly C is defined, in just the same way, by so-
me P3 e A intersecting P? along the plane (C N C). In particular, C and C have
the same intersection degree with @", and since the canonical curve C + C =
X"N P5c P’ intersects the quadric @”cX"c P% in two (= degQ") points, we
conclude that C e Ci[1](X").

We shall see that the curves Cj € @}[1](X") are sections of p".

By (6.3.3), the conic bundle structure p: X — P? is the same as the double
projection |Ox(1 — 2. 0) | from the node o. Let C{ € Ci[11(X") be general, and
let C4 be the proper preimage of C{ on X. The curve C4 is an elliptic quintic on X
which passes through o. Therefore the double projection (hence p) sends C3
onto a plane cubic in P2. It follows that C} is a section of p”, and p” maps C}
isomorphically onto a plane cubie.

Let V be a threefold with isolated singularities, and let CcV be a smooth
curve on V such that C N Sing V' = @. Then the normal bundle Ny is defined, and
by the Hirzebruch-Riemann-Roch formula y(Ngy) =c¢;(Ngy) — deg K= — Ky C.

This, in particular, implies that if C%[m](X") # 0, and if C§[m](X") contains
a smooth curve C disjoint from Sing X" = {y,, ..., ys }, then dim C§[m]1(X") = d.

The birational conic bundle structure p” on X" is induced by the standard
conic bundle structure p* on X *. Since the birational isomorphism X"<>X *
preserves the general fibers of p” and p *, the families @,, (X") for p” are
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correctly defined as proper images of the families @,,_ (X ") on the standard
conic bundle p " : X T — P2,

Fix a general component fe @)[1](X") of a degenerate fiber of p”, and a gene-
ral C{ € @{[11(X") intersecting f. Since p”(C}) is a plane cubic, and deg A = 6, the
general element of ©,,_, being an isomorphic image of a general element of
C,,_(X™), is a smooth elliptic curve algebraically equivalent to Cj + k., _. f for
some integer k. ,_. Moreover, the general f, as well the general C} intersecting f,
are disjoint from SingX”. Therefore the connected 1-cycle C} + k. f is disjoint
from Sing X" for any integer k. In particular the general element C of ¢,,_(X") is
disjoint from Sing X”. Therefore dim,,_ =deg(C{ +k,,_.f)=4+k,,_.

From (3.5) we know that dim ¢, = dim€_ + 1 = 10. Therefore k, =6, k_ =
5, ie. @, =CLITIX"] and €_ = @}[6](X"). The non-evident existence of a
smooth curve from any of these two families is assured by the existence of the
families ©,,_(X ") for the standard conic bundle p *: X " — PZ?. This proves
the following

(6.3.7) PROPOSITION. — Let p: X — P2 be the rational conic bundle structure
on the general nodal X = X, defined by the double projection from the node o,
and let X" be the projection of X from o. Then

1) e, =L [TIX") (= the family of elliptic curves Cc X", s.t. degC =10
and C.Q"="1T)=ChL[71(X) (=the family of curves CcX, st degC=17,
9(C) =1, Sing C = 0, and mult,(C) =7).

(2) C_=Ci6](X") (=the family of elliptic curves Cc X", s.t. degC =9
and C.Q"=6)=CL[6]1(X) (=the family of curves CcX, s.t. degC=15,
9(C) =1, Sing C = 0, and mult,(C) =6).

It rests to find which one of these two families parametrizes ©.
(6.3.8) PROPOSITION. — @ , (C,)=0O; D _(C_) =J.

PRrOOF. — By (6.3.3)-(6.3.5), p " : X " — P?is a standard conic bundle, and for
the general nodal X = X, the discriminant A of p * is a general smooth plane
sextic. Let also 7 € Picfy;(4) be the torsion sheaf defining the double covering
A — A induced by p *. In particular A has no totally tangent conics (see also
(6.2.2)), and (by [Ve]) there exists a bidegree (2, 2) threefold 7= P2 x P*N (a
quadrie), such that (4, ) is induced by some of the two conic bundle projections
on T, say p;: T— P?. By (0.6), the two standard conic bundles p " : X " — P?
and p;: T— P? are birational to each other over PZ2. Since such a birational iso-
morphism a: X * — T preserves the general fibers of p * and of p,, a preserves
also the families ¢, and €_. Since, for 7', the parametrizing family for @ is ¢*
(see (6.1.2)-(6.1.3)), the same family must parametrize @ also for X * (hen-
ce—for X, since the birationality X<>X * is a composition of a blow-up and an
isomorphism in codimension 2, both preserving the general fibers of p * and p).
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(6.3.9) REMARK. — Proposition (6.3.8) and Theorem (5.3) yield the same de-
scription of the general fibers of @ . and @ _ as for the bidegree (2,2) three-
fold—see (6.1.4).

(6.3.10) COROLLARY. — If X is a general X,y with a node o, and if X" is the pro-
jection of X from o, then:

(1) The Abel-Jacobi image of the family CE[31(X") of elliptic sextics Cc
X" such that C. Q" = 3 1is biregular to a 3-dimensional component Z of stable
singularities of ©.

(2) If ze Z is general then the tangent cone Q, of @ at z is of rank 6, and

the base locus of all these cones is the (unique) anticanonically embedded bide-
gree (2, 2) threefold T birational to X.

REMARK. — Equivalently, if Xc €},[7](X") is the family of degenerate mini-
mal sections of type C + q; + ¢z, where Ce C{[3]1(X") and q;, ¢z € CI[2](X"),
then the Abel-Jacobi image of X is Z (see (6.1.5)).

ProOF. — By the proof of (6.3.7), it rests only to find the invariants ¢, d, m of
the family ¢[m](X") of these curves on X" which are images of the curves on T
which belong to the family @ = €} 3(T) (see (6.1.5)).

The birational map X"<>T (preserving the conic bundle fibrations) sends
the 4-dimensional family of sections C1[1](X") to 4-dimensional family & of sec-
tions of p;: T— PZ2. Since the birational conic bundle map p” on X" projects the
general Cj € @}[1](X") isomorphically onto a plane cubic, the general E € § is
an elliptic curve on T of bidegree (3, d) for some d = 1. Therefore d = 1—other-
wise 4 = dim C}[1])(X") =dim&=38+d =5.

Let E € & be general, and let f be a general fiber of p, intersecting E. The bi-
rational map T<>X" induced by «, sends f isomorphically onto a fiber qe
CI[2](X"), and E—onto some C} € Ci[X"]. Let D € @ be general. Since any ele-
ment of @ is numerically equivalent to £ + f, the isomorphic image Cc X" of D¢
T is numerically equivalent to C{ + q. Thereforeg=1,d=6, m=3 q.e.d.
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