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Bollettino U. M. I.
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Minimal Sections of Conic Bundles (*).

ATANAS ILIEV

Sunto. – Sia p : XKP 2 un fibrato in coniche standard con curva discriminante D di
grado d . La varietà delle sezioni minime delle superfici p 21 (C), dove C è una curva
di grado d23, si spezza in due componenti C1 e C2 . Si prova che, mediante la map-
pa di Abel-Jacobi F , una di queste componenti domina la Jacobiana intermedia JX ,
mentre l’altra domina il divisore theta U%JX . Questi risultati vengono applicati ad
alcuni threefold di Fano birazionalmente equivalenti a un fibrato in coniche. In par-
ticolare si prova che il generico threefold di Fano di grado dieci è birazionale a una
ipersuperficie di tipo (2 , 2 ) nel prodotto di Segre di due piani proiettivi.

0. – Introduction.

Conic bundles - definitions and general results.

(0.1) Let p : XKS be a surjective morphism from the smooth projective three-
fold X to the smooth surface S. The morphism p is called a standard conic bundle if:

(i) for any s�S , the scheme-theoretic fiber fs 4p 21 (s) is isomorphic
over the residue field k(s) to a conic in P 2

k(s) ;

(ii) for any irreducible curve C%S the surface SC4p 21 (C) is irreducible.

(0.2) More generally, let q : YKT be a rational map from the smooth three-
fold Y to the smooth surface T . Then q is called a conic bundle if the general
fiber ft 4q 21 (t) is a smooth rational curve over k(t).

(0.3) Two conic bundles q : YKT and p : XKS are called birationally equi-
valent if there exist birational maps g : YKX and h : TKS such that h i q4p i g .
By results of A. A. Zagorskii and V. G. Sarkisov (see e.g. [Z]).

(0.4) Any conic bundle is birationally equivalent to a standard one.
Let p : XKS be a standard conic bundle, let

D4 ]s�S : p 21 (s) is singular(

(*) Partially supported by the Bulgarian Foundation for Scientific Research.
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be the discriminant of p , let Dc¯ , and let D
A be the «double discriminant curve»

of p , i.e. the curve parametrizing the components of the fibers fs4p 21 (s), s�D .
Let p : D

A
KD be the corresponding double covering. Then:

(0.5) D
A and D are curves with at most double points, and p : D

A
KD is a Beau-

ville covering (see [B]). In particular, if D is smooth then D
A is smooth and p is

unbranched.
By results of A. S. Merkur8ev and V. G. Sarkisov ([Mer], [S]):

(0.6) For any Beauville covering p : D
A

KD , and for any embedding D%S ,
where S is a smooth rational surface, there exists a standard conic bundle
p : XKS with a discriminant pair (DA, D). Any two such standard conic bundles
are birationally equivalent over S (see [Isk1, Lemma 1 (iv)]).

(0.7) Throughout this paper we assume that S4P 2 and D is smooth.
Let p : XKP 2 be such a standard conic bundle. Being a rational fibration

over a rational surface, X is a threefold with a non-effective canonical class, i.e.
h 3, 0 (X) 4h 0 (X , V 3

X ) 40. Therefore the complex torus (the Griffiths interme-
diate jacobian) J(X) of X does not contain a (3 , 0 )-part. In particular

J(X) 4H 2, 1 (X)* /(H3 (X , Z) mod torsion)

is a principally polarized abelian variety (p.p.a.v.) with a principal polarization
(p.p.) defined by the intersection of real 3-chains on X (see [CG]). The divisor U
of this polarization is called the theta divisor of J(X). Since p : XKP 2 is stan-
dard and D is smooth, the splitting p 21 (s) 4P 1 SP 1 , s�D defines a unbran-
ched double covering p : D

A
KD of the smooth discriminant curve D. Therefore

the pair (DA, D) defines in a natural way the p.p.a.v. P(DA, D)—the Prym variety
of p : D

A
KD , and by the well-known result of Beauville ([B]) (J(X), U) and

P(DA, D) are isomorphic as p.p.a.v.

(0.8) More generally, let X be a smooth threefold with h 3, 0 40, let (J(X), U)
be the p.p. intermediate jacobian of X, and let A1 (X) be the group of rational equi-
valence classes of algebraic 1-cycles C on X which are homologous to 0. Then the
integrating over the real 3-chains g s.t. d(g) 4 (the boundary of g) 4C , C�A1 (X)
defines the natural map F : A1 (X) KJ(X)—the Abel-Jacobi map for X (see e.g.
[CG]). In addition, if C is a smooth family of homologous cycles C on X, and C0 is a
fixed element of C, then the composition of F and the cycle-class map CKA1 (X),
C O [C2C0 ], defines a map F C : CKJ(X).

Let Alb (C) be the Albanese variety of F. By the universal property of the Al-
banese map a : C KAlb (C), F C can be factorized through a, and defines the map
F C8 : Alb (C) KJ(X). Both F C and F C8 are called the Abel-Jacobi maps for the
family of 1-cycles C .

For a large class of such threefolds X (especially—for conic bundles), the
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transpose tF of the Abel-Jacobi map for X defines an isomorphism between the
Chow group A1 (X) and J(X) (see [BM]), and one may expect that for some
«rich» families of curves C on X the Abel-Jacobi map F C will be surjective.
Moreover, one can set the following problem:

(*) Find a family Cu of algebraically equivalent 1-cycles on X such that the
Abel-Jacobi map F Cu

sends Cu surjectively onto a copy of the theta
divisor U .

Assume the existence of such a family Cu . One can formulate the following
additional question:

(**) Describe, in terms of Cu and X, the structure of the general fiber of F Cu
.

Summary of the results in the paper.

In this paper we give a positive answer of the problems (*) and (**) if p : XK

P 2 is a standard conic bundle with a smooth discriminant curve D of degree
dD3. More concretely, we prove the existence of two naturally defined families
C1 and C2 of connected 1-cycles C on X, such that their Abel-Jacobi maps F 1

and F 2 send one of these two families onto the intermediate jacobian J(X) and
the second—onto a copy of the theta divisor U of J(X) (see Theorem (4.4)).

The general element of C1/2 is a smooth curve C�X which is mapped iso-
morphically onto the plane curve p(C) of degree d23, and C can be treated as a
minimal section of a well-defined ruled surface S(C). In § 2,3 we prove that,
independently of the choice of X, the invariant e of the general S(C) is always
one of the numbers (e1 , e2 ) 4 (g(C), g(C)21) , being the invariants of the ge-
neral elements of the even and the odd versal families of ruled surfaces over a
curve of genus g(C) (see [Se]). The general C� C1 can be treated as a minimal
non-isolated section of S(C), and the general C� C2—as a minimal isolated sec-
tion of S(C). This interpretation makes it possible to describe the geometric
structure of the general fibers of the Abel-Jacobi maps of C1 and C2 on the base
of the Lange and Narasimhan’s description [LN] of maximal subbundles of
rank two vector bundles on curves (see Theorem (5.3)).

In the examples (6.1), (6.2) and (6.3) we find the families C1 and C2 for the
natural conic bundle structures on the bidegree (2,2) threefold T%P 2 3P 2 , on
the nodal quartic double solid (q.d.s.) B, and also—on the less-known nodal
Fano 3-fold X10 of genus 6. It turns out that for T and for X10 the family which pa-
rametrizes U is C1 , while this family for B is C2 , which answers the question (*)
in each of these three cases—see (6.1.3), (6.2.4) and (6.3.7)-(6.3.8). By Theorem
(4.4) we know that the «residue» family C2 for T and X10 , and C1 for B , parame-
trizes the intermediate jacobian of the variety. Now, the answer of (**) for T, for
the nodal B and for the nodal X10 follows automatically from Theorem (5.3) —
see (6.1.4), (6.2.5) and (6.3.9). For the nodal q.d.s., the same «theta»-family has
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been found by Clemens in [C] via degeneration from the Tikhomirov’s family of
Reye sextics which parametrizes U for the general q.d.s. (see [T]).

In (6.1.5), (6.2.6) and (6.3.10) we describe natural families of degenerate sec-
tions which parametrize the components of stable singularities of U for T (see
also [Ve] and [I1]), for the nodal B (see [Vo], [C], [De]), and for the nodal X10 . In
addition, we show that the general nodal X10 is birational to a bidegree (2,2)
threefold T .

1. – Minimal sections of ruled surfaces.

Here we collect some known facts about ruled surfaces and rank 2 vector
bundles over curves (see [H], [LN], [Se]).

(1.1) Minimal sections of ruled surfaces and maximal subbundles of
rank 2 vector bundles on curves (see [H], [LN], [Se]).

Any ruled surface S over a smooth curve C can be represented as a projecti-
vization PC (E) of a rank 2 vector bundle E over C. Clearly, PC (E) is a ruled sur-
face for any such E, and PC (E) `PC (E 8) iff E4E 87 L for some invertible
sheaf L ; here we identify vector bundles and the associated free sheaves.

Call the bundle E normalized if h 0 (E) F1, but h 0 (E7 L) 40 for any inver-
tible L such that deg (L) E0 ( see [H, Ch. 5, § 2]).

The question is:

(*) How many normalized rank 2 bundles represent the same ruled surface?

The answer depends on the choice of the curve C (especially—on the genus
g4g(C) of C), and on the choice of the ruled surface S over C. Let p : SKC be
the natural fiber structure on S. We shall reformulate the question (*) in the
terms of sections of p .

(1.2) DEFINITION. – Call the section C%S minimal if C is a section on S for
which the number (C . C)S is minimal. Let C be a minimal section of S. The num-
ber e4e(S) 4 (C . C)S is an integer invariant of the ruled surface S. The number
e(S) coincides with deg (E) »4deg (det (E) ) , where E is any normalized rank 2
bundle which represents S (i.e.—such that S`PC (E) ) (see e.g. [H, Ch. 5, § 2]).
We call the number e4e(S) the invariant of S.

(1.3). – Remark. – Here, in contrast with the definition in use, we let

e(S) »42 ( the invariant of S) .

The new question is:

(**) How many minimal sections lie on the same ruled surface?



MINIMAL SECTIONS OF CONIC BUNDLES 405

The two questions are equivalent in the following sense: Let E be normali-
zed and such that P(E) 4S. By assumption h 0 (E) F1. Therefore E has at least
one section s�H 0 (E). The bundle section s defines (and is defined by) an em-
bedding 0 K OC KE . The sheaf L , defined by the cokernel of this injection, is
invertible, and L defines in a unique way a minimal section C4C(s) of the ruled
surface S4PC (E) (see e.g. [H, Ch. 5, § 2: (2.6), (2.8)]). If h 0 (E) 41, the bundle
section s�H 0 (E) is unique, and the corresponding minimal section C(s) is
unique. In contrary, if h 0 (E) F2, the map

P(H 0 (E) )K ]the minimal sections of S( , s O C(s) ,

defines a linear system of minimal sections of S (e.g., if S is a quadric). Therefore,
the set of minimal sections of S is the same as the projectivized set of the bundle
sections of normalized bundles which represent S. In fact, if g(C) F1 and S is
general, then h 0 (E) 41 for any normalized E which represents S. In this case
the questions (*) and (**) are equivalent.

(1.4) DEFINITION. – Call the line subbundle M %E a maximal subbundle of
E , if M is a line subbundle of E of a maximal degree.

Let E be a fixed normalized bundle which represents S , and let M %E be a
maximal subbundle of E . Clearly deg (M) F0, since OC %E . Assume that
deg (M) D0. Then, after tensoring by M21, we obtain the embedding OC %
E7 M21.

In particular, h 0 (E7M21 )F0, E7M21 represents S, and deg (E7M21 )E
deg (E). However E is normalized, hence deg (E7 M21 ) cannot be less than
deg (E)—contradiction. Therefore deg (M) 40, and the maximal subbundle M

of E defines the normalized bundle E7 M21 which also represents S.
Therefore, we can reduce the question (*) to the following question:

(***) How many maximal subbundles has a fixed normalized rank 2 bundle E
which represents a given ruled surface S?

REMARK. – The answer of (*)-(***) for S-decomposable, is given in [H, Ch. 5,
Examples 2.11.1, 2.11.2, 2.11.3]. In particular, this implies the well known de-
scription of the set of minimal sections of a rational ruled surface p : SKP 1 .
For S is indecomposable—see (1.7)-(1.8).

(1.5) LEMMA (see [Se, Theorem 5]). – Let SKC and S 8KC 8 be two ruled
surfaces. Then S and S 8 can be deformed into each other iff C and C 8 have the
same genus, and the invariants e(S) and e(S 8) have the same parity.

(1.6) LEMMA (see [Se, Theorem 13]). – The general surface in the versal de-
formation of a rational ruled surface is a quadric if e is even, and the surface
F1 if e is odd.
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The general surface of a versal deformation of a ruled surface over elliptic
base is a surface represented by the unique indecomposable rank 2 vector bun-
dle of degree 1 if e is odd, and a decomposable ruled surface represented by a
sum of two (non-incident) line bundles of degree 0 if e is even.

The general surface of a versal deformation of a ruled surface over a curve
of genus gF2 is indecomposable. The invariant of such S is g21 if efg mod 2,
or g if efg21 mod 2.

(1.7) LEMMA (see [H, Ch. 5, Example 2.11.2 and Exer. 2.7]). – Let C be an el-
liptic curve, and let S be the unique indecomposable ruled surface over C with
invariant e(S) 41. Then the set C1 (S) of minimal sections of S form a 1-di-
mensional family parametrized by the points of the base C. In particular, all
the minimal sections of S are linearly non equivalent.

Let C be an elliptic curve, and let the ruled surface S be represented by the
normalized bundle E4 OC 5 L , where deg (L) 40 and L c OC . Then S has
exactly two minimal sections: the section C4C(sE ) defined by the unique
bundle section sE of E, and the section C defined by the unique section sE of the
second normalized bundle E 4 OC 5 L21 which represents S.

DEFINITION (see [LN, § 1]). – The line bundle D on C of degree e is called an
e-secant line bundle of a(C) �Pn which passes through the point [E] �Pn , if
the linear system NDN contains an effective divisor D such that the space
Span (a(D) ) passes through the point [E].

DEFINITION. – Call the section C0 of the ruled surface S isolated if S contains
only a finite number of sections C such that C 2 4C0

2 . Otherwise, call C0 non-
isolated (or continual) section of S.

(1.8) LEMMA (see [LN, Proposition 2.4]). – Let S be an indecomposable ruled
surface over a curve C of genus gF2. Let E be a fixed normalized rank 2
bundle over C which represents S, and let [E] �P(H 0 (KC 7 L) ) be the point
which corresponds to the extension 0 K OC KEK L K0 defined by E. Let
a : CKP(H 0 (KC 7 L) ) be the map defined by the linear system NKC 7 LN , and
let a(C) be the image of C. Then the set of maximal line subbundles M of E,
which are different from OC , is naturally isomorphic to the set Sece (a(C), [E] )
of e-secant line bundles of a(C) which pass through the point [E].

In particular, if S4P(E) KC is «versal» (see (1.6)) then a is an embed-
ding, and:

(1) either e(S) 4g , and the family Secg (a(C), [E] ) is 1-dimensional; in par-
ticular, the minimal sections of S are non-isolated.

(2) or e(S) 4g21, and Secg21 (a(C), [E] ) is finite; in particular, the mini-
mal sections of S are isolated.
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2. – The conic bundle surfaces SC .

(2.1) Let p : XKP 2 be a standard conic bundle with a smooth discriminant
D . Without any substantial restriction we may assume that deg DD3.

Let C%P 2 be a general plane curve of degree kEd. Then SC »4p 21 (C) is a
smooth surface, and p : SC KC defines a conic bundle structure on SC .

Let xi , i41, 2 , R , kd be the intersection points of C and D . Then qi 4

p 21 (xi ) are the degenerate fibers of p : p 21 (C) KC . Let li and li be the compo-
nents of qi , i41, R , kd ; in particular li and li are (21)-curves on SC . Let I4

]i1 , R , in(, i1EREin be any ordered (possibly empty) subset of ]1, 2, R , kd(.
Any such a multiindex I defines a morphism s I : SC KSC (I), where s I is the
composition of all the blow-downs of li , i�I and lj , j� I 4 ]1, R , kd(2I . The
map p : SC KC induces a P 1-bundle structure pI : SC (I) KC .

(2.2) Let s I : SC KSC (I), etc., be as above, and let s1 , R , skd �SC (I) be the
images of the exceptional curves li �I and lj � I. Call the section C 8%SC (I) non-
singular if the sets C 8 and ]s1 , R , skd ( are disjoint.

If C 8 is non-singular, then s21 maps C 8 isomorphically onto the proper prei-
mage of C 8 on SC . With a possible abuse of the notation, we denote this proper
preimage also by C 8 .

(2.3) DEFINITION. – A nonsingular section of the conic bundle surface SC is
defined to be any proper preimage C 8 of a nonsingular section on some of the
ruled surfaces SC (I) defined by SC .

(2.4) REMARK. – Although any ruled surface has minimal sections, it might
be possible that some of SC (I) has no nonsingular minimal sections.

Let F3 4p0 : P(O 5 O(23))KP 1 , let C0 be the minimal section of F , and let
the conic bundle surface S be defined by the composition p4p0 i s : SKP 1

where s : SKF3 is a blow-up of a point s�F3 2C0 . If q4 l1 l is the singular fi-
ber over s, and if l is the exceptional divisor of s , then the blow-down of l defines
a morphism s: SKF2 . In this case the unique minimal section C 8 of F2 is singu-
lar: the preimage s21 (C 8) 4C081 l, where C08 is the isomorphic proper preima-
ge of C0 on S . However:

(2.5) LEMMA. – Any non-singular conic bundle surface SKC which has de-
generate fibers has a non-singular isolated minimal section.

PROOF. – See Remark (2.4) which can be generalized straightforwardly to
the case of a conic bundle surface over an arbitrary smooth curve with a non-
empty set of degenerate fibers. In fact, if S(I) KC is one of the ruled minimal
models of S over C , for which e(S(I) )4e2 (S) is minimal, then any mininmal
section of S(C(I) ) is non-singular (see e.g. (2.4) where e2 (S) 423) .
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(2.6) COROLLARY. – Let C be a general plane curve of degree kEd4deg D ,
let e24e(SC ) be the minimal invariant of the ruled surfaces SC (I), and let I be
the multiindex for which e(SC (I) )4e . Then SC (I) has only a finite number of
minimal sections, i.e. all the minimal sections of SC (I) are isolated.

(2.7) COROLLARY. – Let C be a general plane curve of degree kEd4deg D ,
and let e2 »4min]e(SC(I)): I%]1, 2, R , kd((. Then e24g21, where g4(k21) Q
(k22) /2 is the genus of C .

PROOF. – Clearly, the integer e2 is an invariant of the threefold X. This
makes it possible to define the family of all these minimal sections on X as
follows:

Call a quasi-section of p : XKP 2 any connected 1-cycle C 9 on X such that
C 94C 81F , where C 8 is a section of X (i.e. p : C 8Kp(C 8) is an isomorphism),
and F is a sum of fibers and components of fibers of p .

Let U[k] %NOP 2 (k)N be the set:

U[k] 4 ]C : SC 4p 21 (C) is smooth and e2 (SC ) 4e2( ,

and let

C2 [k] 4 ( the closure of) ]C8 : C4p( C8) �U[ k ] & C8

is a nonsingular section of SC s.t. C 82 NSC
4e2( ,

where the closure is defined in the family of all the quasi-sections of X. On the
one hand dim C2 [k] Fdim U[k] 4 (k11)(k12) /221 4 (k 2 13k) /2 . On the
other hand, by (2.6), the general element C 8 is an isolated section of SC , where
C4p(C 8), and SC4p 21 (C). In particular e2Gg21, where g4(k21)(k22) /2
is the genus of C 8. We shall prove this.

Suppose that e2Fg ; then e24g (see [H, Ch. 5, Exercise (2.5.d)]). Let
S(C 8 ) »4SC (I) KC be the ruled surface for which C 8 is a nonsingular minimal
section. Since the invariant e(SC (I) )4e24g , the surface SC (I) must have at
least a 1-dimensional family of minimal sections. In order to see this, we use:

(1) for g40 (i.e. k41, 2 )—the known property that any of the ruling of
the smooth quadric is a P 1-family of minimal sections;

(2) for g41 (i.e. k43)—Lemma (1.7);

(3) for gF2 (i.e. kF4)–Lemma (1.8).

Let e.g. kF4. Then according to (1.8), the ruled surface S(C 8) 4SC (I)
must have at least a 1-dimensional family of minimal sections. Indeed, the
«versal» ruled surface of invariant g has a 1-dimensional family of minimal
sections (since the family of g-secant planes through [E] for the «versal»
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surface is exactly 1-dimensional (see (1.8) and [LN]). That is, in all the cases
C 8 can’t be isolated. Therefore e2Gg21.

In order to see that e2Fg21, we consider the normal bundle sequence for
C 8%SC %X :

0 KNC 8 /SC
KNC 8 /X KNSC /X NC 8K0 .

On the one hand, the map p : C 8 O C4p(C 8) sends family C2 [k] surjectively
onto the open subset U[k] %NOP 2 (k)N ; therefore dim C2 [k] Fdim NOP 2 (k)N4

(k11)(k12) /221 4 (k 2 13k) /2 . On the other hand,

dim C2 [k] 4x(NC 8 /X ) 4x(NC 8 /SC
)1x(NSC /X NC 8 ) 4

(e22g11)1(k 22g11)4(e21k 2 )1222g4(e21k 2 )2(k 223k)4e213k .

Therefore e2F (k 2 13k) /223k4 (k 2 23k) /2 4 (k21)(k22) /221 4g21.

3. – The families C2 [k] and C1 [k].

(3.1) The family C2 [k] was defined in the proof of (2.7). We call C2 [k] the fa-
mily of isolated minimal sections of X (over the plane curves of degree k). Ac-
cording to the proof of (2.7), the invariant e2 of this family must be g21 4

(k 2 23k) /2 , where g4g(k) is the genus of the general plane curve of degree k .
Let ]1, 2 , R , kd( be as in (2.1), and let I% ]1, 2 , R , kd( be such that

e(SC (I) )4e24g21. Without any restriction we may assume that I4¯ (i.e. that
the map s I 4s ¯ : SC KSC (I) 4SC (¯) blows down the (21)-curves l1 , R , lkd ).

Let J% ]1, 2 , R , kd( be a multiindex which differs from I by only one en-
try; in our case J4 ]i( for some i� ]1, 2 , R , kd(. Let zi �SC (I) 4SC (¯) be the
image of li on SC (¯)—see (2.2). Then the surface SC (J) 4SC (]i( ) is obtained
from SC (¯) by an elementary transformation centered at zi . Since all the mini-
mal sections of SC (¯) are nonsingular, the point zi does not lie on any of these
sections. Therefore the ruled surface SC (J) 4SC (]i( ) has invariant e211 4g
(see e.g. [LN, Lemma 4.3]). In particular, the surface SC (J) 4SC (]i( ) has at
least a 1-dimensional family of minimal sections (see (1.8)). Now, the same argu-
ments as in the proof of (2.7), and simple combinatorial considerations imply the
following:

(3.2) PROPOSITION. – Let C be a general plane curve of degree k , let SC 4

p 21 (C), and let S be the set of all the multiindices I% ]1, 2 , R , kd(. Then
S4S 2NS 1 , s.t.:

(1) For any I�S 2 , the ruled surface SC (I) has invariant e24g21 4

(k 2 23k) /2 .

(2) For any I�S 1 , the ruled surface SC(I) has invariant e14g4 (k21) Q
(k22) /2 .
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(3) Let NIN be the cardinality of I . Then I1 , I2 belong to the same compo-
nent of S iff NI1 NfNI2 N (mod 2).

(3.3) The surfaces S(C 8) and the map c : C 8 O L(C 8).

Let SD4p 21 (D) be the preimage of the discriminant curve D . The surface
SD is ruled by the components lx and lx of the degenerate fibers of p : XKP 2 and
these components parametrize the points of the double discriminant curve D

A.
The Steiner map

St : DKSt(D) , x O St(x) 4 lx O lx

embeds D as a double curve of SD%X .
Let C 8%X be a connected curve such that p : C 8KC4p(C 8) is an isomor-

phism. By definition (2.3) C 8 is a nonsingular section if C 8 does not intersect the
Steiner curve St(D). Indeed if C 8 does not intersect St(D) then C 8OSD defines
the kd lines l1 , R , lkd (k4deg C). If li 4p 21 (p(li ) )2 li are their complimentary
lines, then C 8 can be regarded as a section of the ruled surface S(C 8) »4SC (¯)
(defined by contracting all the lines li—see § 2). Moreover, the lines li , as well
their complimentary li can be regarded as points of D

A. In particular, if C 8 is a
nonsingular section, and if deg p(C) 4k , then L4L(C 8) 4 l1 1R1 lkd is a
well-defined effective divisor on D

A.
This way, any nonsingular section C 8 of X defines:

(1) the effective divisor L4L(C 8) 4c(C 8) `C 8OSD ;

(2) the ruled surface S(C 8) (see above).

Now, (3.2) implies the following:

(3.4) PROPOSITION. – Let p : XKP 2 be a smooth standard conic bundle such
that the discriminant curve D%P 2 is smooth, and let d4deg D . Then, for any
kEd , there exist two families of connected 1-cycles on X : C2 [k] and C1 [k]
such that:

(1) The general element C 8�C2 [k] is a nonsingular isolated section of the
conic bundle surface SC4p 21 (C), C4p(C 8), and if S(C 8) is the ruled surface
defined in (3.3) then e(S(C 8))4g21, where g4g(C 8)4g(C)4(k21)(k22)/2.

(2) The general element C 8� C1 [k] is a nonsingular non-isolated sec-
tion of the conic bundle surface SC 4p 21 (C), C4p(C 8), and e(S(C 8) )4g .

(3.5) REMARK. – It was proved in (2.7) that dim C2 [k] 4dim NOP 2 (k)N . Since
the image of map C 8 O C4p(C 8) covers the open subset U[k] of NOP 2 (k)N ,
the map p sends C2 [k] surjectively onto NOP 2 (k)N . Similar arguments, based
on the normal bundle sequence for C 8%Sp(C 8) %X , imply that dim C1 [k] 4
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dim NOP 2 (k)N11, and the general fiber of the surjective map p : C1KNOP 2 (k)N

is 1-dimensional.

4. – The intermediate jacobian (J(X), U)4P(DA, D) and the families C1

and C2.

(4.0) The jacobian (J(X), U)4P(DA, D) and the sets Supp (U) and Supp (P 2).
Let (DA, D) be the discriminant pair of p : XKP 2 , and let p : D

A
KD be the in-

duced double covering. Since D is smooth, D
A is smooth and p is unbran-

ched—see (0.5).
It is well-known that the principally polarized intermediate jacobian

(J(X), U) can be identified with the Prym variety P(DA, D) defined by the double
covering p : D

A
KD (see e.g. [B]). Here we recall the Wirtinger description of

P(DA, D) by sheaves on D
A (see e.g. [W]).

Let d4deg (D), and let g4 (d21)(d22) /2 4g(D) be the genus of D . The
map p induces the Norm map Nm : Pic (DA) KPic(D) (see [ACGH, p. 281]).

Let v D be the canonical sheaf of D . Then the fiber Nm 21 (v D ) splits into two
components:

P 14 ]L �Pic2g22 (DA): Nm(L) 4v D & h 0 (L) even( , and

P 24 ]L �Pic2g22 (DA): Nm(L) 4v D & h 0 (L) odd( .

Both P 1 and P 2 are translates of the Prym variety P4P(DA, D) %J(DA) 4

Pic0 (DA); P is the connected component of O in the kernel of Nm 0 : Pic0 (DA) K

Pic0 (D).
The general sheaf L �P 1 is non effective, i.e. the linear system NLN is em-

pty. The set U4 ]L �P 1 : NLNc¯( 4 ]L �P 1 : h 0 (L) F2( is a copy of the
theta divisor of the p.p.a.v. P1`P . Since the general sheaf L �P 2 is effective,
this suggests to introduce the following two subsets of S 2g22 D

A:

Supp (U) 4 ]L�NLN : L �U( , Supp (P 2 ) 4 ]L�NLN : L �P 2( .

Clearly, dim Supp (U)4dim Supp(P 2)4dim (P)4g21. Indeed, the general
fiber f L

21 (L) of the natural map f L : Supp (U) KU coincides with the linear
system NLN`P 1, and the general fiber of f L : Supp (P 2 ) KP 2 is NLN`P 0 .

We shall use the same notations for the effective sheaf L and the set of effec-
tive divisors ]L : L�NLN(.

Let S 2g22 p : S 2g22 D
A

KS 2g22 D be the (2g22)2th symmetric power of p ,
and let Nv D N`NOD (d23)N`NOP 2 (d23)N`P g21 be the canonical system of
D . We shall use equivalently any of the different interpretations of the ele-
ments of this system, as it is written just above.



ATANAS ILIEV412

(4.1) The canonical families C1 and C2 of non-isolated and isolated
minimal sections of p : XKP 2 .

We define:

C2 »4 C2 [d23] , C1 »4 C1 [d23] .

Let SD4p 21 (D). Identify, as usual, the component of a degenerate fiber
l%SD and the corresponding point l� D

A. Let

c : C1N C2KS 2g22 D
A , c(C) O L(C) 4COSD ,

be the map defined in (3.3). More precisely, by (3.3), c is defined on the open
subsets U1/2% C1/2 of non-singular minimal sections. By (3.4), we can assume
in addition that the open subset U1 (resp. U2 ) is such that if C�U1 (resp. if
C�U2 ) then the surface S(C) is of invariant e14g(C) (resp.—of invariant
e24g(C)21) . Now, c can be defined correctly on C12U1 and on C22U2 ,
since: (1) The families C1/2 are the closures of U1/2 by algebraically equiva-
lent connected 1-cycles on X . (2) The map c is defined on U1/2 by intersection
of cycles on X , and since the algebraic equivalence implies numerical equivalen-
ce.

Denote by C14c(C1 ), and C24c(C2 ) the c-images of C1 and C2 .

(4.2) LEMMA. – The non-ordered pairs ]C1 , C2( and ]Supp (U), Supp (P 2)(
of subsets of S 2g22 D

A coincide.

PROOF. – It rests to note that C1NC24Supp (U)NSupp (P 2)4 ]L�S 2g22D
A:

p(L) �Nv D N( q.e.d.

(4.3) The Abel-Jacobi images of the families C1 and C2 .
Let J(X) 4H 2, 1 (X)* /(H3 (X , Z) mod torsion) be the intermediate jacobian

of X, provided with the principal polarization U X defined by the intersection of
3-chains on X . It is well known (see [B]) that (J(X), U X ) is isomorphic, as a
p.p.a.v., to the Prym variety (P , U) of the discriminant pair (DA, D). Let

F 1 : C1KJ(X) `P and F 2 : C2KJ(X) `P

be the Abel-Jacobi maps for the families C1 and C2 of algebraically equivalent
1-cycles on X . Let Z14F 1 (C1 ) and Z24F 2 (C2 ) be the images of F 1 and
F 2. We shall prove the following

(4.4) THEOREM. – One of the following two alternatives always takes
place:

(1) h 0 (c(C) )42 for the general C� C1`h 0 (c(C) )41 for the general
C� C2 , and then:

(i) Z1 is a copy of the theta divisor U X ;
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(ii) Z2 coincides with J(X).

(2) h 0 (c(C) )41 for the general C� C1`h 0 (c(C) )42 for the general
C� C2 , and then:

(i) Z1 coincides with J(X);

(ii) Z2 is a copy of the theta divisor U X .

REMARK. – The map f4f L : Supp (U)NSupp (P 2 ) KUNP 2 introduced
above, can be regarded as the (Prym)-Abel-Jacobi map from the sets of alge-
braically equivalent (2g22)-tuples of points Supp (U) %S 2g22 D

A and
Supp (P 2 ) %S 2g22 D

A, to the Prym variety P`J(X).

PROOF OF (4.4). – According to Lemma (4.2), C14c(C1 ) coincides either
with Supp (U), or with Supp (P 2 ). Alternatively, C24c(C2 ) coincides either
with Supp (P 2 ), or with Supp (U).

Let e.g. C14Supp (U) (4 case (1)). Then h 0 (c(C) )42 for the general C�
C1 , h 0 (c(C) )41 for the general C� C2 ; and we have to see that Z1`U , and
Z24J(X) `P .

Let C� C1 be general, and let z4F 1 (C) �J(X) be the Abel-Jacobi image of
C. Since C is general, C is a nonsingular section of the conic bundle surface
Sp(C) %X , and the effective divisor L4L(C) 4c(C) �Supp (U) is well defined.

We can also assume that p(C) is nonsingular, and p(C) intersects D tran-
sversally. In particular, the effective divisor L4L(C) does not contain multiple
points. We shall prove the following

(*) LEMMA. – Let C 8 and C 9� C1 be such that c(C 8) 4c(C 9 ) 4L , and let
z 84F 1 (C 8), z 94F 1 (C 9). Then z 84z 9.

PROOF OF (*). – Since c(C 8) 4c(C 9), the curves C 8 and C 9 have the same
image by p : C0 4p(C 8) 4p(C 9 ), and C 8 and C 9 are non-isolated sections of
the conic bundle surface SC0

4p 21 (C0 ). Let L4 l1 1R1 l2g22 , and xi 4p(li ),
i41, R , 2g22. The degenerate fibers of p : SC0

KC0 are the singular conics
q(xi ) 4p 21 (xi ) 4 li 1 li . By assumption C 8 and C 9 intersect simply any of the
components li , and does not intersect any of li .

Let C be any nonsingular section of SC0
such that c(C) 4COSD4L , e.g.

C4C 8. Then Div (SC0
) 4p * (Div (C0 ) )1Z . l1 1R1Z . l2g22 1Z . C .

Since (C 82C 9). q4121 40, and (C 82C 9). li 40, (i41, R , 2g22), the
divisor C 82C 9 belongs to p * (Div (C0 ) ) ; i.e. C 82C 94p * d for some d�
Div (C0 ).

Obviously, deg (d) 40. Represent d as a difference of two effective divisors
(of the same degree): d4d 1 2d 2 . Without loss of the generality we can assume
that the sets Supp (d 1 ) and Supp (d 2 ) are disjoint. Therefore, p *(C 82C 9) 4
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p 21 (d 1 )2p 21 (d 2 ) is a sum of fibers of p , with positive and negative coeffi-
cients, and of total degree 0 .

Since all the fibers of p : XKP 2 are rationally equivalent, the rational cycle
class [p 21 (d) ], of p 21 (d), is 0, in the Chow ring A .(X). Since the Abel-Jacobi
map for any family of algebraically equivalent 1-cycles on X factors through the
cycle class map, the curves C 8 and C 9 have the same Abel-Jacobi image, i.e.
z 84z 9. This proves (*).

It follows from (*) that the Abel-Jacobi map F 1 factors through c , i.e., the-
re exists a well-defined map F1 : Supp (U) KZ1 , such that F4 F1 i c .

Let C� C1 be general, and let L4L(C) 4c(C). Let L 4f(L) be the sheaf
defined by the 1-dimensional linear system of effective divisors linearly equiva-
lent to L. Let C1 (L) 4c21 (NLN) be the preimage of NLN in C1 . Since F 1 fac-
tors through c , and F 1 is a map to an abelian variety (the intermediate jaco-
bian J(X) of X), the map F1 contracts rational subsets of Supp (U) to points.
However, c(C1 (L) )`NLN`P 1 . Therefore, there exists a point z4z(L) �Z1

such that F 1 (f21 (L) )4F 1 (C1 (L) )4 F1 (NLN)4 ]z( %Z1 .
Clearly z4F 1 (C), and the uniqueness of the sheaf L defined by C , implies

that the correspondence S4 ](z , L): z4F 1 (C), L 4f i c(C), C� C1( is ge-
nerically (1:1).

Let i : SKZ1 and j : SKU be the natural projections. The general choice
of C� C1 , and the identity c(C1 ) 4Supp (U), imply that j is surjective. There-
fore Z1 and U are birational. In particular, Z1 is a divisor in J(X) `P . It is not
hard to see that the map i i j 21 : UKZ1 is regular. In fact, let L be any sheaf
which belongs to U . The definition of f implies that f21 (L) coincides with the
linear system NLN , which is an (odd dimensional) projective space. Therefore,
F1 contracts the connected rational set c21 (L) to a unique point z4z(L), i.e.
i i j 21 is regular in L . It follows that Z1 is biregular to the divisor of principal
polarization U , i.e. Z1 is a translate of U .

The coincidence Z24J(X) follows in a similar way.
In case (2), the only difference is that the general fiber of c is finite, since

the minimal sections C� C2 which majorate the general L�Supp (U), are isola-
ted. Theorem 4.4 is proved.

5. – The fibers of the Abel-Jacobi maps F 1 and F 2 .

(5.1) The general position of the ruled surfaces S(C 8).

Let d4deg DF4, and let g4 (d24)(d25) /2 be the genus of the smooth
plane curve of degree d23.

Let C 8� C1N C2 be general. In particular, C 8 is smooth and nonsingular
(see (2.2), (2.3)), the ruled surface S(C 8) (see (3.3)) is well defined, and the inva-
riant e(S(C 8) )4g (if C 8� C1 ), or e(S(C 8) )4g21 (if C 8� C2 )—see Corollary
(2.6) and Proposition (3.2). It follows from Remark (3.5) that the general fiber of
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the natural surjective map p : C1KNOP 2 (d23)N is one dimensional, and the
general fiber of the same map for C2 is finite. This implies that if C 8� C1 is ge-
neral then the family of minimal sections of S(C 8) is one-dimensional, and if
C 8� C2 is general then the set of minimal sections of S(C 8) is finite.

Let e.g. d4deg DF7. Then gF3(F2). Let, as in Lemma (1.8), E be a nor-
malized rank 2 bundle such that P(E) 4S(C 8), let a(C 8) and [E] be as in (1.8),
and let e4e(S(C 8) ) be the invariant of S(C 8). We say that [E] is in a general po-
sition with respect to a(C 8) if the family of e-secant line bundles of a(C) which
pass through [E] is of the expected minimal dimension (41 if e4g , and 40 if
e4g21).

The last and Lemma (1.8) imply that if S(C 8) comes from a general minimal
section then [E] is in a general position with respect to a(C 8).

If d46 (Dg41) then we say that S(C 8) is general if S(C 8) is one of the sur-
faces described in Lemma (1.7). The general ruled surfaces over P 1 are, of cour-
se, F0 and F1—see (1.6). By the same arguments as above the ruled surface
S(C 8) is general for the general minimal section C 8 .

Remember also that if SD4p 21 (D), then L4c(C 8) 4C 8OSD�Supp (U)N
Supp (P 2); and also that C04p(C 8) is the unique plane curve such that C0OD4

p(L). Since S(C 8) does not depend on the general minimal section C 8%S(C 8)
we let S(L) »4S(C 8) if L4c(C 8).

(5.2) It follows from Theorem (4.4) that the fibers of F 1 and F 2 depend
closely on the alternative conclusions: Z14U , or Z24U . The examples show
that any of the two alternatives (4.4)(1)-(4.4)(2) can be true, depending on the
choice of the conic bundle p : XKP 2 (see section 6).

In either of the cases (4.4)(1) and (4.4)(2), the considerations in (5.1), connec-
ting the main results in § 2 and § 3, yield the description of the general fibers of
F 1 and F 2 . We shall collect collect these descriptions in the following:

(5.3) THEOREM. – Description of the general fibers of the Abel-Jacobi maps
F 1 and F 2 .

Let p : XKP 2 be a standard conic bundle with a smooth discriminant D of
degree dD3. Let C1 and C2 be the two canonical families of non-isolated and
isolated minimal sections (see (4.1) ) , and let f : C1KC1 , f : C2KC2 ,
c : Supp (U) KU , and c : Supp (P 2)KP 2 be the families and the natural maps
defined in (4.1). Let F 1 : C1KJ(X) and F 2 : C2KJ(X) be the Abel-Jacobi
maps for C1 and C2 , and let Z1 and Z2 be the images of F 1 and F 2 .

Then one of the following two alternatives is true:

(A : 1) C14Supp (U), Z1 is a translate of U (`C24Supp (P 2 ), Z24

J(X) `P) .

Let z�Z1 be general, and let L 4 j i i 21 (z) �U be the sheaf which corre-
sponds to z . Then:
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(1) The fiber C1 (z) »4F 1
21 (z) is 2-dimensional.

(2) The map c defines on C1 (z) the natural fibration c(z): C1 (z) K

NLN`P 1 .

(3) The general fiber C1 (L) »4c(z)21 (L) of c(z) can be described as fol-
lows (dF4):

Let C0 (L) %P 2 be the plane curve of degree d23 defined by L. Then

(i) If d4deg (D) 44 or 5, then S(L) `P 1 3P 1 , and C1 (L) ` the fiber
P 1 of the projection p(L): S(L) KC0 (L) `P 1 induced by p ;

(ii) If d4deg (D)46, then p(L): S(L)KC0 (L) is the only indecomposable
ruled surface over the elliptic base C0 (L), and the fiber C1(L) of c(z): C1(z) K

NLN`P 1 is isomorphic to C0 (L). In particular, C1 (z) is an elliptic fibration
over the rational base curve NLN ;

(iii) Let d4deg (D) F7, let g4d(d23) /211 be the genus of C0 (L), let
C� C1 (L) be general, and let S(C) be the ruled surface defined in (3.3). Let E be
a normalized rank 2 bundle over C0 (L) such that S(C) 4PC0

(E), and let

0 K OC0 (L) KEK8K0

be the extension defined by C. Let a(C0 ) %P(H 0 (KC0
78) ) be the image of C0

defined by the sheaf KC0
78 (see (1.8)). Then P(H 0 (KC0

78) )`P 2g22 , a is a
regular morphism of degree 1, and the point [E] defined by this extension is in
general position with respect to the set of g-secant line bundles of a(C0 ).
Moreover, C1 (L) is birational to the 1-dimensional set Secg (a(C0 ), [E] ) of g-
secant planes of a(C0 ) through the point [E]. In particular, if C 8 and [E 8] is
another pair of this type, then the normalizations of the curves
Secg (a(C0 ), [E] ) and Secg (a 8(C0 ), [E 8] ) are isomorphic to each other.

(4) If z�Z2 is general and L 4 j i i 21 (z), then NLN`P 0 . If L4L(z) is
the unique element of NLN , then the fiber F 2 (z) 4F 2

21 (z) is discrete and:

(i) If d4deg (D) 44 or 5, then F 2 (z) has exactly one element—defi-
ned by the unique (21)-section of the ruled surface S(L) `F1 .

(ii) If d4deg (D) 46, then F 2 (z) has exactly two elements—defined by
the two (disjoint) sections of the decomposable ruled surface SL over the ellip-
tic base C0 (L).

(iii) Let d4deg (D) F7. Then the fiber F 2 (z) is isomorphic to the fiber
c21 (L). Let C be some element of this fiber, let S(C) 4PC0

(E) be as in (3)( iii ),
let

0 K OC0 (L) KEK8K0 ,

be the extension defined by C , and let a(C0 ) and [E] be as in Lemma (1.8). Then
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NKC 78N`P 2g23 , a is generically of degree 1, and [E] does not lie on an infi-
nite set of (g21)-secant planes of a(C0 ). Moreover, the cardinality of C2 (z) is
equal to J](g21)-secant planes of a(C0 )(11 (see (1.8) ) .

(A : 2) C24Supp (U), Z2`U(`C14Supp (P 2 ), Z24J(X) `P) .

Then the description of the general fibers of F 2 and F 1 is similar to this
from (A : 1)(1)-(4). We shall mark only the differences:

(1)-(2)-(3) The fiber C2 (z) is 1-dimensional. The map c(z): C2 (z) K

NL(z)N`P 1 is finite and surjective, and the fiber of c(z) has the same descrip-
tion as the fiber C2 (L) 4c21 (L) described in (A : 1)(4).

(4) The fiber C1 (z) is 1-dimensional. Let L 4 L(z) 4 j i i 21 (z), and let L4

L(z) be the unique element of the linear system NLN . Then the sets C1 (z) and
C1 (L) coincide. In particular, the fiber C1 (z) has the same description as the
set C1 (L) described in (A : 1)(1)-(4).

6. – Examples.

(6.1) THE BIDEGREE (2 , 2 ) THREEFOLD.

(6.1.1) The two conic bundle structures on the bidegree (2 , 2 ) threefold.
Let W%P 8 be the Segre fourfold P 2 3P 2, and let X be an intersection of W

with a general quadric, i.e. X is a bidegree (2 , 2 ) threefold.
Let p and q be the two standard projections from W to P 2, (resp.—from X to

P 2 ). Clearly, p and q define conic bundle structures on X .
Let l4 [p *(O(1) ] and h4 [q *(O(1) ] be the generators of Pic W (resp.—of

Pic X). Call the 1-cycle C on X a bidegree (m , n)-cycle, if C has degree m with
respect to l, and degree n-w.r. to h.

(6.1.2) The families C1 and C2 for p.
Fix the projection, say p. Then p : XKP 2 is a standard conic bundle, and the

discriminant D is a smooth general plane sextic. Therefore, the jacobian J(X) is
a 9-dimensional Prym variety. Let C2 and C1 are the canonical families of isola-
ted and non-isolated minimal sections for the conic bundle projection p. By
Theorem (4.4) the Abel-Jacobi image of one of these two families is a copy of U .
It is proven in [I1] that the family which parametrizes the theta divisor is C1 .
More precisely, the following is true:

(6.1.3) PROPOSITION. – Let C1 be the canonical 10-dimensional family of
non-isolated minimal sections, and let C2 be the canonical 9-dimensional fa-
mily of isolated minimal sections for p. Then:
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(1) C14 C 1
3, 7 (4 the family of elliptic curves of bidegree (3,7) on X),

C24 C 1
3, 6 (4 the family of elliptic curves of bidegree (3,6) on X),

and

(2) F 1 (C 1
3, 7 ) is a copy of U , F 2 (C 1

3, 6 ) coincides with J(X).

This and Theorem (5.3)(A : 1) (see also Lemma (1.7)) imply:

(6.1.4) COROLLARY. – The general fiber of F 1 : C 1
3, 7 KU is an elliptic fibra-

tion over P 1 . The surjective map F 2 : C 1
3, 6 KJ(X) is generically finite of

degree 2.

(6.1.5) Parametrization of Singst (U) via degenerate sections.
It can be seen that on the bidegree (2,2) divisor X lies a 6-dimensional family

D»4 C 1
3, 3 of bidegree (3,3) elliptic curves. Any of these curves C can be comple-

ted by many ways to a quasi-section C1 two fibers of p� C 1
3, 7 . Moreover, the

general C� D lies in a ruling of a rank 6 quadric Q&X such that Q does not con-
tain W. The ruling of Q defines a P 3-system of Cj� D rationally equivalent to C ,
and the intersection map c : Cj O Lj4L(Cj ) �Symm18 (DA) defines a linear
system L �Singst (U). Moreover (see [Ve], [I1]):

The Abel-Jacobi image Z4F(D) is biregular to a 3-dimensional compo-
nent of Singst (U). The bidegree (2,2) threefold X coincides with the base locus of
the set of tangent cones of U at the points z�Z .

Since the fibers of p are rationally equivalent to each other, the last
implies:

Let S4 ]C1 f1 1 f2 : C� D , and f1 and f2 are fibers of p intersecting C(.

Then S%C 14C 1
3, 7 , and F 1(S)`Z is a 3-dimensional component of Sing (U).

(6.1.6) REMARK (see [Ve]). – Let M be the moduli space of plane sextics. Let
R be the 19-dimensional space of pairs (D , h) where D� M is smooth and hc OD

is a 2-torsion sheaf on D defining a unbranched 2-sheeted covering D
A

KD .
It was proved by A. Verra that the Torelli theorem does not hold for the Prym

map r : R K P 4r(R) % A9 (4 the space of p.p. avelian 9-folds), r(D , h) »4

P(DA, D). More precisely (see [Ve]): deg r42, and: (i). For the general P� P the
fiber r21 (P) 4 (D , h)N (D 8, h 8), where (D , h) and (D 8, h 8) are obtained from
each other by the classical Dixon correspondence. (ii). There exists a unique bi-
degree (2, 2) threefold X for which the induced by h and h 8 double coverings
D
A

KD and D
A

8KD 8 are the same as the double coverings defined by the two co-
nic bundle projections on X . (iii). Let R0 % R be the subspace of these (D , h)
which come from nodal quartic double solids, and let P0 4r(R0 ). Then P0 % P is a
component of the 18-dimensional branch locus of r.
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(6.2) THE NODAL QUARTIC DOUBLE SOLID.

(6.2.1) By definition, a quartic double solid (q.d.s.) is a double covering
r : XKP 3 branched along a quartic surface B%P 3 .

The parametrization of U for the general quartic double solid by the 12-di-
mensional family of Reye sextics, and the parametrization of Sing (U) are obtai-
ned by Tikhomirov [T] and Voisin [Vo]. Moreover, the results in [C], [De] imply
actually the descriptions of U and Sing (U) by means of minimal sections, for
the quartic double solids with G6 nodes.

The «minimal section» approach imply also a natural parametrization also of
the intermediate jacobian J of the nodal q.d.s. X.

(6.2.2) The conic bundle structure on the nodal q.d.s.
Let S has a simple node o. Denote by o also the node of X—«above» o. Let

BA % PA %P 8 be the image of B%P 3 by the system of quadrics through o, and let
rA: XA K PA be the induced double covering branched along BA. (The threefold PA is
a projection of the Veronese image P 3

8 %P 9 of P 3 , through the image of o. In
particular, PA contains a plane P 2

0 , and the inverse map s : PA KP 3 is a blow-do-
wn of P 2

0 to o . The restriction s : BA KB is a blow-down of a smooth conic qo % BA to
the node o . )

The threefold PA `PP 2 (O 5 O(1) ) has a natural projection po to P 2 4

]the lines l in P 3 through o(, and P 2
0 is the exceptional section of the projec-

tivized bundle PA. The general fiber p 21 (l) of the composition p4po i rA: XA KP 2

is a smooth conic q(l) 4p 21 (l) ` ( the desingularization of r21 (l) in o).
The restriction po NBA : BA KP 2 desingularizes the projection from the quartic

B through the node o4Sing (B). Therefore, po NBA is a double covering branched
along a smooth plane sextic D , and the conic qo is totally tangent to D . Clearly,
the fiber p 21 (x) is singular for any x�D , and the natural Abel-Jacobi map D

A
K

J4J(XA) induces an isomorphism of p.p.a.v. P(DA, D) `J (see [B]).

(6.2.3) The families C1 and C2 .
It is not hard to find the families C1 and C2 for p . Since this description does

not differ substantially from the general one, we shall state it in a brief:
Since PA %P 8 , the degree map deg: ]subschemes of PA( KZ is well defined.

In particular, deg (P) 4deg (P 3
8 )21 47.

Let Z% XA be a subscheme of XA. Define deg (Z) »4deg (rA*(Z) ) .

EXAMPLE. – Let l%P 3 be a line through o, let x4 [l] �P 2 be the point repre-
senting l , and let q(x) be the «conic» q(x) 4p 21 (x). Then deg (p 21 (x) )42. In-
deed, rA* (q(x) )42 l 8 where l 84po

21 (x) % PA is the line in P 8 which represents
the «bundle-fiber» in PA over [l]. Note also that l 8 is the proper preimage of the
line l%P 3 under the blow-down s o : PA KP 3 .
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(6.2.4) PROPOSITION.

(1) C1 is a component C 1
10 of the family of elliptic curves of degree 10 on XA;

C2 is a component C 1
9 of the family of elliptic curves of degree 9 on XA.

(2) a) c(C2) 4Supp (U). Therefore F 2(C 1
9 ) is a copy of U . b) F 1(C 1

10 ) 4J .

PROOF. – The proof of (1) is standard.

(2) The general element C� C2 lies in a unique S of the 9-dimensional
system NOXA (1)N4NrA* OPA (1)N . The elliptic curve C moves in a P 1-system Ct in
the K3-surface S , this way c(Ct ) 4Lt defines a pencil in Nm 21 (KD )—see also
[C, p. 98]. By Theorem (4.4), this implies a) and b).

(6.2.5) COROLLARY (see Theorem (5.3)(A:2) and Lemma (1.7). – The general
fiber of F 2 : C 1

9 KU is a disjoint union of two smooth rational curves (see also
[C]).

The general fiber of F 1 : C 1
10 KJ is an elliptic curve.

(6.2.6) REMARK. – The component Z%Sing (U).
Since the result is essentially known (see [Vo], [De], [C]), we shall only state

it (see also (6.1.5)):

There exist elliptic septics on XA, and the Abel-Jacobi map sends a compo-
nent C 1

7 of this family onto a 4-dimensional variety Z isomorphic to a compo-
nent of stable singularities of U . Equivalently, if

S4 ]C1 f : C� C 1
7 & f is a fiber of p intersecting C( % C 1

9 4 C2 ,

then F(S) `Z (cf. (6.1.5)).

(6.3) THE NODAL SECTION OF THE GRASSMANNIAN G(2 , 5 ).

(6.3.0) Any smooth 3-dimensional intersection X4X10 of the grassmannian
G4G(2 , 5 ) %P 9 by a subspace P 7 %P 9 and a quadric Q is a Fano threefold of
degree 10 and of index 1.

It turns out that the nodal X10 acquires a natural conic bundle structure. We
shall describe it, and also we shall find the parametrization of the Abelian part
of the intermediate jacobian of X4X10 , as well the parametrization of U by
means of the curves on X representing the families C2 and C1 .

(6.3.1) Shortly about flops and extremal rays (see e.g. [Mo], [K],
[Isk2]).

DEFINITION. – Let pr 8 : X 8KX 9 be an indecomposable birational morphism
from the smooth 3-fold X 8 to the normal 3-dimensional variety X 9, and let D 8%
X 8 be an effective divisor such that:
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(a 8 ) the exceptional set Ex(pr 8) of pr 8 is a union of 1-dimensional cycles
li8%X 8 such that 2KX8 . li840, (i ;

(b 8 ) D 8 . li8E0, (i .

Let the threefold X 1 be smooth, and let the birational isomorphism
r : X 8KX 1 (over X 9 ) be an isomorphism in codimension 2. Then r is called a
D 8-flop over X 9 if the composition pr 14pr 8 i r21 : X 1KX 9 is an indecompo-
sable birational morphism, Ex(pr 1) is a union of 1-dimensional cycles li

1 , and KX 1 ,
li

1 and D 1 (4 the proper image of D 8 on X 1 ) fulfill the properties:

(a 1 ) 2KX 1 . li
140, (i ;

(b 1 ) D 1 . li
1D0, (i .

By [K], if such X 8 , pr 8 , D 8, etc. fulfill (a 8), (b 8) then a D 8-flop always exists,
and any sequence of such D 8-flops is finite.

Let X 1 be a smooth variety, let N(X) 4 ]12cycles on X(Of7Z R be the
finite-dimensional real space of numerically equivalence classes of 1-cycles on
X 1, and let NE(X 1 ) be the closure of the convex cone generated by the effecti-
ve 1-cycles on X 1. The half-line R4R1 . [C 1 ] is called an extremal ray on X 1

if R is an extremal ray of the cone NE(X 1 ) and 2KX 1 . C 1D0. The rational
curve C 1%X 1 is called extremal if 2KX 1 . CGdim (X 1 )11, and R4

R1 . [C 1 ] is an extremal ray. By The Cone Theorem [Mo], any extremal ray on
X 1 is generated by some extremal curve.

The numerically effective divisor D 1%X 1 is called a supporting function of
the extremal ray R4R1 . [C 1 ] on X 1 if D 1 . C 140, and if for any effective 1-
cycle C on X 1 the identity D 1 . C40 implies [C] �R .

By [Mo], any extremal ray R on X 1 defines a morphism f R : X 1KY , where
Y is a normal variety, and such that f contracts all the irreducible curves
[C 1 ] �R, and any extremal ray R on X 1 has a supporting function D 9. Moreo-
ver, by the Theorem of Stable Freedom ([KMM]), the morphism f R can be defi-
ned by Nm . D 1 N for mc0.

Especially, if dim X 143, dim Y42, and 2KX 1 . C 141 then, by [Mo],
f R : X 1KY is a standard conic bundle.

(6.3.2) The double projection from o—a birational conic bundle structure
on X.

Let (X , o) be a general pair of a nodal X10 and a node o on it, let pr : XKX 9 be
the rational projection from o, let s : X 8KX be the blow-up of o, and let pr 84

pr i s : X 8KX 9 . Let Q 84s21 (o) %X 8 be the exceptional quadric on X 8, and let
Q 9 be the image of Q 8 on X 9. Let H 9 be the hyperplane section of X 9, (as well the
proper preimages of H 9 on X and on X 8). Let H be the hyperplane section of X (as
well its proper preimage on X 8). Now, the following are standard properties of
the projections (see e.g. [Isk2] discussing the double projection from a line).
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(1) X 9%P 6 is a complete intersection of three quadrics, and Q 9%X 9 is a
smooth quadric surface on X 9—see e.g. (6.3.5).

(2) There are finite number of lines li %X such that o� li ; in fact, their
number is 6—see the proof of Lemma (6.3.5)(1).

(3) Let li8%X 8 be the proper preimages of li on X 8, and let xi84 li8OQ 8.
Then pr 8 : X 8KX 9 is an indecomposable birational morphism (defined by the
linear system of H 9AH2Q 8 on X 8), and Ex(pr 8), KX 8 , li8, etc. fulfill the pro-
perty (6.3.1)(a 8 ).

(4) Let xi9�Q 9 be the points xi94pr 8 (li8 ) 4pr(xi8 ). Then Sing X 94

]x19 , R , x69(, and all these points are simple nodes of X 8—see e.g. the proof of
Lemma (6.3.5)(1).

(5) If D 9 is any effective divisor of the P 2-system NH 92Q 9N (on X 9), and
if D 8 is the proper preimage of D 9 on X 8, then D 8 and li8 fulfill the property
(6.3.1)(b 8 )—by the standard properties of blow-ups.

By (6.3.1) there exists a D 8-flop r : X 8KX 1 over X 9.

(6.3.3) The standard conic bundle structure on X 1 .
Let P 1

o 4P(C 2
o ) %P 4 4P(C 5 ) be the line representing the node o, i.e.

o4P(R2 C 2
o ), let P 2

o »4 ]P 3 %P 4 : P 1
o %P 3 ( % (P 4 )*4P(C 5*), and let P 3 �P 2

o

be general. Then the cycle C4C(P 3 ) »4s 1, 1 (P 3 )OX , being a complete inter-
section of a codimension 2 space and a quadric in the grassmannian s 1, 1 (P 3 ), is
a space quartic curve with an ordinary double point at o. Let C 8 , C 9 and C 1 be
the proper images of C on X 8 , X 9 and X 1 . Then the irreducible curve C 1%X 1

is rational; and if D 1%X 1 and H 1%X 1 are the proper images of D 8%X 8 and of
H%X , then:

(6) 2KX 1 . C 14H 1 . C 141;

(7) D 1 . C 140.

The D 8-flop r : X 8KX 1 is a composition r 1 i R i r 6 , r i 4t i i s i , where s i

is the blow-up of li8, and t i is the blow-down Qi K li
1%X 1 of the exceptional qua-

dric Qi 4s i
21 (li8 ) along the residue ruling. By construction, D 1 is numerically

effective on X 1 (since, e.g. D 1 . li
141 D0). By (6) and (7), R4R1 . [C 1 ] is an

extremal ray defining the standard conic bundle

p 1 »4f R : X 1KP 2 (` the base P 2
o of the family ]P 3 : P 3 &P 1

o ( )

(see also the end of (6.3.1)).
Now, it is not hard to see that D 1 is a supporting function for R4R1 . [C 1 ].

In particular, the map p 1 is defined by some multiple m . D 1, and we may assu-
me that m is minimal with this property. Then, by the choice of D 14 (the pro-
per image on X 1 of an effective divisor D 9%X 9 of the P 2-system NOX 9 (H 92

Q 9)N) , we obtain m41. Since H22Q 8AH 92Q 8AD 8 (on X 8), the rational
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map f R i r : X 8KP 2 is defined by the linear system NH22Q 8N on X 8. Equiva-
lently:

COROLLARY. – The map p4f R i r i s21 : XKP 2 is a rational conic bundle
structure on X, defined by the non-complete linear system NH22. oN on X ; i.e.
p is the double projection from o .

(6.3.4) LEMMA. – If (X , o) is general, then the discriminant curve D of p 1 is
a smooth plane sextic.

PROOF. – By [I2, Lemma (3.2.3)], for the general nodal Gushel threefold the
plane curve D is a smooth sextic. Therefore the same is true also for the general
nodal X10 , since any (nodal) Gushel threefold (X(0), o) is a smooth deformation
of a family ](X(t), o)( of (nodal) X10

2s .

(6.3.5) The nodal X10 and the plane sextics.
Let G be the grassmannian of lines in P 4 4P(C 5 ), and let I2 (G) be the family

of quadrics containing the Plücker image of G. Any choice of a coordinates (xi , ei)
in C5 defines a linear isomorphism Pf : P4K I2 , where Pf(x) is the Plücker
quadric in P9 with vertex P3

x4s 3, 0 (x). In particular, all the quadrics containing G
are of rank 6. The same is true also for the smooth 4-fold W4GOP7 .

Let, as above, P1
o%P4 be the line representing the node o of X4X104WOQ .

Then Pf4Pf (P 1
o ) 4 ]Pf (x): x�P 1

o ( is a line of rank 6 quadrics containing
W (hence—containing X�NOW (2)N) , and any such quadric is singular at o. Sin-
ce X is singular at o, we can choose a quadric Q%P 7 such that Q is singular at o
and X4WOQ . In this notation, we can identify Q and Pf (x); x�P 1

o , and the
projections of these quadrics in P 6 . Therefore X 94pr(X) %P 6 coincides with
the base locus of the plane of quadrics P4 aPf , Qb.

The Hessian Hess of X 9 is a plane septic, and since rank Pf (x) 46, (x�P 1
o ,

Hess4Pf1H6 , where H6 ia a plane sextic.

(1) LEMMA. – Let X 9%P 6 be a base locus of a plane P of quadrics in P 6 , such
that the Hessian Hess of X 9 contains a line L , and let X 9 be otherwise general.
Then:

(a) X 9 contains a quadratic surface Q 9 , and X 9 is singular at 6 points
which lie on Q 9 . Moreover

(b) For any such X 9, there exists a nodal X4X10 such that X 9 is the sa-
me as the projection of X from its node o .

PROOF. – (a) Let W be the base locus of L. Since L is assumed to be general,
the vertices v(Q), Q�L sweep-out a twisted cubic Cv , and since W must be sin-
gular along Cv , W contains P 3 4Span Cv . If Q�P2L , then X 94QOW con-
tains the quadric Q 94QOP 3 . Since Q can be general, Sing X 94Sing WOQ4
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Cv OQ4 ]x19 , R , x69( (here 6 4deg (Q). deg(Cv ) ) , and xi9 are ordinary nodes
of X 94WOQ .

(b) X is obtained from X 9 by blowing-up x19 , R , x69 , then by contracting
any of the obtained 6 exceptional quadrics Li along this ruling, the general line
of which does not intersect the preimage of Q 9 , and then by blowing-down the
proper preimage of Q 9 (which describes, in fact, the opposite of the projection pr).

(2) COROLLARY.

(a) The general reducible plane septic H6 1L , such that deg L41, ap-
pears as a component of the Hessian of the projection X 9 of some nodal
X4X10 . Moreover:

(b) (D. Logachev [L]): The natural double covering H6
A

KH6 is unbran-
ched, and if J is the abelian part of the intermediate J(X) (4 the abelian part
of J(X 9 ) ) then J4P(HA6 , H6 ) as p.p.a.v.

PROOF. – (a) It is proved by Beauville and Tjurin (see e.g. [FS, Theorem
(0.1)]) that any smooth plane septic can be realized as a Hessian Hess of a plane
P of quadrics in P 6 . By degeneration, the same is true also for Hess4H6 1L .
where H6 is e.g. a smooth plane sextic, and L is a general line in P . Now (2)(a)
follows from (1).

(b) If X 9 is a projection from a general nodal X10 then the count of the
parameters yields that any quadric containing X 9 is of rank F6. Therefore the
same is true also for the general X 9 containing a smooth quadric surface. In par-
ticular, the non-trivial component of HessA: HA6 4 ]L : L is a ruling of some
Q�H6 ( is well-defined and HA6 KH6 is unbranched. The rest of the proof of (b)
repeats the original one (see [B], [Tju]) for the general intersection of three
quadrics in P 6 .

(6.3.6) The families C1 and C2 .
Let (X , o) be a general nodal X10 . Denote by C g

d [m](X) the (possibly empty)
family of algebraically equivalent connected 1-cycles C on X such that the
general element C� C g

d [k](X) is an irreducible curve C%X , smooth outside o, of
geometric genus g and of degree d, which passes through the node o with multi-
plicity m .

For example ]the P 2—family of fibers of p( is a component of C 0
4 [2](X); with

a possible abuse in the notation we denote this component also by C 0
4 [2](X). In

this notation, the discriminant sextic of p ( »4the discriminant sextic of p 1) is

D4 ]x�P 2 : fx 4q1q, s.t. q , q� C 0
2 [1](X)( .

By (6.3.5), the discriminant D is a smooth plane sextic and (J , U) is isomorphic,
as a principally polarized abelian variety, to the Prym variety P(DA, D).
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Let C1 and C2 be the two canonical families of minimal sections for the stan-
dard conic bundle p 1 : X 1KP 2 . We shall find the images of these families on
X 9 and on X .

Let C g
d [m](X 9 ) be the (possibly empty) family of connected 1-cycles on X 9,

the general element of which is a smooth irreducible curve C of geometric genus
g, of degree d, and such that C intersects simply the quadric Q 9 in m points.

Denote by pr : A1 (X) KA1 (X 9) also the natural projection-map from the 1-
cycles on X to the 1-cycles on Y defined by the rational projection pr : XKX 9. In
this notation, it is evident that pr(C g

d [m](X) )4 C g
d2m [m](X 9 ), and the existence

of one of these families yields the existence of the other.
Denote by p 9 : X 9KP2 the birational conic bundle structure on X 9 induced by p .
First, we shall find one family of elliptic curves on X 9 which are sections

of p 9 .
Let Q�H6 be a rank 6 quadric which does not lie on the intersection H6OPf .

The quadric Q has two rulings L` L `P 3 , and any of these rulings consists of
subspaces P 3 %Q . Let L be one of them, and let P 3 �L be a general element of
L . Then C4C(P 3 ) 4YOP 3 is a complete intersection of two quadrics, i.e. – an
elliptic quartic on X 9 , and this elliptic quartic intersects Q 9 in one point. Indeed,
if P 5 &C is general then C4X 9OP 5 4C1C on X 9 is a reducible canonical cur-
ve of degree 8 on X 9. By the formula for the canonical class of the singular cano-
nical curve C1C, C will be an elliptic quartic on X 9 intersecting C in four points
which lie on the plane aCOCb. Clearly C is defined, in just the same way, by so-
me P 3 � L intersecting P 3 along the plane aCOCb. In particular, C and C have
the same intersection degree with Q 9, and since the canonical curve C1C 4

X 9OP 5 %P 6 intersects the quadric Q 9%X 9%P 6 in two (4deg Q 9 ) points, we
conclude that C� C 1

4 [1](X 9).
We shall see that the curves C 1

4 � C 1
4 [1](X 9) are sections of p 9 .

By (6.3.3), the conic bundle structure p : XKP 2 is the same as the double
projection NOX (122. o)N from the node o. Let C 1

4 � C 1
4 [1](X 9) be general, and

let C 1
5 be the proper preimage of C 1

4 on X . The curve C 1
5 is an elliptic quintic on X

which passes through o. Therefore the double projection (hence p) sends C 1
5

onto a plane cubic in P 2 . It follows that C 1
4 is a section of p 9, and p 9 maps C 1

4

isomorphically onto a plane cubic.
Let V be a threefold with isolated singularities, and let C%V be a smooth

curve on V such that COSing V4¯ . Then the normal bundle NC/V is defined, and
by the Hirzebruch-Riemann-Roch formula x(NC/V)4c1 (NC/V)2deg KC42KV . C .

This, in particular, implies that if C g
d [m](X 9 ) c¯ , and if C g

d [m](X 9) contains
a smooth curve C disjoint from Sing X 94 ]y1 , R , y6 (, then dim C g

d [m](X 9) 4d .
The birational conic bundle structure p 9 on X 9 is induced by the standard

conic bundle structure p 1 on X 1. Since the birational isomorphism X 9DX 1

preserves the general fibers of p 9 and p 1 , the families C1/2 (X 9) for p 9 are
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correctly defined as proper images of the families C1/2 (X 1 ) on the standard
conic bundle p 1 : X 1KP 2 .

Fix a general component f�C 0
1 [1](X 9) of a degenerate fiber of p 9, and a gene-

ral C 1
4 �C 1

4 [1](X 9) intersecting f. Since p 9(C 1
4 ) is a plane cubic, and deg D46, the

general element of C1/2 , being an isomorphic image of a general element of
C1/2(X 1), is a smooth elliptic curve algebraically equivalent to C 1

4 1k1/2 . f for
some integer k1/2 . Moreover, the general f, as well the general C 1

4 intersecting f,
are disjoint from Sing X 9 . Therefore the connected 1-cycle C 1

4 1k . f is disjoint
from Sing X 9 for any integer k. In particular the general element C of C1/2(X 9) is
disjoint from Sing X 9 . Therefore dim C1/24deg (C 1

4 1k1/2 . f ) 441k1/2 .
From (3.5) we know that dim C14dim C211 410. Therefore k146, k24

5, i.e. C14 C 1
10 [7][X 9] and C24 C 1

9 [6](X 9). The non-evident existence of a
smooth curve from any of these two families is assured by the existence of the
families C1/2 (X 1 ) for the standard conic bundle p 1 : X 1KP 2 . This proves
the following

(6.3.7) PROPOSITION. – Let p : XKP 2 be the rational conic bundle structure
on the general nodal X4X10 defined by the double projection from the node o,
and let X 9 be the projection of X from o. Then

(1) C1` C 1
10 [7](X 9 ) (4 the family of elliptic curves C%X 9, s.t. deg C410

and C . Q 947) ` C 1
17 [7](X) (4 the family of curves C%X , s.t. deg C417,

g(C) 41, Sing C4o , and multo (C) 47) .

(2) C2` C 1
9 [6](X 9) (4 the family of elliptic curves C%X 9, s.t. deg C49

and C . Q 946) ` C 1
15 [6](X) (4 the family of curves C%X , s.t. deg C415,

g(C) 41, Sing C4o , and multo (C) 46) .

It rests to find which one of these two families parametrizes U .

(6.3.8) PROPOSITION. – F 1 (C1 ) 4U ; F 2 (C2 ) 4J .

PROOF. – By (6.3.3)-(6.3.5), p 1 : X 1KP 2 is a standard conic bundle, and for
the general nodal X4X10 , the discriminant D of p 1 is a general smooth plane
sextic. Let also h�Pico

[2] (D) be the torsion sheaf defining the double covering
D
A

KD induced by p 1. In particular D has no totally tangent conics (see also
(6.2.2)), and (by [Ve]) there exists a bidegree (2 , 2 ) threefold T4P 2 3P 2 O ( a
quadric), such that (D , h) is induced by some of the two conic bundle projections
on T, say p1 : TKP 2 . By (0.6), the two standard conic bundles p 1 : X 1KP 2

and p1 : TKP 2 are birational to each other over P 2 . Since such a birational iso-
morphism a : X 1KT preserves the general fibers of p 1 and of p1 , a preserves
also the families C1 and C2 . Since, for T, the parametrizing family for U is C 1

(see (6.1.2)-(6.1.3)), the same family must parametrize U also for X 1 (hen-
ce—for X, since the birationality XDX 1 is a composition of a blow-up and an
isomorphism in codimension 2, both preserving the general fibers of p 1 and p).
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(6.3.9) REMARK. – Proposition (6.3.8) and Theorem (5.3) yield the same de-
scription of the general fibers of F 1 and F 2 as for the bidegree (2,2) three-
fold—see (6.1.4).

(6.3.10) COROLLARY. – If X is a general X10 with a node o, and if X 9 is the pro-
jection of X from o, then:

(1) The Abel-Jacobi image of the family C 1
6 [3](X 9 ) of elliptic sextics C%

X 9 such that C . Q 943 is biregular to a 3-dimensional component Z of stable
singularities of U .

(2) If z�Z is general then the tangent cone Qz of U at z is of rank 6, and
the base locus of all these cones is the (unique) anticanonically embedded bide-
gree (2 , 2 ) threefold T birational to X .

REMARK. – Equivalently, if S% C 1
10 [7](X 9 ) is the family of degenerate mini-

mal sections of type C1q1 1q2 , where C� C 1
6 [3](X 9) and q1 , q2 � C 0

2 [2](X 9),
then the Abel-Jacobi image of S is Z (see (6.1.5)).

PROOF. – By the proof of (6.3.7), it rests only to find the invariants g , d , m of
the family C g

d [m](X 9 ) of these curves on X 9 which are images of the curves on T
which belong to the family D 4 C 1

3, 3 (T) (see (6.1.5)).
The birational map X 9DT (preserving the conic bundle fibrations) sends

the 4-dimensional family of sections C 1
4 [1](X 9 ) to 4-dimensional family E of sec-

tions of p1 : TKP 2 . Since the birational conic bundle map p 9 on X 9 projects the
general C 1

4 � C 1
4 [1](X 9 ) isomorphically onto a plane cubic, the general E� E is

an elliptic curve on T of bidegree (3 , d) for some dF1. Therefore d41—other-
wise 4 4dim C 1

4 [1](X 9 ) 4dim E 431dF5.
Let E� E be general, and let f be a general fiber of p1 intersecting E. The bi-

rational map TDX 9 induced by a , sends f isomorphically onto a fiber q�
C 0

2 [2](X 9 ), and E—onto some C 1
4 � C 1

4 [X 9 ]. Let D� D be general. Since any ele-
ment of D is numerically equivalent to E1 f, the isomorphic image C%X 9 of D%
T is numerically equivalent to C 1

4 1q . Therefore g41, d46, m43 q.e.d.

R E F E R E N C E S

[ACGH] E. ARBARELLO - M. CORNALBA - P. A. GRIFFITHS - J. HARRIS, Geometry of Alge-
braic Curves, Vol. I., Springer-Verlag, New York (1985).

[B] A. BEAUVILLE, Variétés de Prym et jacobiennes intermédiaires, Ann. de
l’AENS, 4 ser., 10 (1977), 149-196.

[BM] S. BLOCH - J. P. MURRE, On the Chow group of certain types of Fano threefolds,
Compositio Math., 39 (1979), 47-105.

[C] H. CLEMENS, The quartic double solid revisited, Proc. Symp. Pure Math., 53
(1991), 89-101.



ATANAS ILIEV428

[CG] H. CLEMENS - P. GRIFFITHS, The intermediate jacobian of the cubic threefold,
Ann. Math., 95 (1972), 281-356.

[De] O. DEBARRE, Sur le theoreme de Torelli pour les solides doubles quartiques,
Compositio Math., 73 (1990), 161-187.

[FS] R. FRIEDMAN - R. SMITH, Degenerations of Prym varieties and intersections of
three quadrics, Invent. Math., 85 (1986), 615-635.

[H] R. HARTSHORNE, Algebraic Geometry, Springer-Verlag (1977).
[I1] A. ILIEV, The theta divisor of bidegree (2 , 2 ) threefold in P 23P 2 , to appear in

Pacific J. Math., Vol. 180, No. 1 (1997), 57-88.
[I2] A. ILIEV, The Fano surface of the Gushel threefold, Compositio Math., 94 (1994),

81-107.
[Isk1] V. A. ISKOVSKIKH, On the rationality problem for conic bundles, Duke Math. J.,

54, 2 (1987), 271-294.
[Isk2] V. A. ISKOVSKIH, The double projection from a line on threedimensional Fano

varieties..., Math. U.S.S.R. Sbornik, 180, 2 (1989), 260-278 (in Russian).
[K] J. KOLLAR, Flops, Nagoya Math. J., 113 (1989), 14-36.
[KMM] Y. KAWAMATA - K. MATSUDA - K. MATSUKI, Introduction to the minimal model

problem, Algebraic Geometry, Sendai, June 24-25, 1985: Symp. Tokyo, Amster-
dam (1987), 283-360.

[L] D. LOGACHEV, The Abel-Jacobi isogeny for the Fano threefolds of genus 6, Con-
structive Algebraic Geometry, Yaroslavl, Vol. 200 (1982), 67-76 (in Russian).

[LN] H. LANGE - M. S. NARASIMHAN, Maximal subbundles of rank two vector bundles
on curves, Math. Ann., 266 (1983), 55-72.

[Mo] S. MORI, Threefolds whose canonical bundles are not numerically effective,
Ann. Math., 116 (1982), 133-176.

[Mer] A. S. MERKUR8EV, On the norm residue symbol of degree 2, Soviet Math. Dokl.,
24 (1981), 546-551.

[S] V. G. SARKISOV, Birational automorphisms of conical fibrations, Izv. Akad.
Nauk SSSR, Ser. Mat., 44 (1980), 918-945 (in Russian).

[Se] W. SEILER, Deformations of ruled surfaces, J. Reine Angew. Math., 426 (1992),
203-219.

[T] A. TIKHOMIROV, The Abel-Jacobi map of sextics of genus 3 on double spaces of
P 3 of index two, Soviet Math. Dokl., 33, 1 (1986), 204-206.

[Tju] A. TJURIN, The middle Jacobian of three-dimensional varieties, J. Soviet Ma-
th., 13, 6 (1980), 707-744.

[Ve] A. VERRA, The Prym map has degree two on plane sextics, preprint (1991).
[Vo] C. VOISIN, Sur la jacobienne intermédiaire du double solide d’indice deux, Du-

ke Math. J., 57, 2 (1988), 629-646.
[W] G. E. WELTERS, A theorem of Gieseker-Petri type for Prym varieties, Ann. Sci.

E.N.S., 4 ser., 18 (1985), 671-683.
[Z] A. A. ZAGORSKII, Three-dimensional conic bundles, Math. Notes Akad. Sci.

USSR, 21 (1977), 420-427.

Institute of Mathematics, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., bl.8, 1113 Sofia, Bulgaria

e-mail address: ailievImath.acad.bg

Pervenuta in Redazione
il 4 settembre 1997


