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On the Magnetohydrodynamic Type Equations
in a New Class of Non-Cylindrical Domains.

Luict C. BERSELLI - JORGE FERREIRA (¥)

Sunto. — Viene provata lesistenza e l'unicita delle soluzioni deboli per un sistema di
equaziont della magnetoidrodinamica in un dominio variabile. Per la dimostrazione
stusano il metodo di Galerkin spettrale e la tecnica introdotta da Dal Passo e Ughi per
trattare 1 problemi con dominio dipendente dal tempo.

1. - Introduction.

The motion of an incompressible conducting fluid can be studied by the ma-
gnetoyhdrodynamies equations, which are a coupling of the Navier-Stokes’
equations with the Maxwell’s equations. In several physical situations the effect
of the electric field can be neglected, see Jackson [5] and Eringen-Maugin [2].
If there is free motion of heavy ions, see Schliiter [14], the equations can be re-
duced to the following system

( 1
‘9—"—iAqu(u-V)u—i(h-V)h:f——v(p*+ﬁ|h|2) in D,
g om Om Om 2
oh 1
— ——Ah+ @V h—(h-V)u=— Vo in D,
(1) <ot puo
Viu=0, V-h=0 in D,
u=0, h=0 on oD,
(u(0) =uy,  h(0) =h, in D(0),
where
2) D= ltJ DO x{ty,  DH)cR".

In the system (1) u = (uy, ..., u,) and h = (hy, ..., h,) are respectively the vel-

(*) This work was done while the author was visiting the University of Pisa, Italy, in
a Post-Doctoral Program during 1996-1997. He was partially supported by CAPES -
Brasilia/Brazil under grant no. BEX2480/95-4.
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ocity and the magnetic field; p * is the unknown hydrostatic pressure and w is a
unknown function, related to the motion of heavy ions, such that V xXj= —
oVw, where j = (ji, ..., J,) is the density of electric current. Furthermore o,,
is the mass density of the fluid, 4 is the magnetic permeability of the medium, o
is the electric conductivity and # is the kinematic viscosity of the fluid (this four
quantities will be assumed to be positive constants) and fis a given external for-
ce field.

In this paper we will consider the problem of the existence of weak solutions
in a time dependent domain of R" X [0, T']. The initial value problem (1) has
been studied by several authors in a cylindrical domain. Lassner [4], by using
the semi group results of Kato and Fujita [15], proved the local existence and
uniqueness of strong solutions. Boldrini and Rojas-Medar [6] and [12] impro-
ved this results to global solutions by using the spectral Galerkin method.

For time dependent domains there are some results regarding special kinds
of open sets. Lions [7], [8] and Fujita and Sauer [3] proved the existence of
solutions for various classes of nonlinear problems (Navier-Stokes’ and Bous-
sinesq’s equations for example), under the assumption that the domain is non-
decreasing in ¢t. Rojas-Medar and Beltran Barrios [11] proved the local existen-
ce of weak solution of problem (1) in the more general situation in which the do-
main is a ball of variable (not zero) radius. They used the techniques introduced
by Dal Passo and Ughi [13]: a suitable change of variable allows to use a Galer-
kin approximation for another boundary value problem in a domain whose sec-
tion are not time dependent. The proof ends coming back to the non-cylindrical
domain by the inverse of the above change of variable.

By using the same tools and by using suitable Sobolev spaces (needed to
deal with our domain) we will prove the existence of global weak solution for a
more general class of time dependent domains introduced by Limaco [10].

In section 2 we will set the problem in all the details; in section 3 we will pro-
ve an existence theorem (Theorem 2.1) and in section 4 we will give a unique-
ness result (Theorem 2.2).

2. — Setting of the problem.

In this section we define all the function spaces we’ll use to deal with pro-
blems in non-cylindrical domains. This spaces are needed to make rigorous de-
finitions of weak solutions. Some results (namely isomorphisms between suita-
ble Banach spaces) are claimed and since they are not completely trivial we try
to make a little survey to make the paper self contained. Since the proofs of this
results are a bit technical we postpone them to the appendix, because they are
not necessary in a first reading.
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We consider £ a smooth, bounded and connected open subset of R", n = 2.
We define a family of open sets with parameter ¢ with

(3) Q(t) = ('%'1, ceey 90,”) = (alle(t) +gl(t)7 ) %Z/nR(t) +gn(t)) ’ ?/EQ ’
with a;>0,7=1, ..., » and

4) R(t), g(t) e C*([0, T])  with 0r<nti£1T11§f(zt) >0.

We can define the non-cylindrical domain D and its boundary as

(5) D= U @wtx{t}), ab= U (3Q@) x {t}).
0<t<T 0<t<T

We set as usual
(6) WR) ={pe@ ()):V-¢=0},

and H(Q) and V,(2) will be respectively the closure of ©in (L2(2))"=H"(Q))"
and in (H*(L))". The spaces H*(£2), s = 0 are the usual Sobolev’s spaces, with
inner product and norm

(7) (u, w)s = ;(uh wL)S7 ||u||s = (u, u);/Z,

where (u;, w;), is the standard inner product of H*(Q). We also denote with
(V,(£2))' the topological dual of V,(£2) and V(Q) = V;(£2); for further details we
refer to the books by Adams [1] and Ladyzhenskaya [9].

In the sequel we will use some special spaces, strictly related with the open
sets Q(t). We define, for a;>0,1=1, ..., n

_ n 1 a .
® W) = [¢€((DS°(-Q))”: > = i =0],

i=1a; Ox;

and we define, in analogy with the usual spaces used in hydrodynamics, H(®Q)
and V,(R) as the closure of () respectively in (L2(£2))" and in (H*(Q))".
If we set

€)) T:V(Q)— V(Q) defined as vy, ..., uy) —(auy, ..., a,u,)
we have the following proposition

_ ProrosiTioN 2.1. — The map T is an isomorphism between V(2) and
V(Q) =Vi(Q).

Let X a Banach space with norm ||. |y, we denote, as usual, by L*(0, T; X),
1 < p < « the Banach space of vector valued functions u: (0, 7) — X which are
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strongly measurable and such that the application t— |[u(t)|x, defined a.e. in
(0, T) belongs to L?(0, T). The norm in L?(0, T; X), is defined by

T
P
LPG0, T; X) = [f”u(t)||§'dt] ,  lsp<+oo,
0

e

and

eellr, = 0, 7; ) = €ss sup [Ju(®)]lx.
0<t<T

The generalization of this classical definition to the case of vector valued fun-
ctions, with values on space of functions defined on Q(¢) is the following:

DEFINITION. — Let B a ball of ®”" such that Q(t)cB, Vte[0, T], we
define

LP0, T; V(Q®))) := {ueL?’(O, T; V(B)) :u(x, t)=0 a.e. in B\Q(t), te(0, T)},

with norm

1
P

T
lleellz 2o, 7; oy = [ f||u(t)||€(9(t)>dt] ,  1sp<+oo,
0

and

leellz, = o, 7 veawn = ess sup [ [lrony,
0<t<T

and in the same way we also define L” (0, T; H(Q(t))).

We now quote some results that will make clear the meaning of the forthco-
ming definition of weak solutions of (1).

LEMMA 2.1. — The Banach space L* (0, T; V(R(t))) is a closed subspace of
LP(0,T; V(B)) for1<sp< .

This result is straightforward since let {u,} cL?(0, T; V(£2(t))) be such
that u,—u in the topology of L?(0, T; V(B)). We have that u,—u in
L"(0,T; L"(B)) with »=min {p, 2}. Therefore u,—u in L"(Bx (0, T)),
and, up to a subsequence, u, —u a.e.in B x (0, T). From the previous definition
we have that u,,(x, t) = 0 a.e.in (B x (0, T))\D, consequently u(x, ¢t) = 0 a.e. in
(Bx (0, T))\D and ueL?(0, T; V(D(t))).
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REMARK 2.1. — Since u(x, t) e V((t)) a.e. te (0, T) from the definition of
L?(0, T; V(R(t))) we can see that u(-, t) = 0 a.e. in B\Q(¢). If we define

u-,t) in B,
0 R"\B,
we obtain that u(-, t) e H*(R*) and from the regularity of Q(t) we get that

u(-, t)am =ul, t) e Hi (Q2(t)) and V-u(-, t) =0 in 2(t). A similar result holds
also for ue L?(0, T; H(Q(t))).

In the following 4 proposition we explain the basic properties of the Banach
spaces defined above

PROPOSITION 2.2. — Let us consider the defim'tiozt of D and let us set f;(t) =
a;R(t), i=1, ..., n. The application J:L%(0, T; V(2))—L2(0, T; V(2(t)))
defined by

an (Fo)(w, t) =ulx, t) =v ( %1 =@ &, = 9, (1) ’ t)

A® 7T L

18 am 1somorphism.

PROPOSITION 2.3. — The application T defined by (11) is an isomorphism bet-
ween L= (0, T; HRQ)) and L= (0, T; HQ())).

PROPOSITION 2.4. — The application S: p— g defined by

&Ly _gl(t) xn_gn(t) t)
AW T Ly )
is an isomorphism between L~ (2 x (0, T)) and L * (D).

(Sp)(x, t) = g(x, t) =p(

REMARK 2.2. — We note that

n 1 1 ~
> f— :—Z f ¢—]d9c 0, VpeH Q), YoeV(Q)
i=1g a; Oy;v; =1 a
and that
N 1 1 ; -
2 - wdm— z f w7 de, Yu,v,weV(Q).
hj=1g .,' Lislg G Yj

We also point out that, as in the usual space V, we have

n 1 9 : N
(12) > 2w, ivde=0, Voe Q).
,j=1¢g a/]' y]
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With the definitions above mentioned and from the properties claimed in the
Propositions 2.1-2.4 we can define the notion of weak solution for system (1)

DEFINITION. — We say that a couple of vector valued function (u, k), defined
in D is a weak solution of system (1) if

(13) (u, h) e [L2(0, T; V(Q()) N L= (0, T; HEQ®)T,

oo - ou; 9 o : 9 ;
(14) —f 2”[%; oo 2%, ¢Zui—ihjﬁhi]dxdt=
2

p LJ= ot Om axi aﬂci i 390, Om 890,

f D fpidudt,
poi=1

i,j=1

& 3 1 oh; Y, o ; o ;

(15) —f Do L i S dedt =0,
D ot Ho aﬂ’;i axi (9.70] 390]

(16) u(0)=u,, h(0)=h,,

Vo, y e (Ci (D))" with V-¢ = V-3 = 0, the initial conditions have the usual mea-
ning, as in Temam [16]. The main results of this paper are the following theo-
rems that are the natural extension of the results holding for cylindrical do-
mains: we have existence of weak solutions in every time interval [0, T, but
uniqueness only in the two dimensional case.

We will prove the following results:

THEOREM 2.1. — Assume that n=2, fe L%(0, T; H(Q(t))) and (u,, hy) €
[H(2(0))T then there exists at least one weak solution of problem (1).

THEOREM 2.2. — If n = 2 the solution (u, h) obtained in Theorem 2.1 is uni-

que. Moreover u and h are almost everywhere equal to continuous functions
from [0, T1 to H(Q(t)) and

a7 ut)>u,  ht)=h, in H(B).

3. — Proof of Theorem 2.1.

We define the transformation 6 : D— Q x (0, T) given by

Ly — gl(t) Ly, — Gn (t) )
10 D () B

Since R(t) and g;(t) satisfy (4), we easily see that 6 is a diffeomorphism and its

(18) (X1, ...y Xy, t)~—>(
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inverse 6 ~!: Q x (0, T) — D satisfies

0_1(y7 t) = (fl(t)yl +91(t), ey an n(t) +gn(t)a t)
We define the following functions
U(?/, t) =u(0_1(?/a t))a b(ya t) Zh(G_I(?/, t))y ﬂ(yy t) :p(e_l(ya t))a
(19) 3 F(y, t)=f60"(y, 1)), &y, )=w®@ 'y, 1)), vo(y)=uy(0 'y, 0)),
by(y) =hy(0 ' (y, 0)).
By using (19) and by setting
_ Om _ n
o= , y=—
Iz I Ho
the system (1) is transformed into

w; 1 &%y, o~ 1 ay 1
@) oo,y L dm o» 1,0, o 2 =
ot PISLfE@) oyP i fi(t) T dy;  imfi(t) T dy;
o @) g+ g7 @) o, 1 on 1 9b|*
= - — t+a P +
=t 5@ Sy ufi®) 3y, 2£i(t) 3y

8, ™1 8%h N1 8 % 1, o
+ b

@) Loy~ 2 — =D L=
o ARG o S ey SR sy,
_ o S (@) y;+ g/ () ob; B 1 3a¢
= ET0) 3y fi(t) dy;’
n 1 . n 1 ;
22) Z_ o3Iy mexom,
i=1a; oY; i=1a; Iy

23) vy, 0) =uv,, b(y,0)=b, in Q,
24) wv(y,t)=0, b(y,t)=0 on 32 x (0, 7).
We now define the notion of weak solution for problem (20)-(24)

DEFINITION. — We say that a a couple of vector valued function (v, b) is a
weak solution of system (20)-(24) if

@5) (v, b)e[L2(0, T; (@) NL =0, T;H(Q))]Z,

a 8?)]- 8§7>] a 8(?)1 1 a(pz
2% — —p—— — L — ——b— b dydt=
(26) f f u[ at fz(t) dy; Ay, +f(t) Y, o fi@® v

f fZaF ¢ dydt ,

0 o =1
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T

S, 9y S w1 &g, 1 817) ]
en - DY P A i Rk Rt . 4y dydt=0,
of Qf [m 3 ) oy s S ay fb) Y

28)  v(0)=vy, b(0)=b,
Vo, P e(Cl(Rx (0, 7)) with V-¢ =V-p =0.

We start the proof of Theorem 2.1 by proving the following lemma

LEMMA 3.1. — Let (vy, by) € [H(Q)T then for every Fe L*(0, T; H(Q)) there
exists a weak solution of problem (20)-(24).

Proor or LEMMA 3.1. - Fix s = #/2 and let {cT)l} be a spectral basis of V.(Q),
whose elements are solutions of

(29) @', v)y=1,@,v), YoeV,(Q).

Let V, the subspace of V,(2) spanned by {@', ..., @"} and define the approxi-
mations of v and b by means of

k k
(30) v = Z ek(t) &, bF= Z 1) @

where the coefficients e/ (¢), I (t) will be calculated in such a way that v* and b*
solve the following system of ordinary differential equations

e vk 3¢
3D ff [vf 0, LS o0
0 @ Hi=1 ot fiz(t) dy; y;

p © 1 o N ~
- ¢1 v,;k— b ¢1 :| d dt_f f EaF,@dydt,
=1

ﬁ(t) 9y, L@ 7 oy
o abk oy,
(32) ff bl v ﬁ_y
1] 1 <9t f;z(t) ayl a?/L
TPV SIS PR
ﬁ(t) oy; fit) © 9y,

33)  vF(0)=uvf,  b(0) =
for each ¢, v e V,, with

(34) v*(0) vk and bF(0)—bf in H(RQ).
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We have to study a system of ordinary differential equations for the coeffi-
cients (ef(t), 1F(t)). To prove the existence of a local solution we will prove a-
priori estimates independent on ¢ and k, that allows us to take ¢, = T (where t,, is
the interval of existence of (ef(t), 1¥(t)) for a fixed k) and to pass to the limit as &
goes to infinity.

By setting ¢ = v* and 9 = b* in (31)-(32) and by adding together the resul-
ting equations, we get

1d e Y T
35 - k|2 bk 2 g G
@) 5 g+l H)+i=21[ﬁ(t)]2 oyl T I 3y,
2 yifi’(t)wi’(t)) ovf < (mﬂ(twg;(t)) abf
= T — 4+ - - br,
ng ( 10 B ng £ T

since by Remark 2.2 all the «bad» nonlinear terms disappear.
We also note that

n 1
f aiaid > AlVo*|E,
Y ) By oy

where A = min 7fi(t).
1<i<n,0<ts<

By Hélder’s inequality we can infer that

(36) E f (‘M L] (t)) 5 —Lok<

h,j=1lg i@
(1) ; (1)
(|| RGN ')||ka||||vk||,
1<1<77 |f7:(t)| |fl(t)|

where |ly||.. denotes the diameter of Q. By using the Schwartz’s inequality we
have immediately

37 |(F, o) | < [l -
At the end we have
Ld e e|[2 k|2 k|2 k|2 k|2
@8) o P+ oF I + Vot P+ IVOFIF < Kl + K [P
in which K; depends on (a, v, y, min f;(t), max f/(t), g/ (t) and |[F])).
By integrating (38) between 0 and ¢ we can conclude in a standard way that

(v*, b*) exists for any te [0, T'] and that

39) {(*, b5} is bounded in [L2(0, T; T(2)) N L= (0, T; H(2))] .
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We will now prove that {(v*, %)} is bounded in [L2(0, T; (V,(2))" ).
We define some time dependent operators. We set

& 1 v; w;
(A v, w) = E > e
Li=1ff) g y; ;

n 1 avj
B(t ’ = 15
(B®)o, w) f;fi(t)g 5y,

X [(uf O gl ®)
(CH v, w)= ”21!( £(b) ) ; Wy,

Wi,

for functions for which the integrals are well defined.
For all w e V() we have

: L 1 v; w; 1
e, w < 3 | . 1900l
Li=1f7 () g | 9y y; min_ fZ(t)
0stsT,0<i<n
The above inequality implies that
7 T
o 1o s,y dt < c [ e <,
0 0

and v* is bounded in L2(0, T; (V,(2))").

In the same way and by using (36) we obtain that C(¢) v* is bounded in
L%(0, T; (V,(£2))"). To prove the boundedness of { B(t) v*} we will use the fol-
lowing lemma, see Lions [8].

LEMMA 3.3. — If {v*} is bounded in
L2(0, T; (@) NL~(0, T; HRQ))
then {v"'} is bounded in L*(0, T;[LP(2)]"), with 1/p =1/2 —1/2n.
In fact, by using Sobolev’s embedding theorem, we get
1

min f2(t)

o0stsT,0<i<n

(L™(Q))n < S

4D |(B@) v*, w) <

" [y [Veel

w

< Clo* Ry IVl 10y < Crllo* o oy [l oy
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and finally

T
(42) f IB(t) v*|
0

T
2 oy <0 16 s
0

by using (3.41) we obtain that {B(¢) v*} is bounded in L2(0, T; (V,(2))").

Let us consider the projection P,: H— V. We can consider it as an applica-
tion of V() into it belongs to £(V,(2); V.(R)). The adjoint operator Pj* be-
longs to £((V,(2))"; (V,(2)") and ||P;#| < |P|| < 1. From (20) and recalling the
definition (29) of the eigenfunctions @' we get

k
a<aait ) (7)7> = ((—vA(t) — aB(t) v* — aC(t)) v* + B(t) b* + oF, (T)i> _

(= vA(®) = aB(®) 0" = aC(£) " + B() b + aF, P5') =
(P ((—vA(t) — aB() " — aC(®) v* + BB + aF), &),

and (-, -) denotes the duality pairing between V,(2) and (V,(2))).
The previous inequality holds for every w ev, and by setting w = P,v,
v eV, () we have

k
(43) aaait = P ((—vA(t) — aB(t) v* — aC(t)) v* + B(t) b* + oF) ,

by using (39) and recalling that [[P#[|<1 from (43) we get the boundedness of
{ov*/at} in LE(0, T); (V,(2))').
Working as before we have

k
(44) % = (P (= yA@®) - C) b* + B, (H)(@", b*) — By ()(b", v")) ,

Where we define

n 1 ow:
B, w)= >, v —
RN TOF-AEN

V;.

We observe that

| Bi(®)@", b°) | <[V [l o0y 0" [|zp oy

ka ||(L'n(Q))n><n <

C”Uk ||(L1’(Q))" ”bk H(L"(Q))” ” b" V(@)
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and finally

T 12
NACHES C( f”vk”(l 1’(9))") (f”bk’?m(g))”) < (.
0

Similarly we prove that {B;(¢)(b*, v*)} is bounded in L2(0, T;(j/S(Q))’) and
then from (44) we obtain that {&bk /8t} is bounded in LZ(0, T); (V,(2))").
By a standard argument, Temam [16] chap III § 3, there exists

T
fwﬁmhw>
0

~ ~ 2
(, b)e|L2(0, T; (@) nL>(0, T; H(Q))],
such that (up to a subsequence)
W b — @, b) in [L2(0, T; (@),
—_ 2
", b) —~(v,b) in [L =(0, T; HQ)],

W, b —(,b) in [L2(0, 7; H(2)] and ae. in @xO,D),

w* bk v b - 2
= (= = in |L20, T;(V,(2)))],
(at’at) (at’at) in [0, 7 W)

(vikvjk, bi,kbjk)—>(7.)7j’0j, blbj) in L!](Q X (O, T)) q= min{Z, p/2}

By using the standard procedure, see Lions [8] can pass to the limit and we
end the proof of Lemma 3.1.

ProOF OF THEOREM 2.1. — The proof follows defining, for every divergence
free ¢, Y e (ML x (0, TH))",

@ 0= [0 g1+ 00, - O 1+ 5,0, D),

and

@6 3w, 0= [LAOYAD 1+ 00, s O +0.0,1),

We can verify that

Bie@@x 0,y and >4 SPo LI,
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The following properties are satisfied

_oflf”%dydt ”( yifi®) + g/ <t))

i,j=1 0 ﬁ(t)

0 i=

1,]= fQ (t) 2 ] ayZ
T
2 n a¢
> @) viv, — (L@ yi + 1 @), ..., £, y1 + 9,(D), 1) dy dt,
ij=1§ & i=1 Ow;
o; aqﬁ]
Z’ = Q t) i 3?/2
T
1 oy

t t (b i), t) dydt,
st Hﬁ() <f1<)y1+gl(> S L@y + 9,0, D) dy

By using ¢ as test functions in (20) we obtain

n a
- ff(l_[f;(t)) U—¢(f1(t)y1 +gl(t)a ’fn(t)yl +gn(t)’ t) -
0o ‘i=l ot

n a X

n o :
(l;[lﬁ(t)> vi aig;](fl(t) ?/1 + gl(t)’ LR} ﬁz(t) ?/1 + gn(t)’ t) dydt =

i

f f(l_[lf;(t)) F¢(f1(t) 211 + gl(t)v [REE] n(t) ?/1 + gn(t)y t) dydt .
0 @ ‘'T
Since the transformation 8 ~': 2 x (0, T) — D satisfies

oy, 0 =u® ) |Jaco | = 110,



378 LUIGI C. BERSELLI - JORGE FERREIRA

By using the rule for the variables’ change in multiple integrals we obtain

a n a . a . n a . a .
B PP Y BCUCU TR L R WALy Sy Py
p Ot ii=10Q, O0x; ox; ij=1 or;  Om ow; D

and (14) is satisfied. By using Propositions 2.2 and 2.4 we obtain that u e
L%, T; V(Q() N L=, T; HQ())).

In a similar way (by using v as test function) we will see that (15) is also
satisfied. =

4. — Proof of Theorem 2.2.

We first prove the regularity result. We observe that the proof of Theorem
2.1 shows that dv/dte L2(0, T ;(17(!2))’) consequently applying Lemma 1.2 in
Temam [16] pag. 260 we obtain that v is almost everywhere equal to a function
continuous from [0, 7] into H(RQ). The continuity of b is proved in the same way.
We also note that

d Bu(t) 3b(t)
E||v(t)||%(g)=2< > v(t)> Hb(t)ng)—2< - b(t)>

Consider two solutions (v, b;) and (vs, b,) which are solutions of the problem
in the domain 22 X (0, T) with the same force and initial datum and define the
differences

U =0, — Uy, b:bl_bz.
We obtain by difference from (26)-(27) and by using as test functions (v, b)

37) a’U < 1 abl @bl
+ =

a
A7) ——(v2+ b2)+v2 :
el -+ | g flz(t) dy; dy; =18 fAO) By,

1 oy, 1 aby, 1 aby,
—— v —L, + ; = v,
o fit) 9y o fi(t) ~ 9y; o fi(t) ~ 9y;
1 9 @y, +g/ @ ( ov, b
7)7‘ vlz 2 f y] g] ((1 ’1)2 + 1 ) ,
o fi(®) 7 9y; j=1 fi(@® dy; 9y

where we used the results of Remark 2.2 to cancel the bad nonlinear terms. Now
we observe that by using the classical inequality

f ou;

Q Y;

V; i i
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and Hoélder’s and Young inequalities we have

f—ﬁ(t) 0 S0, < G|l Vo1 ]| < —IIVvll + CA) [ o[ Ve, [P
Q ayj

By using similar inequalities for the other terms and recalling inequality (36)

we get

d
=7 ol + 1Bl + Vol + V] < CllelP + 6lF)([Vor [P + (Vo |F + [V, )

with C a constant that depends only on v, y, a and on the minimum of f;(¢), and
the maximum of f; (t), g;(t) and g, ().
By using Gronwall’s lemma and since

(Ivo | + 1V, [[* + [[Vbe ) e L1 0, T),

we prove that v = b = 0. Using the result (see Proposition 2.2) that the map Jis
an isomorphism between L2(0, T; V(2)) and L2(0, T; V(2(t))) (and also bet-
ween L *(0, T H(Q)) and L (0, T; H(LQ(t)))) we obtain that u =h = 0. This
ends the proof of Theorem 2.2 =

5. — Appendix.

In this appendix we make short proofs of the propositions claimed in section
2 and used to prove the main results of this paper.
We start by proving the first proposition

ProOF OF PROPOSITION 2.1. — We consider the application 7' defined by (2.10)
and we observe that TW(Q) WR)— Q) is a linear injection. Given ¥
@y, ..., D,) € AR), there exists v = (v,/ay, ..., v,/a,) € AR) such that Tv =
then T is also bijective.

For v e W(Q) we have

(1) HTUH??(_Q): 21 ||zlf|Da(aivi)|2dx: EIG/lzllzl f|D“vi|2d.%‘.
1= al = o i= al < o

Therefore if we set

v,

172 T2
K= [nmaxa], L= [nmma],

1<isn 1<isn
we obtain that

@) Lol < [Tvlyo) < Klvllo)-
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and then by a density argument we prove that the transformation is a bijection
between V() and V(2). =

To prove Proposition 2.2 we need the following lemma

LEMMA. — For every t e (0, T) the application

&Ly _gl(t) xn_gn(t)

‘7(9) ( PAEEE) n)_) ( ): ( y ey
S20(Y, Y u\xy U f‘l(t) ‘fn(t)

) V(@)
is an isomorphism.
Proor. — The application is well defined since u(x) e V(Q(t)), 0 <t <T.

From the definition we have that there exists {v,} c W(Q) such that v, —v in
(H'(R))" and since t is fixed we have that

L1 — 01 (t) Ly — gn(t) )
" =0, Y ey W (t m(L2))",
(@) ( 0 @) | € (X(L2(1)))

and an explicit calculation gives z i ( ) =0. Then we have

N Oty - & — g, (1) € — g, (1)
2 7_ U 2d—2 (1 1 o 1 1 )_
i’j‘lgf!; 5a; ST umf) AT ()
; ( xy — g1(t) x; — 91 (¢) ) 21
Y eeey xr <
oY, A A®) fE@)

c3 f ‘ avnj(xl—gm . w1—91<t>)_

Li=1g@ Hfz(t) Y; S (@) A@)
I ( x; — 91 (2) x; — 91 (¢) ) 2
— Y ey de .
I\ fi(D) S (@)
Let us consider K;: Q(t) — 2
—: (@) xy — g,(8) )
y ey L) > t P
(0 x,) ( — @), . 0

for everyte [0, T]1K;is a diffeomorphism of class C' and it satisfies |JacK; | =

1/41]1fi(t>.
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Making a change of variables we have

dx<2 f

Li=loa

2
n]

| Jac K, | [ ! (K, ()~ (Kt(%))]
Wi i

f v, (y) vy
i, ] 1o ?/7 ayz
from which it follows that u, —u in (H'(2(t)))" and that

i,j= I_Q(t) | xi

Cy[lollre) < llellewm < Callvllva),
and the application Jis an isomorphism. =
We are now in position to prove Proposition 2.2

Proor oF PROPOSITION 2.2. — From the previous lemma we have that
u:(0, T) — V(Q(1)) defined by (2.11) is defined a.e. in (0, T') end extending u by
zero outside B\Q(t) it can be considered as an application of (0, 7) in V(B)
and

f”u(t)” (B)dt_ f”u(t)” (Q(t))dt_ E f f

=1, Q(t)

Uj

oux;

2dadt =

T
([0 A0 g
=18 ol | O A@®) Ju(®)
5 | ( 0 ) 1,
L,j=1 8yl fl(t) ﬁz(t) ﬁ Y

ff

17 10!2

|2ayat - cf Jot) ot

therefore [lull 2. 7. viowy) < C||v||Lz<O 772y - The other inequality can be proved
in the same manner and, with a density argument, we conclude the proof of Pro-
position 2.2. and the proofs of Proposition 2.2-2.3 are now straightfor-
ward. ®
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