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Deformations of CR-Structures on a Real Lie-Algebra.

DANIELE GOUTHIER

Sunto. – Sia g0 un’algebra di Lie e (p , J) una sua struttura di Cauchy-Riemann, vale a
dire J è una struttura complessa integrabile del sottospazio vettoriale p. Come è
stato fatto per il caso delle strutture complesse, cfr. [GT], introduciamo il concetto
di deformazione di una struttura CR. Per mezzo dei gruppi di coomologia
H k (g , q) vengono provati risultati di rigidità. In particolare ogni struttura di Lie-
CR che è semisemplice è rigida. Alcuni esempi chiariscono le soluzioni particolari
esposte.

1. – Introduction.

This paper is devoted to the study of deformations of CR-structures. A
CR-structure on a real Lie-algebra g0 is a triple (g0 , p , J) such that p is a lin-
ear subspace of g0 and J is an endomorphism of p whose square is 2idp and
such that, (x , y�p, [x , y]2 [Jx , Jy] �p and [Jx , Jy] 4 [x , y]1J[Jx , y]1

J[x , Jy]. If one considers the set q4 ]x2 iJx/x�p(, q is a complex subalge-
bra of the complexified g4g0 7R C such that qOq 4 ]0(, g4q5q5v. In the
following, we say that q itself is a CR-structure, [SN], [GT], [GO3].

We recall the definition given by Nijenhuis and Richardson, [NR]. Let m 0

be the Lie-product on V0 (i.e. g0 4 (V0 , m 0 )) and W : V0 5V0 KV0 be an alter-
nating bilinear map. When m4W1m 0 is a Lie-product, W is said to be a defor-
mation of m 0 . Let us denote with (W , m 0 ) the subalgebra q, where W is the
underlying linear subspace. In this context, we are interested in a deformation
W for which the deformated product is equivalent to m 0 and admits (W , m 0 )
as a subalgebra, namely it defines a new CR-structure. This formulation
suggests to restrict our considerations to the subset ]m Lie-product/(W , m) is
a subalgebra( of the space m0 of all the Lie-products. Obviously, a geometric
interest is taken by the rigid CR-structures, i.e. the CR-structures with re-
spect to m 0 which are CR-structures with respect to every deformed Lie-prod-
uct m4W1m 0 equivalent to m 0 . An exact definition of rigidity is given in terms
of isolated points of a certain moduli space M(d). In particular, we shall con-
sider the algebraic set of products equivalent to the given m 0 and which admit
W as a subalgebra. Finally, we quotient it by the group of linear (not Lie’s) in-
vertible morphisms which let W and W invariant. In such a quotient space, we
study the isolated points.
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Algebraic properties of this moduli space bring us to introduce some coho-
mology groups. The point [m 0 ] (i.e. the CR-structure q) is rigid if the second
cohomology group vanishes (Section 4).

In Section 2, we recall the main definitions about deformations (following
Nijenhuis and Richardson) and the main results on Lie’s and Levi-flat CR-
structures, proved in [GO2]. In Section 3, we define the rigidity of a CR-struc-
ture in the terms of the isolated points of the moduli space M(d). Hence is
given a concept of Levi-rigidity (resp. Lie-rigidity) for the Levi-flat CR-struc-
tures (resp Lie-CR-structures). Finally, Section 4 introduces the cohomology
groups H k (g , q) and links the vanishing of H 2 (g , q), with the CR-rigidity of q.
A trivial example of rigid CR-structure without vanishing second cohomology
group is given. In the last part of the paper, some results on the rigidity of
semisimple CR-structures are proved.

2. – Deformations of Lie-algebra structures.

Let V0 be a real linear n-dimensional space. A real Lie-algebra structure
over V0 is given by a Lie-product m 0, i.e by a bilinear alternating map
m 0 : V0 5V0 KV0 which satisfies the Jacobi identity

!
x , y , z

m 0 (x , m 0 (y , z) )40 ,

where !
x , y , z

denotes that the sum is computed over the permutations of the set

]x , y , z(. The corresponding Lie-algebra is the pair g0 4 (V0 , m 0 ). Its com-
plexification is denoted by g4 (V , m 0 ) and is endowed with the conjugation
map t with respect to g0 . Notice that m 0 will denote both the real and the com-
plexified Lie-product.

Given a base (ei ) in V0 , the map m 0 is described by the structure constants
c i

jk such that m 0 (ej , ek ) 4c i
jk ei . In the sequel, m0 will be the set of all the bilin-

ear alternating maps W which satisfy the Jacobi identity. Such a set, via the
structure constants c i

jk, may be identified with an intersection of quadrics and

hyperplanes in RN, N4n
.
`
´

n

2

ˆ
`
˜
. Since GL(n , R) acts on m0 as a group of trans-

formations, via the action GL(n , R)3m0 Km0 : (g , W) O gW where gW (x , y) 4

g 21 W(gx , gy), the elements of the orbit GL(n , R)m 0 are said to be equivalent
to m 0 : WAm 0 if and only if )g�G such that W(x , y) 4g 21 m 0 (gx , gy).

In order to introduce the notion of deformations of a Lie-algebra structure
g4 (V , m 0 ), let us define the sets

Alt1
0 (V) 4 ]F : V5VKV/F(x , x) 40, F(V0 5V0 ) %V0 (,

Altn
0 (V) 4 ]F : V5R5VKV/F is skew symmetric , F(V0 5R5V0 ) %V0 (,
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Given a�Altn
0 (V) and b� Altm

0 (V), we set a product aRb� Altn1m
0 (V) as

aRb(x0 , Rxn1m ) 4!
p

sgn (p) a(b(xp(0) , R , xp(m) ), xp(m11) , R , xp(m1n) ) ,

where p is the generic permutation of ]o , R n1m(. And we define the prod-
uct [, ] in Alt0 (V) setting

[a , b] 4aRb2 (21)mn bRa .

When a , b� Alt1
0 (V), [a , b] 4aRb1bRa4 [b , a]. Furthermore, we define

on Alt0 (V) the graded operator d : Alt0 (V) K Alt0 (V) by putting

d n11 a(x0 , R xn ) 4 !
1 40

n

(21)i m 0 (xi , a(x0 , R , x×i , R , xn )1

!
iE j

(21)i1 j a(m 0 (xi , xj ), x0 , R , x×i , R , x×j , R , xn ),

where a� Altn
0 (V) and the terms x×h are omitted.

Since d n11
i d n 40, d is a coboundary operator and we define

B 1 (g) u ad (g), B i11 (g) u Im d i, Z i (g) u Ker d i ; and H i (g) u Z i (g) /B i (g).
By an easy computation, one can see that dW42 [m 0 , W], (W� Alt1

0 (V),
and that the Jacobi identity becomes [m 0 , m 0 ] 40. So m0 is the nonempty set
]m� Alt1

0 (V) /[m , m] 40( endowed with the topology of Alt1
0 (V).

The next Lemma caracterizes which alternating bilinear map m satisfies
the Jacobi identity, (i.e. which m define a Lie-algebra structure).

LEMMA 2.1. – Let m 0 be a Lie-product and m be an alternating bilinear
map. Then m is a Lie-product if and only if dW4 (1 /2)[W , W], where
W4m2m 0 .

In fact, [m , m] 4 [W1m 0 , W1m 0 ] 4 [W , W]1 [W , m 0 ]1 [m 0 , W] 4 [W , W]1

2[m 0 , W] 4 [W , W]22dW. r

The solutions of dW4 (1 /2)[W , W], are called the deformations of m 0. The
corresponding linearized equation dW40 defines the infinitesimal deforma-
tions, which, obviously, are the 2-cocycles of d.

Let us consider, in GL(V0 ), a smooth curve s4s(t), NtNEe, such that
s(0) 4I. Suppose that m t (x , y) 4s(t)21 m 0 (s(t) x , s(t) y) is a deformation of
m 0 . Then we have s4I1 tW1O(t 2 ), m t 4m 0 1 tF1O(t 2 ) and F42 d 1 W .
Vice versa, a generic 2-cocycle does not come from a family ]m t ( as its first-or-
der term. The deformation equation shows that the «tangent space» to m0 at
m 0 is a subspace of Z 2 (g).

With these computations, we may also prove a classical result on
Lie-algebras
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PROPOSITION 2.1. – The space of derivations Der (g0 ) is the tangent space
at I of the group of automorphisms Aut (g0 ).

PROOF. – Let s4s(t), NtNEe, be a smooth curve in Aut (g0 ), such that
s(0) 4I. Let us write s t 4I1 tW1O(t 2 ) and m t 4m 0 1 tF1O(t 2 ). Since
s(t) �Aut (g0 ), we have m t 4m 0 and hence d 1 W42F40. So, W�Z 1 (g) 4 ]l�
End V0 /2 lm 0 (x , y)1m 0 (lx , y)1m 0 (x , ly) 40( 4Der (g0 ).

Vice versa, let W�Der (g0 ). Then the curve s t 4I1 tW1O(t 2 ) takes value
in Aut (g0 ), (NtNEe. r

DEFINITION 2.1. – The structure g4 (V , m 0 ) is said to be rigid when the or-
bit GL(V0 )m 0 is an open set in m0 , or, equivalently, when [m 0 ] is isolated in
m0 /GL(V0 ).

Nijenhuis and Richardson show that a sufficient condition for rigidity is
the vanishing of H 2 (g). Such a condition is not necessary.

Finally, we remark that the elements of H 3 (g) may be interpreted as ob-
structions to expanding an infinitesimal deformation of m 0 into a one-par-
ameter family of deformations of m 0 . For this, we consider m t 4m 0 1 tW 1 1

t 2 W 2 1R . The condition of Jacobi on m t give rise to an infinite sequence of
conditions on m 0 and on the W j s:

1. [m 0 , m 0 ] 40,

2. [m 0 , W 1 ] 40,

3. [m 0 , W 2 ]1 (1 /2)[W 1 , W 1 ] 40,

4. R

The first one says that m 0 is a Lie-product; the second one that W 1 is an in-
finitesimal deformation of m 0 ; the third one that [W 1 , W 1 ] is a coboundary, and
that the class [W 1 , W 1 ] �H 3 (g) vanishes. So we may conclude with the

PROPOSITION 2.4. – Let H 3 (g) vanish. Then every infinitesimal deforma-
tion is the first-order term of a one-parameter family.

3. – CR-structures on a real Lie-algebra and their rigidity.

A CR-structure on a real Lie-algebra g0 is a d-dimensional subalgebra q of
the complexified g whose intersection with its conjugated q vanishes. Such a
datum corresponds to a real subset p’g0 endowed with an endomorphism J,
such that J 2 42id, (x , y�p, [x , y]2 [Jx , Jy] �p and [Jx , Jy] 4 [x , y]1

J[Jx , y]1J[x , Jy]. We are also interested in two particular subcases. Pre-
cisely we shall consider Lie-CR-structures and Levi-flat ones. In particular, in
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the first case, p is an ideal and J is adX-invariant (i.e. q is a complex ideal). In
the second one, p is a real subalgebra (i.e. q5q is a complex one). Obviously a
Lie-CR-structure is Levi-flat. These particular cases are described in [GO1],
[GO2].

We say that a generic CR-structure q corresponds to the pair (W , m 0 ) if

1. WOW 4 ]0(,

2. m 0 (W5W) %W .

Moreover, in correspondence of the Lie-CR-structures and of the Levi-flat
ones, the subspace W must satisfy, respectively,

3Lie . m 0 (W5V) %W,

3Levi . m 0 (W5W) %W5W,

where the pair (V , m 0 ) defines the complex Lie-algebra g.
In the following, we define the rigidity of a CR-structure and we construct

some cohomology groups which concern the q structure. To do that, we have to
restrict ourselves to the Lie-products which admit q as the desired struc-
ture.

Remind that the rigid Lie-algebras correspond to the isolated points of
m0 /GL(V0 ). In this Section, we consider the suitable subsets of m0 and of
GL(V0 ) which let us give an analogous construction for CR-structures.

Take the real algebraic set n(d) u GL(V0 )m 0 O ]W�m0 /W(W5W) %W(,
composed by the Lie-products equivalent to m 0 which admit W as a subalgebra.
And consider the quotient by the group of the linear (even not Lie’s) automor-
phisms which let W invariant: G(V , W) 4 ]s�GL(V0 ) /sW4W(. A CR-struc-
ture q is said to be CR-rigid if [m 0 ] is an isolated point in n(d) /G(V , W).

The set n(d) /G(V , W) can be described in the terms of a subset of the
Grassmannian manifold Gr (n , d). To do that, define the set S(d) 4

]W�Gr (n , d) /WOW 4 ]0(, m 0 (W5W) %W(. The group Aut g0 acts on S(d)
and W , W 8�S(d) give equivalent CR-structures on g0 if and only if W 84sW,
s�Aut g0 . Thus, the moduli space for CR-structures on g0 is given by
S(d) /Aut g0 . Then, the desired description is given by the

PROPOSITION 3.1. – The spaces S(d) /Alt g0 and n(d) /G(V , W) are isomor-
phic. We shall pose M(d) »4n(d) /G(V , W) CS(d) /Aut g0 .

PROOF. – Taken W 8�S(d), there exists g 8�GL(V0 ) such that W 84g 8 W,
and hence g 8 m 0 is in n(d). Vice versa, if g 8 m 0 �n(d), the subspace g 8 W is in
S(d).

Let us consider the quotient spaces, and take [W 8 ] �S(d) /Aut g0 .
Then W 9� [W 8 ] if and only if )s�Aut g0 such that W 94sW 8, and then
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W4g 921 sg 8 W. Moreover g 921 sg 8 V0 4V0 , and this implies [g 8 m 0 ] �
n(d) /G(V , W). The converse is analogous. r

We derive four conditions equivalent to the rigidity of the CR-structure q:

COROLLARY 3.2. – The following facts are equivalent:

1. [W] is isolated in S(d) /Aut g0 ;

2. [m 0 ] is isolated in n(d) /G(V , W);

3. Aut g0 W contains a neighborhood of W in S(d);

4. G(V , W) m 0 contains a neighborhood of m 0 in n(d). r

Analogous definitions are given for Levi-flat CR-structures and Lie-CR-
structures. Precisely we shall consider the sets

nLevi (d) 4GL(V0 ) m 0 O ]W�m0 /W(W5W) %W , W(W5W) %W5W(,

SLevi (d)4]W�Gr (n , d) /WOW4]0(, m 0 (W5W)%W , m 0 (W5W)%W5W(,

nLie (d) 4GL(V0 )m 0 O ]W�m0 /W(W5V) %W(,

SLie (d) 4 ]W�Gr (n , d) /WOW 4 ]0(, m 0 (W5V) %W(.

The quotients MLevi (d) and MLie (d) are the analogous of M(d) in the re-
spective case as well as the notations of Levi-rigidity and Lie-rigidity. Trivial-
ly, M(d) & MLevi (d) & MLie (d), so we may immediately remark that a Levi-flat
CR-rigid CR-structure is Levi-CR-rigid and a Levi-CR-rigid Lie-CR-struc-
ture is Lie-CR-rigid.

Observe that the classification of Levi-flat CR-structures is based on the
bilinear form v : p5pKp : (X , Y) O [X , Y]2 [JX , JY] which is shown to be a
Lie-product; moreover, with respect of this product, the CR-structure is a
Lie’s one, [GO2]. Furthermore, if v denotes even the complexified one, then it
coincides with 2m 0 on W. Now we may consider the following different struc-
tures on W: the CR-structure with respect to m 0 and the Lie-algebra’s one,
with respect to v. The next result links the rigidity of the algebra (W , v) and
the rigidity of the CR-structure of g0 (W , m 0 ).

THEOREM 3.3. – The Lie-algebra (W , v) is rigid, whenever the CR-struc-
ture q is.

PROOF. – Let us denote by p the subspace Re q (the space of the real parts
of elements of q), and with mp the set ]W : p5pKp : W is a Lie-product(. Then
v is rigid if and only if there exists a neighborood U of v in mp such that
U%GL(p) v.
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Now take the map j : mp Kn(d): W O W*, where

W*(X , Y) 4
.
/
´

W(X , Y)

0

if X , Y�q

otherwise .

So j is a continuous and injective map and satisfies j(2v) 4m 0NW 4 m 0
A,

where

WA(X , Y) 4
.
/
´

W(X , Y)

0

if X , Y�q ,

otherwise .

Finally, consider the map p : n(d) Kn(d): W O WA. Since p is an open map,
then, if m 0 �n(d) is an isolated point, mA0 is isolated, too. It follows that 2v4

j 21 (mA0 ) is isolated, which means that (W , v) is rigid provided q is. r

THEOREM 3.4. – Let q be a Levi-flat CR-structure. Then (W , v) is rigid if
and only if q is Levi-rigid.

PROOF. – Suppose q is Levi-CR-rigid. Then, in view of Theorem 3.3, we
have j(mp ) %nLevi (d). Now, define

WA
A

(X , Y) 4
.
/
´

W(X , Y)

0

if X , Y�q5q

otherwise ,

and p 8 by nLevi (d) KnLevi (d): W O WA
A

; then, p 8 is an open map, and conse-
quentely, (W , v) is rigid.

Vice versa, the map r defined by nLevi (d) Kmp : W O WNW is continuous and
m 0 �r21 (2v). Hence, when v is an isolated point, m 0 is isolated, too. r

EXAMPLE 3.5. – In [GT] the authors proved that a semisimple complex
structure in a semisimple Lie-algebra is rigid.

Thus, the complex structure considered on the Lie-algebra (W , v) in The-
orem 3.4 is rigid, whenever (W , v) is semisimple.

Furthermore, in [GO2], we prove that (W , v) is semisimple if and only if q
is semisimple.

In conclusion, all the Levi-flat CR-structures, which are semisimple as Lie-
algebras, provide examples of Levi-rigid CR-structures. Moreover, they are
CR-rigid.

4. – The cohomology groups H k (g , q).

1. In this Section we link the rigidity of a CR-structure q4 (W , m 0 ) with
the vanishing of a new cohomology group H 2 (g , q), subgroup of H 2 (g), de-
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pending on q; take the following sets of (multi)linear maps

L0 (V , W) 4 ]l�End V0 /lW%W( %L0 (V) 4End V0

Alt0
k (V , W) 4 ]F : V 5(k11) KV/F : V0

5(k11) %V0 , F : W 5(k11) %W( % Alt0
k (V).

The coboundary operators d k11 defined in Section 2 may be immediately
restricted to the new ones d k11

W : Alt0
k (V , W) K Alt0

k11 (V , W). The expression
of d 1

W and of d 2
W are

d 1
W l(x , y) 42lm 0 (x , y)1m 0 (lx , y)1m 0 (x , ly) ,

d 2
W F(x , y , z) 4 !

x , y , z
F(m 0 (x , y), z)1 !

x , y , z
m 0 (F(x , y), z).

Then we set Z j (g , q) 4Ker d j
W , B 1 (g , q) 4 ]x�g/adx q%q( 4n(q),

B j11 (g , q) 4Im d j
W , and define the cohomology groups H j (g , q) 4

Z j (g , q) /B j (g , q). A beginning geometrical result is given by the

PROPOSITION 4.2. – Let q be a Lie-CR-structure, then H 1 (g , q) is the set of
the Lie-derivations of g which have W as invariant space and which are not
inner derivations.

In fact, we have

Z 1 (g , q) 4 ]l�L0 (V , W) /lm 0 (x , y) 4m 0 (lx , y)1m 0 (x , ly)( 4Der (g , q) .

Since q is an ideal, we have that B 1 (g , q) 4ad g. It follows H 1 (g , q) 4

Der (g , q) /ad g .

2. Now, we are in position to stay the main result of this Section and hence of the
paper.

THEOREM 4.2. – Let q be a CR-structure on g0 . If H 2 (g , q) 40, then q is CR-
rigid.

PROOF. – we have to show that G(V , W)m 0 contains a neighborhood of m 0 in n(d).
This is equivalent to the fact that G(V , W)m 0 and n(d) have the same Zariski tangent
space atm 0 .

Let us denote byT1 ,T2 ,T3 the Zariski tangent spaces atm 0 ofG(V , W)m 0 ,n(d) and
mW4 ]W�m0 /W(W5W) %W(, respectively. And we prove the following inclu-
sions, Z 2 (g , q) &T3&T2&T1&B 2 (g , q). (So we conclude using the vanishing of
H 2 ).

Step 1: Z 2 (g , q) &T3 . If we write W4m 01F, it is easy to remark that
mW4]F�Alt1

0(V , W) /d2 F4(1/2)[F , F](. The map f(x , y , z): Alt1
0(V , W)K

V : FOd 2 F(x , y , z)2 (1 /2)[F , F](x , y , z) is an element of the ideal I0 (mW ),
and its linear part is d 2 F(x , y , z). Hence T3 % 1

x , y , z�V
]F� Alt1

0 (V , W) /d 2 Q
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F(x , y , z) 40( 4Z 2 (g , q).

Step 2: T3 &T2 &T1 . Indeed, mW &n(d) &G(V , W)m 0 .

Step 3: T1 &B 2 (g , q). Consider l�L0 (V , W), and s(t) 4I1 tl�L0 (V , W).
Then s(t) is in G(V , W), when NtNEe. Hence W(t) 4s(t) m 0 �G(V , W) m 0 and
W(t) 4m 0 1 t(2d 1 l)1O(t 2 ). So you conclude that d 1 l�T1 . r

REMARK 4.3. – Let us consider the sets AltLevi
k (V , W) 4 ]F : V 5(k11) K

V/F : V0
5(k11)%V0 , F : W 5(k11)%W , F : W 5k5W%W5W( and AltLie

k (V , W)4
]F : V 5(k11) KV/F : V0

5(k11) %V0 , F : W 5k 5V%W(. Then the coboundary
operator d k11 sends AltLevi

k (V , W) (resp. AltLie
k (V , W)) in AltLevi

k11 (V , W)
(resp. AltLie

k11 (V , W)). Thus we may define, in an obvious way, H k
Levi (g , q)

and H k
Lie (g , q). With the same proof as in the above theorem, we see that a

Levi-flat (resp. Lie’s) CR-structure is Levi-rigid (resp Lie-rigid) when
H 2

Levi (g , q) 4 ]0( (resp. H 2
Lie (g , q) 4 ]0().

The condition of the Theorem 4.2 is not necessary. In fact, we have the

PROPOSITION 4.4. – Every CR-structure q on a real abelian Lie-algebra g0

is CR-rigid. While its cohomology groups are nonvanishing.

Since g0 is abelian, the set S(d) is given by ]W�Gr (n , d) /WOW 4 ]0((,
while Aut g0 coincides with GL(V0 ). Hence all the elements of S(d) are mutual-
ly equivalent and S(d) /GL(V0 ) 4 ]0(. So, every CR-structure is rigid. Now, let
us compute the cohomology groups. It is a trivial fact that the coboundary op-
erator vanishes. This fact is equivalent to Ker d 1

W 4L0 (V , W), Ker d j11
W 4

Alt 0
j (V , W), Im d j

W 4 ]0(, and hence H 1 (g , q) 4L0 (V , W), H j11 (g , q) 4

Alt 0
j (V , W).

3. In the last part of this Section we give some rigidity results. For this,
we consider the decomposition g4q5q5v. Remind that the space v admits a
real basis ]Xi (.

THEOREM 4.5. – Let g0 be a real Lie-algebra and q a semisimple CR-struc-
ture, such that [q , V] %q. Then q is CR-rigid.

PROOF. – Because of the semisemplicity of q we have that H 1 (q) 4H 2 (q) 4

0, [VA]. Let now consider W�Z 2 (g ; q)OB 2 (g); by definition there is a b�
L0 (V) such that W4d 1 b. Furthermore, W induces a 2-cocycle of Z 2 (q). So,
there is a linear map c : qKq such that d 1

W c4W. In particular, c2b is a
coboundary of q with respect to the adjoint representation: i.e., exists Z�g
such that (c2b)Q4adZ Q, (Q�q.

Let Z4Q1 1Q2 1v, Q1 , Q2 �q, and B4Q2 1Q2. Consider the map s(X) 4

b(X)1 [X , B]. Then s(Q) 4 s(Q) and d 1
W s4d 1

W b4W. Moreover, s(Q) 4
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c(Q)1 [Q , Q2 2Q1 2v] �q. This proves that Z 2 (g ; q)OB 2 (g) 4B 2 (g ; q)
and hence H 2 (g ; q) 40, since the Zarisky tangent space T3 is contained in
B 2 (g). r

The proof is based on the fact that the element Z may be written as a sum
of a real vector B and of an element of the normalizer n(q) 4B 1 (g , q). Hence,
we have the more general

THEOREM 4.6. – Let g0 be a real Lie-algebra and q a semisimple CR-struc-
ture such that g4g0 1n(q). Then q is rigid. r

Remind that when q is semisimple, the normalizer n(q) is the direct sum
q U c(q), where c(q) is the centralizer. Indeed, (X�n(q) adX Nq is a derivation
of q. Hence there exists an element X 8�q, such that adX Nq 4adX 8 Nq (and such
an element is unique). The map W : n(q) Kn(q): X O X 8 is an endomorphism
such that ImW4q and KerW4c(q), the thesis follows.

As a trivial consequence, we get the

COROLLARY 4.8. – Let q be a semisimple Lie-CR-structure of a real Lie-al-
gebra g0 . Then q is rigid.

Such result may be extended to the

EXAMPLE 4.8. – Take a reductive Lie-algebra g. In particular, we have that
g splits as g4u(g)5 Dg: i.e. its radical is abelian since it is the center u(g).
Consequently, any LCR-structure splits analogously: q4u(q)5 Dq, where
u(q) 4qOu(g) and Dq4qO Dg. Both u(q) and Dq may be seen as LCR-
structures of u(g) and Dg, respectively. Thus, they are CR-rigid. Since the ele-
ments of Autg0 preserve the splitting g4u(g)5 Dg, q is CR-rigid, too.

This Example is trivial, whenever g is compact. In fact, in this case, q is
abelian, [GO1].

In the noncompact case, it is more interesting since this is the case of the
CR-semisimple LCR-algebras introduced in [GO3], which are forced to be
rigid.

EXAMPLE 4.9. – In conclusion, consider the «dual» case of the previous
Example. Let q be a reductive Levi-flat CR-structure: q4u(q)5 Dq. Then,
Dq is CR-rigid. Otherwise, Proposition 4.4 assures that u(g) is rigid with re-
spect to v. Since Autg0 preserves the splitting, the CR-structure q is globally
Levi-rigid.
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