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Unique Factorization in Non-Atomic Integral Domains.

D. D. ANDERSON - J. L. MoTT - M. ZAFRULLAH

Sunto. — In un UFD ogni elemento non unitario # 0 puod essere espresso in modo uni-
co nella forma up{* ... pS" dove u ¢ un elemento unitario, 1 p; SONO PriMmi NON ASSO-
ciati e ognt a; = 1. Per studiare questa fattorizzazione in un ambito non atomico, si
prende i esame un certo numero di generalizzazioni della potenza di un primo p".
Per numerose di queste generalizzazioni si prova che st ottiene una forma di fatto-
rizzazione unica e la st mette in relazione, nel caso i cut R ¢ un dominio di inte-
grita, con rappresentazioni di carattere finito di R.

1. — Introduction.

Let R be an integral domain with quotient field K. In a UFD R every nonzero
nonunit « € K may be expressed uniquely as ¢ = up{" ... p;» where u is a unit, the
p;’s are nonassociate primes and each a; = 1. In Section 2 a number of generaliza-
tions of the notion of a prime power p" are given. A nonzero nonunit 7 e R
is defined to be homogeneous if x, y|h and (x, ¥), = R implies x or y is a unit.
We show that a completely primal element % is homogeneous if and only if % is
t-pure, that is, h is contained in a unique maximal ¢-ideal. In Section 3 we show
that if x € R is a product of ¢-pure elements, then x is a product of v-coprime
t-pure elements and that this factorization is unique. We study pre-Schreier
domains in which every nonzero nonunit element is a product of homogeneous
elements. We also investigate the relationship between factorization into the
various building blocks from Section 2 and finite character representations 1 R,
for K.

In general we follow the notation from [11] or [12]. We will freely use well
known results on t-ideals; the results needed are surveyed in [6]. For a nonzero
ideal 7, I,= (I "')"'and I, = U{J,|0 = JcI is a finitely generated ideal}. An
ideal I is called a t-ideal if I = I, and a maximal t-ideal is a proper ideal maximal
in the set of t-ideals. A maximal ¢-ideal is prime. We let t-Max (R) denote the set of

maximal ¢-ideals and Cl;(R) the t-class group of R. Of course, R = Mt M)

Let ¢, y € R; then x and y are (non-)v-coprime if (a, b), =R ((a, b), = R). We
use [, y] to denote the GCD of x and y. If [x, y] = 1, we say that x and y are co-
prime. We write [x, y] # 1 if x and y are not coprime, that is, there is a nonunit
d € Rwith d|x and d | y. Finally, G(R) denotes the group of divisibility of  with its
usual partial order.
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2. — Building blocks.

Let R be an integral domain with quotient field K. A nonzero nonunit x € R is
prime (resp., irreducible or an atom) if for a, be R x|ab=>x|a or x|b (resp.,
2 =ab=>a or bis a unit). Now R is a UFD if (1) R is atomic (i.e., every nonzero
nonunit of R is a product of atoms) and (2) this factorization into atoms is unique
up to order and associates. Various generalizations of UFD’s have been given
where R is an atomic domain satisfying certain conditions on factorization into
atoms weaker than (2); for example, see [2]. Now UFD’s can also be character-
ized by the property that every nonzero nonunit is a product of prime elements
or equivalently that every nonzero nonunit & can be written in the form
x=up{*...pS" where u is a unit, p;, ..., p, are nonassociate primes and each
a; = 1. Each of the p/“, in addition to being a power of a prime, has a number of
other properties, each of which is subject to generalization. Our goal is to study
various generalizations of (unique) factorization into prime powers in integral
domains which need not be atomic. In this section we consider different build-
ing blocks that can replace the notion of prime power.

Now a primary element x (i.e., (x) is a primary ideal) generalizes the notion
of a prime power p”, p a prime element. Integral domains with the property that
every nonzero nonunit is a product of primary elements are called weakly facto-
rial; see [5]. Another property of p™is thatifx, y|p”, then x|y or y|x. With this
in mind, following P. M. Cohn, the third author [13] defined a nonzero nonunit
h € R to be rigid if x, y | h=>x |y or y|x. Evidently an integral domain R is rigid
(i.e., every nonzero nonunit of R is rigid) if and only if R is a valuation domain.
And R is said to be semi-rigid if every nonzero nonunit of R is a product of rigid
elements. While a primary element % need not be rigid, if (%) is P-primary, then
P is a maximal ¢-ideal [3] [Lemma 1] and hence % is contained in a unique max-
imal t-ideal. Let P be a prime ideal of R. In [6] we defined an ideal A to be P-pure
if ApN R =A. Certainly if (k) is P-primary, then (&) is P-pure. Let us call a
nonzero nonunit element & € R t-pure if (k) is P-pure for some maximal ¢-ideal
P . We next observe that & is ¢-pure if and only if & is contained in a unique max-
imal ¢-ideal.

LEMMA 2.1. — Let h be a nonzero nonunit of R. Then h is t-pure if and only if
h is contained in a unique maximal t-ideal.

ProoF. (=) [6, LEMMA 4.2]. — (<) Suppose that M is the only maximal ¢-ideal

containing . Now R = Pet_QaX(R) Rp gives that
hR= (1  hRp= n Rp N hRy2RN ARy,

PetMax(R) L Pet-Max(R) - {M}
so that AR = R N hRy; and hence (k) is M-pure. =

Let us call an integral domain R t-pure (resp., semi-t-pure) if every nonzero
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nonunit of R is t-pure (resp., a product of ¢-pure elements). Evidently R is ¢-pure
if and only if R has a unique maximal ¢-ideal. Although not given a name there, a
number of characterizations of semi-t-pure domains were given in [6, Corollary
4.4]. For example, R is semi-t-pure if and only if R = Pet_gax(R)R p has finite char-

acter, for distinct P, Qet-Max(R), PN does not contain a nonzero prime ideal,
and CL,(R) =0.

For a nonzero nonunit &, put P(h) = {xe R|(x, h), = R}.So P(h) = U {Me
t-Max(R) | e M}. Thus P(h) is an ideal, necessarily a maximal ¢-ideal, if and
only if  is ¢ -pure. Also note that P(k) is an ideal if and only if P(%) is closed un-
der addition, that is, if (x, 2),# R and (y, k), # R, then (x + ¥, h), #Z R. Sup-
pose that & is contained in a unique maximal ¢-ideal P and suppose that x, y|k.
If  and y are both nonunits, then x, y e P (for x, y € P(h) = P) and hence
(¢, y),#R. Thus if «, y|h and (x, y), = R, then x or y is a unit. We define a
nonzero nonunit e R to be homogeneous (resp., strongly homogeneous) if
x, y|hand (x, y), = R (resp., [x, y] = 1) implies that x or y is a unit. We say that
R is (strongly) homogeneous if every nonzero nonunit of R is (strongly) homo-
geneous and that R is semi-(strongly-)homogeneous if each nonzero nonunit
of R is a product of (strongly) homogeneous elements. Clearly a rigid element
is strongly homogeneous and a strongly homogeneous element is homo-
geneous. Thus a (semi-)rigid domain is a (semi-)strongly-homogeneous domain
and a (semi-)strongly-homogeneous domain is a (semi-)homogeneous domain.

To study factorization in a non-atomic setting, P. M. Cohn [9] defined a
nonzero nonunit 7 e R to be primal if h|xy implies k = hy hy where hy |x and
he |y . Thus an atom is primal if and only if it is prime. While a nonunit factor of a
prime, primary, irreducible, rigid, ¢-pure, strongly homogeneous, or homoge-
neous element has the same property, a factor of a primal element need not be
primal (see below). Cohn defined a nonzero nonunit to be completely primal if
each nonunit factor of & is primal. Thus a factor of a completely primal element
is completely primal. Moreover, the product of two completely primal elements
is again completely primal [9, Lemma 2.5]. He also defined an integral domain
to be a Schreier domain if R is integrally closed and every nonzero nonunit of R
is (completely) primal. The third author [16, Lemma 2.5] defined an integral do-
main to be pre-Schreier if every nonzero nonunit is (completely) primal. Per-
haps the most important example of a Schreier domain is a GCD domain.

In [4] we defined a nonzero nonunit ¢ to be a prime quantum if q satisfies @; :
For every nonunit r|q, there exists a natural number n with ¢|7", Q,: For every
natural number n, if r|¢" and s|g", then r|s or s|7, and @3: For every natural
number 7, each element ¢ with ¢|q has the property that if t|ab, then t = ¢, ¢,
where ¢; |a and {5 | b. Thus @, says that each power of ¢ is rigid and @3 says that q
is completely primal (since a product of completely primal elements is com-
pletely primal). A prime power p” is a prime quantum and a prime quantum gq is
P(q)-primary. We defined an integral domain R to be a generalized unique fac-
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torization domain (GUFD) if every nonzero nonunit of R is a product of prime
quanta. Clearly a UFD is a GUFD and a GUFD is weakly factorial and a GCD
domain [4].

The third author [15] considered yet another generalization of a prime
power. He defined a nonzero nonunit x € R to be a packet if \/@ is prime, that
is, there is a unique minimal prime over (x). He studied GCD domains, called
unique representations domains, with the property that every nonzero
nonunit is a product of packets.

The various generalizations of a prime element are indicated in the diagram
below (Figure 1).

We note that in Figure 1, only the obvious implications hold. Let k¢ K be a
field extension with [K: k] < o, so R =k + XK[X] is a one-dimensional local
domain. Let & = X?, so h is primary (but not prime nor irreducible) and hence is
homogeneous, but % is not strongly homogeneous since IX|X? for each le K*
but [X, (X] =1 for [e K — k. Also, note that £ is primal but not completely pri-
mal. Hence % is not a prime quantum. Next, let R =7, + (X, Y) Q[X, Y]
where p is prime. Let & = XY. Then £ is strongly homogeneous but not rigid.
Now every nonzero nonunit of a valuation domain is rigid, -pure and a packet,
but such an element need not be irreducible nor primary. Finally, let R be a

prime

N

irreducible prime power

rigid <——— prime quantum ——— completely primal

/ \ \

strongly homogeneous primary primal

\ / D

homogeneous <~——— ¢-pure

Figure 1.
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UFD

atomic domain

GCD domain

GUFD \
/ \ Schreier domain

semi-strongly-homogeneous
domain

\ / pre-Schreier domain

semi-¢t-pure domain

semi-rigid domain

weakly factorial domain

semi-homogeneous domain

Figure 2.

Dedekind domain with CI(R) = Z/27 and let M and N be distinct nonprincipal
maximal ideals of R. Then MN is principal, say MN = (h). Now #& is irreducible
and hence homogeneous but 7 is not ¢-pure.
Corresponding to Figure 1, we have Figure 2 above showing the various
generalizations of UFD’s. Again, the only implications are the obvious ones.
We next show that when dealing with completely primal elements there is
no distinction between homogeneous and strongly homogeneous elements.

PROPOSITION 2.2. — Let x € R be completely primal and let 0 #yeR. If
(x, y), # R, then there exists a nonunit h € R with h|x and h|y, so [x, y] #= 1.
Hence a completely primal element h is homogeneous if and only if it is
strongly homogeneous.

ProOF. — The first statement follows from [8, Corollary 2.2(2)] restated for
integral domains. The second statement follows since a factor of a completely
primal element is completely primal. =

THEOREM 2.3. — Let 0 # h € R be a nonunit completely primal element. Then
the following are equivalent:
(1) & is homogeneous,
(2) I is strongly homogeneous,
3) h is t-pure.
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PROOF. — (1) <> (2) Proposition 2.2. (3)=>(1) Lemma 2.1. (1)=>(3) It suffices to
prove that P(h) = {xe R|(x, k), # R} is an ideal for then P(%) is the unique
maximal ¢-ideal containing /. Since P(h) is closed under multiplication, it suf-
fices to show that (a, k), # R and (b, &), # R implies that (a + b, k), # R. Since
h is completely primal, by Proposition 2.2 there exist nonunits a and  of R with
ala, h and B|b, h. Now h is homogeneous and a and S are nonunits, so
(a, ), # R. Thus a completely primal (for it is a factor of /) gives a nonunit H e
R with H|a, . Thus H|a + b and H|h gives (a + b, h), = R.

COROLLARY 2.4. — Let R be a GCD domain and let 0 # h e R be a nonunit.
Then the following are equivalent:

(1) & is homogeneous,

(2) h s strongly homogeneous,
(3) h is t-pure,

4) his rigid.

PRrOOF. — Since & is completely primal, (1)-(3) are equivalent. (4)=>(1)
This holds for any integral domain. (2)=>(4) Let & be strongly homogeneous
and suppose that x, ¥ |h. Put d =[x, y]. Then x/d, y/d | and [x/d, y/d] = 1.
Sox/d ory/dis aunit and so x|y or y|x. ™

However, unlike the case for GCD domains, we cannot add «k is rigid» to
Theorem 2.3. For take R = Q + Pp where P = { fe R[X; Q]| f has zero con-
stant term}. Then [16], R is a pre-Schreier domain (which is not a Schreier do-
main) with Pp its unique maximal ¢-ideal. So every nonzero element of Pp is com-
pletely primal and homogeneous, but no nonzero element of Pp is rigid.

3. — Uniqueness of factorizations.

When considering factorization into elements from Figure 1 (Section 2),
only factorization into primes is necessarily unique. However, it is easily seen
that factorization into prime powers is unique once powers of associated primes
are combined, that is, if x = 1, p{1...p% = A,q ...q% where 1, and 1, are units,
the p;’s and ¢;’s are prime with p; and p; (resp., g; and ¢;) nonassociates for i # j
and each a;, b; = 1, then n = s and after reordering, if necessary, p; and g¢; are
associates and a; = b;. A similar result is also true for factorization into primary
elements; see [5, page 146]. In both cases, the uniqueness comes after elements
with the same radical (or which are non-v-coprime) are combined. We can also
do the same thing with ¢-pure elements.
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THEOREM 3.1. — Let R be an integral domain.

1) If x and y are P-pure where P is a maximal t-ideal, then xy is again
P-pure.

(2) If 0 # x € R is a product of t-pure elements, then x is a product of v-co-
prime t-pure elements.

(3) Suppose that x=x,...x, =1y ...Y,, where each x;, y; is t-pure and
x;, x; (resp., y;, Y;) are v-coprime for i = j. Then n =m and after reordering, if
necessary, x; and y; are associates.

ProorF. — (1) Clearly xy € P. If xy € N for some other maximal {-ideal N = P,
then € e N or y e N and hence x or y is not P-pure (Lemma 2.1), a contradic-
tion.

(2) Let x =, ...x, where «; is t-pure. Let My, ..., M, be the necessarily
finite set of maximal t-ideals involved and let y; = [1{x; |«; is M;-pure}. Then
x=1Y;...Ys, each y; is M;-pure (and hence {-pure) and for ¢ #j, y; and y; are
V-coprime.

(8) Suppose that x =« ...x, where x; is M;-pure (M; a maximal t-ideal)
and ; and x; are v-coprime for ¢ #j. Then {M, ..., M, } is precisely the set of
maximal ¢-ideals containing x. Now xRy, =wx;...x, Ry, =x; Ry, so v;R=
x; Ry, N R = xRy, N R. This shows that (up to associates) x; depends only on x
and M; and hence the uniqueness result follows.

COROLLARY 3.2. — Suppose that x € R is a finite product of completely pri-
mal homogeneous elements. Then x is uniquely expressible as a finite product
of mutually coprime completely primal homogeneous elements.

We next consider the integral domains in which every nonzero nonunit is a
product of t-pure elements. But first some definitions. An integral domain R has

t-finite character (or is t-locally finite) if R = » “Q " Rp has finite character

or equivalently if each 0 # x € R is contained in only finitely many maximal ¢-
ideals. We say that R is t-independent if for distinct P, @ et-Max(R), P N Q
contains no nonzero prime ideal. Since a prime ideal minimal over a principal
ideal is a t-ideal, R is t-independent if and only if for distinet maximal ¢-ideals P
and @, there is no prime t-ideal contained in P N Q. Hence R is t-independent if
and only if each prime t-ideal is contained in a unique maximal ¢-ideal.

Now in general, if N is a maximal ¢-ideal of R, Ny need not be a maximal ¢-
ideal of Ry; see [17, Proposition 4.3]. However, we next show that this cannot
happen if R has t-finite character.

LeEmMA 3.3. — Suppose that R has t-finite character. If N e t-Max (R), then
Ny et-Max (Ry). Thus if R has t-finite character, R is a finite character inter-



348 D. D. ANDERSON - J. L. MOTT - M. ZAFRULLAH

section of localizations of R such that the maximal ideal of each localization is
a t-ideal. Conversely, if R = Qﬂg R where the intersection has finite character

and S s a set of prime ideals of R such that no two elements of S are comparable
and for each Q € 8, Qq is a maximal t-ideal of Ry, then S = t-Max (R) and hence
R has t-finite character.

PROOF. — Since R = u th (R)RM has finite character, by [1, Theorem 2(4)]

the star operation given by I * = ” tQ (R)(IRM)t has finite character. Now for
€ {-Max

NetMax(R), N=N*= (1 (NRyy,=_ [ RyN(NRy),. Thus
M et-Max(R) M t-Max(R)
(NRy), # Ry, 50 NRy is a maximal t-ideal of Ry. *

For the last statement it suffices to prove that each @ € S is a t-ideal, for
then by [6] § ={-Max (R). We show that if Q is a {-ideal, then Q is a t-ideal.
Let qi, ..., q,€Q. If xe(qy, ..., q.),, then x[R:(q, ..., q,)]CR. Hence
©[Ro:(q1, .-y @)l =®[R:(qy, ..., ¢.)gCRq so wxe((q, ..., ¢.) Rg),CQq
since Qq is a t-ideal. Thus re RN Qy=Q. So (g, ..., ¢,),CQ and hence Q is a
t-ideal. =

THEOREM 3.4. — For an integral domain R the following conditions are
equivalent.

(1) R is semi-t-pure, i.e., every nonzero nonunit of R is a product of
t-pure elements.

(2) Every nonzero nonunit of R can be written uniquely (up to order and
assoctiates) as a product of mutually v-coprime t-pure elements.

(3) R has t-finite character, is t-independent and has Cl;(R) = 0.
(4) R s a finite character intersection Qﬂ R, for some set S of indepen-
es

dent primes (i.e., for distinct P, Q€ S, P N Q contains no nonzero prime ide-
al), each Rg is t-pure (i.e., each nonzero nonunit of Ry is t-pure) and Cl,(R) = 0.

PROOF. — (1) <> (2) Theorem 3.1. (1) < (3) [6, Corollary 4.4]. (3) <> (4) Lem-
ma3d3. N

We next consider the integral domains in which every nonzero nonunit is a
product of completely primal homogeneous elements. Such domains are of
course semi-homogeneous pre-Schreier domains.

LeEmMA 3.5. — If R is pre-Schreier, then CL,(R) = 0.

ProoF. — This follows immediately from [16, Corollary 3.7] since if A is ¢-in-
vertible, then both A, and A ~! are finite type v-ideals. ®
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Lemma 3.5 offers another proof of the result that R[X] pre-Schreier=R is
integrally closed. For if R[X] is pre-Schreier then Cl,(R[X]) = 0. Thus the nat-
ural map Cl;(R) — Cl;(R[X]) is an isomorphism and hence R is integrally closed
[10, Theorem 3.6].

THEOREM 3.6. — Let R be a t-finite character, t-independent integral
domain. Then R is (pre-)Schreier if and only if CL,(R)=0 and R, 1is
(pre-)Schreier for each M € t-Max (R).

Proor. — It suffices to prove the pre-Schreier case since R is integrally
closed < each Ry (M et-Max(R)) is integrally closed. (=) The fact that
CL(R) =0 follows from Lemma 3.5. And if R is pre-Schreier, so is Rg for any
multiplicatively closed set S [9, Theorem 2.6].

(«=) Let M et-Max(R) and let x be M-pure. It suffices to prove that x is pri-
mal since every nonzero nonunit of R is a product of -pure elements. Suppose
that x|a; a, in R. Then since R, is pre-Schreier, in i), we have x = x; &, where
x; | ;. Put @; = ¢; /d; where c;, d; € R with d; e M. Now since R has t-finite char-
acter, is t-independent and has Cl;(R) = 0, every nonzero nonunit has a unique
factorization (up to units and order) into mutually v-coprime t-pure elements.
Let ¢; be the M-pure factor of c; (i.e., Rc; = ¢; Ry N R). Now since d; dyx = ¢, ¢
and d, d, ¢ M, we get x = ¢; ¢; (perhaps after modifying ¢, by a unit of R). Now
¢; /d; = x; |a; so (¢; /d;)(r; /s;) = a; where 7;, s;€ R with s;¢ M. So r;¢; = d;s;a;.
Let »/ be the M-pure factor of r;. Since d; s; ¢ M, r; ¢; is the M-pure factor of a;.
So 7/ ¢/ |a;. Thus ¢/ |a; and x is primal. =

For an alternative proof of Theorem 3.6, observe that for R t-finite character
and t-independent with CL(R) =0, G(R) is order-isomorphic to the cardinal

sum » t@? & G(Rp). Thus if each Rp is pre-Schreier, then each G(Rp) is a Riesz

group. Hence G(R) = @ G(R)) is a Riesz group and thus R is pre-Schreier.

COROLLARY 3.7. — For an integral domain R the following are equivalent.

(1) R is a pre-Schreier semi-homogeneous integral domain.

(2) Every nonzero nonunit of R may be written uniquely as a product of
mutually coprime completely primal homogeneous elements.

(3) R s a t-finite character, t-independent pre-Schreier domain.

(4) R s a finite character intersection Qﬂ R, for some set S of indepen-
es

dent prime ideals such that each Rq is a homogeneous pre-Schreier domain
and Cl,(R) =0.

Proor. - (1)=(2) Corollary 3.2. (2)= (1) This follows from the facts that
products of completely primal elements are completely primal [9] and that R is
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by definition a pre-Schreier domain if and only if every nonzero element of R is
primal. (1)<(3) This follows from Theorem 2.3 and Theorem 3.4. (3)=(4) Theo-
rem 3.6. (4)=(3) Lemma 3.3 and Theorem 3.6. =

Suppose that R is a t-finite character, t-independent domain. Now for M e
t-Max (R), My, € t-Max (Ry;). Thus R), is a GCD domain if and only if R, is a val-
uation domain. Hence if R is a GCD domain, each R, is a valuation domain and
thus R is an independent ring of Krull type (.e., R= R p, Where the intersec-
tion has finite character, each Rp is a valuation domain, and for a = 8, P, N Py
contains no nonzero prime ideal). Conversely, suppose that for each Me
t-Max(R), R is a valuation domain. Then R is a GCD domain < CL(R) =0< R
is pre-Schreier. Indeed, we always have for any domain R: GCD domain =
Schreier = pre-Schreier = Cl,(R) = 0. But if R is t-finite character, t-indepen-
dent with Cl;(R) =0, then G(R) is order-isomorphic to Pet.@x (R)G(R ) [6,

Corollary 4.4] and hence is lattice ordered. Thus R is a GCD domain. Also, note
that if R is weakly Krull G.e., R= (1  Rp has finite character where X V(R)

PeXV(R)
is the set of height one primes of R), then R has ¢-finite character and is ¢-inde-

pendent. For if R is weakly Krull, then by [6, Lemma 2.1] XV(R) =
t-Max (R).

COROLLARY 3.8. — For an integral domain R the following are equivalent.

1) R is a semi-rigid GCD domain.

(2) R s a semi-t-pure GCD domain.

(3) R is a GCD domain that is an independent ring of Krull type.
(4) R is an independent ring of Krull type with Cl,(R) = 0.

PrOOF. - (1)< (2) Corollary 2.4. The equivalence of (2)-(4) follows from
Theorem 3.4 and the remarks preceding Corollary 3.8. =

The implication (1)=(2) is given in [13, Theorem 5] and the implication
(3)=(1) is given in [14, Theorem B].

Kaplansky [12, Theorem 5] proved that R is a UFD if and only if every
nonzero prime ideal of R contains a (nonzero) prime element. For each of the
properties ( * ) of an element given in Figure 1 of Section 2 we can ask whether
every nonzero nonunit of an integral domain R is a product of elements having
property ( * ) if and only if each nonzero prime ideal of R contains a (nonzero) el-
ement with property ( * ). By Kaplansky’s Theorem this is the case where ( =) is
«prime» or «prime power». And by [4, Theorem 9], R is a GUFD if and only if
each nonzero prime ideal contains a prime quantum. Further Kaplansky-like
theorems are investigated in [7].

The example R =k + XK[[X]] given in Section 2 shows that even if R has a
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unique nonzero prime ideal and this prime ideal contains a primal element,
every nonzero nonunit need not be a product of primal elements. However, in
Theorem 3.9 below, we show that you can take ( %) to be «completely primal».
Let R be a Krull domain with Cl(R) finite but nontrivial. For each P e X'V(R),
some P is principal. Thus each nonzero prime ideal of R contains a primary
(and hence t-pure) element. But R is not semi-t-pure nor weakly factorial. Also,
each prime ideal contains a packet, but each nonzero nonunit is not necessarily a
product of packets. Here the problem is that Cl,(R) = CI(R) # 0. However, on
the positive side, we have the following theorem.

THEOREM 3.9. — Let R be an integral domain.

(1) R is semi-t-pure if and only if each nonzero prime ideal of R contains
a t-pure element and Cl,(R) = 0.

(2) R is pre-Schreier if and only if each nonzero prime ideal contains a
completely primal element.

(3) R is a semi-homogeneous pre-Schreier domain if and only if each
nonzero prime ideal of R contains a completely primal homogeneous ele-
ment.

Proor. — (1) (=) Clear. (<) By [6, Theorem 4.3] R has t-finite character and
is t-independent. Since CL;(R) = 0, R is semi-t-pure by [6, Corollary 4.4].

(2) Apply [7, Theorem 1] where () is the property «completely pri-
mal».

(3) (=) Clear. (<) By (2), R is pre-Schreier. Then by (1) R is semi-t-pure
and hence semi-homogeneous. ®

Let R be the semigroup ring Q[X;({1/2" |n=0}, QN [1.1, o))] and let
P = {fe R|f has zero constant term}. Then Rp is a one-dimensional quasilocal
domain that is not atomic. However, Pp contains the atom X*!. It can easily be
checked that X! cannot be written as a product of strongly homogeneous (and
hence rigid) elements. Thus Rp is neither semi-rigid nor semi-strongly-homo-
geneous.
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