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p-Minimising Tangent Maps and Harmonic %-Forms.

STEFANO MONTALDO (¥*)

Sunto. — St studiano le applicazioni p-tangenti da R™ a S" date come estensioni omogenee
di k-forme armoniche. Vengono ricavate condizioni necessarie sul grado k affinche
tali applicazioni p-tangenti siano di energia minima. Una classificazione completa
vigene data nel caso in cui tali applicaziont tangenti di energia minima vadano da
RS su S

1. - Introduction.

Let(M™, g),(N", h)be two Riemannian manifolds of dimensions m and » re-
spectively. By J. Nash’s Theorem [10] we can always assume that (N, &) is iso-
metrically embedded in some Euclidean space R?. For 2 < p < o, define (see [4])

LM, N):={ue (M, R?): w(x) e N for almost all; xeM},

where £7(M, R?) is the Sobolev space of equivalence classes of p-integrable
maps whose first derivatives are p-integrable. Thus, an element of .£7(M, N) is
in fact an equivalent class of maps defined almost everywhere on M, two maps
being equivalent if they agree almost everywhere. Note that, if 1 >m /p, then
LM, N)cC "M, N).Amapue £P(M, N)is called continuous if its class con-
tains a continuous representative.

Let 2 ¢ M be a compact domain. The p-energy of a map u e £4(M, N) over 2
is the number

1
By, @ =~ [ laulp v, .
Pao

A map u e £Y(M, N) is said to be weakly p-harmonic (see [3]) if it is a critical
point of the p-energy over every compact domain QcM, ie. for any ne
C* (M, R?) with compact support £ and the corresponding variation u,(x) =
wo(u(x) +tn(x)), the first variation DyE(u, Q) = (d/dt)(E(u;, 2))|;~¢=0.
Here = is the orthogonal projection of R? onto N (well defined for ¢ small
enough).

(*) The author was supported by a grant from I.N.D.A.M., Italy.
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A weakly p-harmonic map u e £Y(M, N) is called p-energy minimising if
E,(u) < E,() for every u € £/(M, N) such that the support of (u — %) is con-
tained in a compact subset of M.

Given a p-energy minimising map » a basic question is whether it is regular,
i.e. continuous. If m < p, then every L-map is continuous; if m < [p] + 1, where
[a] denotes the integer part of a, then any p-energy minimising map is continu-
ous [7]. For the case N =S§" R. Schoen and K. Uhlenbeck [13] proved that if
m < d(n), where

(1.1) d(2)=2, d3)=3, dn)=[1+min{n/2,5}] for n>3,

then any 2-energy minimising map is continuous.

In general, a p-energy minimising map in not continuous. However the be-
haviour around singular points is understood, as follows.

Let £7 1,.(R™, N™) the space of measurable maps whose restriction to each
compact subset is L.

DEFINITION 1.1. - Amap w e £ |, (R™, N") is called a p-tangent map if u is

1, loc
weakly p-harmonic and 9 /dr =0, where r denotes the radial coordinate, i.e.

ﬁ(x):u(i) =UoTR ,
||

where u: S™1— N is a weakly p-harmonic map.

Note that a tangent map u(x) = u(x/|x|) has a singularity at 0 if and only if
2 is non-constant. A p-tangent map u: R™ — N is a p-minimising tangent map
if it is p-energy minimising as a weakly p-harmoniec map.

THEOREM 1.2 (Y) [7]. — Let fe LY(M, N) be a p-energy minimising map,
and let B™ a geodesic ball centred at a singular point x,. Then there exists a se-
quence {0 ; }iZ,, which converges to 0, such that u;: B™—N, defined by u;(x) =
f(exp,,(0;%)), converges to a p-minimising tangent map in £Y(B™, N) as
17— oo,

Theorem 1.2 shows that the study of p-minimising tangent maps is an essen-
tial tool in the regularity theory of weakly p-harmonic maps.

The aim of this note is to study a particular class of p-minimising tangent
maps to the n-dimensional sphere. Part of this note is devoted to the case when
p = 2. In this case a 2- harmonic map is just a harmonic map and we shall write
minimising instead of 2-minimising ete.

()) The Theorem was first proved for the case when p = 2 by Schoen—Uhlenbeck [12].
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2. — p-minimising tangent maps and harmonic k-forms.

We first prove a necessary conditions for amap % = u o rg: R”— S" to be a
p-minimising tangent map.

LeEmMA 2.1 [13]. — Let q be a positive integer. Then

N2 ,.q—1
O_"((p)'r dT<(q_2)2

4

inf

)

f¢2rq*3dr
0

where the infimum is taken over all non zero functions ¢ € C* (R™) with com-
pact support.

LEMMA 2.2. — Let w =uomg:R"—S8" be a p-minimising tangent map.
Then

(n+p—2)f|dﬂ|’”‘2|V¢|2dac—(n—p)f¢2|dﬁ|”dx>0,

R R

Sfor any function ¢ € C* (R™) with compact support.

ProOOF. — The proof follows using the same argument in [13 Theorem 2.4]
adapted to the p-harmonic case (see also [9]). =

THEOREM 2.3. — Let m >n and let 4 = u owg: R™—S" be a p-minimising
tangent map. Then the energy of u satisfies the following inequalities:

_oy2

E(u)$2(nn_2) (m42) Sk for n>p=2;
_ _ 2

E,(u) < U iz;nj;; 2) (m4p) E, ;(u) for n>p>2;
_ _ 2

Bz ;z;"fni; 2) (m4p) E, ,(u) for p>n>2.

where |S™ 1| is the volume of S™ 1.



334 STEFANO MONTALDO

ProoF. - By Lemma 2.2, choosing ¢ to be a function of » = |x| we have

m+p-—2)p- 2)Ep,2(u)f(qb’)zrm‘p”dfr—p(n -p) Ep(u)fqbzrm‘p‘ldra 0.
0 0

That is,
( r)27,.m7p+1d,r
(p—2)(%+20—2)0f¢
E,(u) < — E, ;(uw) for p<n,
p(n —p)
f¢27.m7p71d1,.
0
or
( /)2Tw17])+1d1,,
(p—2)(n+p—2)0f¢
E'p(u)z — Ep_z(u) for p>mn.

p(p —n) f(pz/y'm_p_ld/r

0

Finally using Lemma 2.1 (with ¢ =m — p +2) we get immediately the re-
sult. =

DEFINITION 2.4 (see [5]). — (i) We say that f: S~ !— S" is a (homogeneous)
polynomial map if it is the restriction of a map F: R™—R**! whose compo-
nents F'*: R™— R are homogeneous polynomials.

(ii) Amap f: S™ !— S"is a harmonic k-form if each F *is a harmonic ho-
mogeneous polynomial of common degree k.

We have the following.

PROPOSITION 2.5 (See [1] and [8]). — Let f: S™~'— S" be a harmonic k-form,
then f1s a p-harmonic map and the p-energy is given by

k(k + m — 2) P2
Ep(u)z(( +7/}; )) |Sm71|.

REMARK 2.6. — A harmonic 1-form is called a harmonic linear form. If m =2
and n = 1, then all harmonic linear forms f: S'—S?! are the restriction to S!
of an element F e O(2). If n > 1, the harmonic linear forms f: S!— S" are the
restriction to S' of an element F e O(R?, R"*') = {AeM, , (R): AA"=1}.
The resulting harmonic linear form f: S'— S" is a totally geodesic embedding
of S'in S™.
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In contrast if m >n + 1 there are no harmonic linear forms f: S"™ !—S",
This because a linear map F': R"—R"*! carrying S™ ! to S" must be injective.

From Theorem 2.3 and Proposition 2.5 we have immediately

THEOREM 2.7. — Let m >nand m = [p]l + 1. Letu = u o g: R™—S" be a p-
minimising tangent map, where u: S™~1— S"is a p-harmonic k-form. Then k
satisfies the following inequalities:

(n+p—2) (m—p)y

kk+m—-2) < for p<mn;
(n—p) 4
@ (n+p—2) (m—p)?
k(k+m—2) = nre mep for p>mn.
(p—mn) 4

3. — p-minimising tangent maps and Hopf forms.

DEFINITION 3.1 [5]. — An orthogonal multiplication is a bilinear map
[ RPEXRI—-R"
which is norm-preserving:
|fle, y)| = |x||y| for all teR?, yeR?.
The Hopf construction on an orthogonal multiplication f is the map
F: RRXRI>R"X R=R"*!
given by
Fx,y) =(|x|* = |y|* 2f (@, y).
Because |F(x, y)|*= (|x|*+ |y|?) its restriction defines a map
H: spra-lgn

also called the Hopf construction on f.

ExAMPLE 3.2. — We list three basic examples of Hopf construction.

1) (The complex Hopf map) The Hopf map H,: S*— S?is defined by the
restriction to

S ={(z, w)eC? |z|*+ |w|*=1}
of
Hy(z, w) = (|22 — |w|? 22w) e Rx C=R3.
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2) (The quaternionic Hopf map) Let H be the skew-field of quaternions.
The Hopf map H,: S”"— S*is defined by identifying R® as H x H and taking the
restriction to

ST={(q1, @) e B | [*+ |g2[*=1}
of
Hi(q, &)= (g1 = |2 |*, 2:3) e RXx H=R".
3) (The Cayley Hopf map) Define the Cayley space by
Cay={A=(q,p) q,peH}.

The Hopf map Hg: S'*— S*is defined by identifying R as Cay x Cay and tak-
ing the restriction to

815: {(AlaAZ) ECCL?/ZZ |A1 |2+ |A2 |2: 1}
of
HS(AI’AZ) = (lAl |2_ |A2 |2, zAIZZ)ERXCG/y:Rg.

All three Hopf maps are quadratic forms.

REMARK 3.3. — In [11], M. Parker classified orthogonal multiplications R™ X
R™—R" for m =2, 3. In particular, for m =3 and n = 4, there is essentially
only the multiplication of purely imaginary quaternions, and the Hopf construc-
tion provides a quadratic form f: S®?—S*. For general constructions of har-
monic k-forms see also [6].

A quadratic form f: SPT¢"1—S8" is a Hopf form if, modulo orthogonal
transformation, it is obtained from the Hopf construction on an orthogonal

multiplication.

THEOREM 3.4 [14]. — Every quadratic form f: S™—S" is homotopy equiva-
lent to a Hopf form.

3.1. The case p =2.

THEOREM 3.5. — Let

6(n —2 [2n —2
m—-—1>n>2 and dn) <m<2+ (n )( " +1),
n n—2
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where d(n) is given in (1.1). Let u = u orz: R™—S" be a minimising tangent
map which is the homogeneous extension of a harmonic k-form w: S™~1—8™,
Then u 1s homotopy equivalent to a Hopf form.

PRrOOF. — From Theorem 3.4 we only have to prove that u is a quadratic form,
i.e. k =2. From the first inequality (2.1) (with p = 2) the greatest value of & is

kmax:m—Z /2%—2_1 .
2 n—2

6(n —2 -
N (n )( 2n 2+1),thenkmax<3.Hencewehavek=10r2,

Ifm<2
n n—2

and from Remark 2.6 the case k =1 is excluded. =

Suppose m = 2n, then the first inequality (2.1) becomes

n(n —1)>°

3.1 k(k+2n—-2)<
(3.1 h+2n=2) <~

Tabulating » from 3 to 8 and using (3.1) we have the following table:

n possible k&

3 2

4 2
(T) 5 2

6 2

7 2 and 3

8 2 and 3

We have immediately the following corollary of Theorem 3.5.

COROLLARY 3.6. — Let 3<n<6, and let u=uomy: R*—S" be a
minimising tangent map which is the homogeneous extension of a harmonic
k-form. Then u is homotopy equivalent to a Hopf form.

The most interesting case is when 7 is a power of two. In this situation
P. Yiu [15] proved that (i) if » = 16 is a power of 2, then any quadratic form
f: S§*"~1— 8" is constant, (ii) if n =2, 4, 8, then any non constant quadratic
form f: S*"~1—S" is (up to isometries) the Hopf map. Moreover, J. M. Coron
and R. Gulliver [3] proved that the homogeneous extension of the Hopf map H,,
(n =2, 4, 8) is a minimising tangent map.
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THEOREM 3.7. — A non-constant tangent map u =u o wy: R¥—S% with u a

harmonic k-form, is a minimising tangent map if and only if u is the Hopf
map H, (up to isometries).

ProoF. - If u is the Hopf map H, then % is a minimising tangent map, this is
the result of Coron and Gulliver. Conversely, assume that % is a minimising
tangent map, then from the Table (T) u is a quadratic form and from Yiu’s result
u is the Hopf map H,. =

In the same way we have

PROPOSITION 3.8. — Let U = u o w: R — S8 be a minimising tangent map,
with w a harmonic k-form. Then w is the the Hopf map Hg or a harmonic
3-form.

REMARK 3.9. — It is not known whether there is any 3-form u: S®— S8
although some general constructions of 3-forms have been developed [2].

3.2. The case p > 2

PROPOSITION 3.10. — Let w =uomy: RE—S* be a p-minimising tangent
map, where w: ST— S* is a p-harmonic k-form. Let a be the real root of

(p+2)(p—8)*—108(4 —p) =0.

Then, if 2 <p<a=2.797, u is the Hopf map H,.

Proor. - If 2 < p < a, from the first inequality (2.1) the degree k < 3, which
implies that » is the Hopf map. =

PROPOSITION 3.11. — Let w = H, omy: R*"—S" (n=2, 4, 8) be the homo-
geneous extension of the Hopf map H,: S*"~1—S" with p>n. If p satisfies:

G.(p)=(n+p-2)p—2ny—16np—-n) >0,

then u is not a p-minimising tangent map.

Proor. — If  is a p-minimising tangent map and G,(p) > 0, from the second
inequality (2.1) the degree k > 2, which excludes the Hopf maps. ®
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REMARK 3.12. — For n =2, 4, 8, the values of p such that G,(p) >0 are
shown in the following table.

n p such that G,,(p) >0
2 2<ps 2219
4 4<ps 4989
8 8 <p =< 11.150
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