Bollettino

Unione Matematica Italiana

Stefano Montaldo
 p-minimising tangent maps and harmonic k-forms

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 2-B (1999), n.2, p. 331-339.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_1999_8_2B_2_331_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

p-Minimising Tangent Maps and Harmonic k-Forms.

Stefano Montaldo (*)

Sunto. - Si studiano le applicazioni p-tangenti da $\mathbb{R}^{m} a \mathbb{S}^{n}$ date come estensioni omogenee

 di k-forme armoniche. Vengono ricavate condizioni necessarie sul grado k affinche tali applicazioni p-tangenti siano di energia minima. Una classificazione completa viene data nel caso in cui tali applicazioni tangenti di energia minima vadano da \mathbb{R}^{8} su \mathbb{S}^{4}.
1. - Introduction.

Let $\left(M^{m}, g\right),\left(N^{n}, h\right)$ be two Riemannian manifolds of dimensions m and n respectively. By J. Nash's Theorem [10] we can always assume that (N, h) is isometrically embedded in some Euclidean space \mathbb{R}^{q}. For $2 \leqslant p<\infty$, define (see [4])

$$
\mathfrak{L}_{1}^{p}(M, N):=\left\{u \in \mathfrak{L}_{1}^{p}\left(M, \mathbb{R}^{q}\right): u(x) \in N \text { for almost all; } x \in M\right\},
$$

where $\mathscr{L}_{1}^{p}\left(M, \mathbb{R}^{q}\right)$ is the Sobolev space of equivalence classes of p-integrable maps whose first derivatives are p-integrable. Thus, an element of $\mathfrak{L}_{1}^{p}(M, N)$ is in fact an equivalent class of maps defined almost everywhere on M, two maps being equivalent if they agree almost everywhere. Note that, if $1>m / p$, then $\mathfrak{L}_{1}^{p}(M, N) \subseteq C^{0}(M, N)$. A map $u \in \mathscr{L}_{1}^{p}(M, N)$ is called continuous if its class contains a continuous representative.

Let $\Omega \subseteq M$ be a compact domain. The p-energy of a map $u \in \mathscr{L}_{1}^{p}(M, N)$ over Ω is the number

$$
E_{p}(u, \Omega)=\frac{1}{p_{\Omega}} \int_{\Omega}\|d u\|^{p} d v_{g}
$$

A map $u \in \mathscr{L}_{1}^{p}(M, N)$ is said to be weakly p-harmonic (see [3]) if it is a critical point of the p-energy over every compact domain $\Omega \subseteq M$, i.e. for any $\eta \in$ $C^{\infty}\left(M, \mathbb{R}^{q}\right)$ with compact support Ω and the corresponding variation $u_{t}(x)=$ $\pi \circ(u(x)+t \eta(x))$, the first variation $D_{V} E(u, \Omega)=\left.(d / d t)\left(E\left(u_{t}, \Omega\right)\right)\right|_{t=0}=0$. Here π is the orthogonal projection of \mathbb{R}^{q} onto N (well defined for t small enough).
(*) The author was supported by a grant from I.N.D.A.M., Italy.

A weakly p-harmonic map $u \in \mathfrak{L}_{1}^{p}(M, N)$ is called p-energy minimising if $E_{p}(u) \leqslant E_{p}(\bar{u})$ for every $\bar{u} \in \mathfrak{L}_{1}^{p}(M, N)$ such that the support of $(u-\bar{u})$ is contained in a compact subset of M.

Given a p-energy minimising map u a basic question is whether it is regular, i.e. continuous. If $m<p$, then every L_{1}^{p}-map is continuous; if $m<[p]+1$, where [a] denotes the integer part of a, then any p-energy minimising map is continuous [7]. For the case $N=\mathbb{S}^{n}$ R. Schoen and K. Uhlenbeck [13] proved that if $m \leqslant d(n)$, where

$$
\text { (1.1) } d(2)=2, \quad d(3)=3, \quad d(n)=[1+\min \{n / 2,5\}] \quad \text { for } n>3,
$$

then any 2-energy minimising map is continuous.
In general, a p-energy minimising map in not continuous. However the behaviour around singular points is understood, as follows.

Let $\mathscr{L}_{1, \text { loc }}^{p}\left(\mathbb{R}^{m}, N^{n}\right)$ the space of measurable maps whose restriction to each compact subset is L_{1}^{p}.

Definition 1.1. - A map $\bar{u} \in \mathscr{L}_{1, \text { loc }}^{p}\left(\mathbb{R}^{m}, N^{n}\right)$ is called a p-tangent map if \bar{u} is weakly p-harmonic and $\partial \bar{u} / \partial r=0$, where r denotes the radial coordinate, i.e.

$$
\bar{u}(x)=u\left(\frac{x}{|x|}\right)=u \circ \pi_{\mathbb{R}}
$$

where $u: \mathbb{S}^{m-1} \rightarrow N$ is a weakly p-harmonic map.
Note that a tangent map $\bar{u}(x)=u(x /|x|)$ has a singularity at 0 if and only if u is non-constant. A p-tangent map $\bar{u}: \mathbb{R}^{m} \rightarrow N$ is a p-minimising tangent map if it is p-energy minimising as a weakly p-harmonic map.

Theorem $1.2\left({ }^{1}\right)$ [7]. - Let $f \in \mathfrak{L}_{1}^{p}(M, N)$ be a p-energy minimising map, and let B^{m} a geodesic ball centred at a singular point x_{0}. Then there exists a sequence $\left\{\sigma_{i}\right\}_{i=o}^{\infty}$, which converges to 0 , such that $\bar{u}_{i}: B^{m} \rightarrow N$, defined by $\bar{u}_{i}(x)=$ $f\left(\exp _{x_{0}}\left(\sigma_{i} x\right)\right)$, converges to a p-minimising tangent map in $\mathfrak{L}_{1}^{p}\left(B^{m}, N\right)$ as $i \rightarrow \infty$.

Theorem 1.2 shows that the study of p-minimising tangent maps is an essential tool in the regularity theory of weakly p-harmonic maps.

The aim of this note is to study a particular class of p-minimising tangent maps to the n-dimensional sphere. Part of this note is devoted to the case when $p=2$. In this case a 2 - harmonic map is just a harmonic map and we shall write minimising instead of 2-minimising etc.
$\left.{ }^{(}{ }^{1}\right)$ The Theorem was first proved for the case when $p=2$ by Schoen-Uhlenbeck [12].

Acknowledgements. The author wishes to thank J. C. Wood for its invaluable guidance during the preparation of this note and J. Eells for a conversation which inspired some of the results in this note.

2. - p-minimising tangent maps and harmonic k-forms.

We first prove a necessary conditions for a map $\bar{u}=u \circ \pi_{\mathbb{R}}: \mathbb{R}^{m} \rightarrow \mathbb{S}^{n}$ to be a p-minimising tangent map.

Lemma 2.1 [13]. - Let q be a positive integer. Then

$$
\inf \frac{\int_{0}^{\infty}\left(\phi^{\prime}\right)^{2} r^{q-1} d r}{\int_{0}^{\infty} \phi^{2} r^{q-3} d r} \leqslant \frac{(q-2)^{2}}{4}
$$

where the infimum is taken over all non zero functions $\phi \in C^{\infty}\left(\mathbb{R}^{m}\right)$ with compact support.

Lemma 2.2. - Let $\bar{u}=u \circ \pi_{\mathbb{R}}: \mathbb{R}^{m} \rightarrow \mathbb{S}^{n}$ be a p-minimising tangent map. Then

$$
(n+p-2) \int_{\mathbb{R}^{m}}|d \bar{u}|^{p-2}|\nabla \phi|^{2} d x-(n-p) \int_{\mathbb{R}^{m}} \phi^{2}|d \bar{u}|^{p} d x \geqslant 0
$$

for any function $\phi \in C^{\infty}\left(\mathbb{R}^{m}\right)$ with compact support.
Proof. - The proof follows using the same argument in [13 Theorem 2.4] adapted to the p-harmonic case (see also [9]).

Theorem 2.3. - Let $m>n$ and let $\bar{u}=u \circ \pi_{\mathbb{R}}: \mathbb{R}^{m} \rightarrow \mathbb{S}^{n}$ be a p-minimising tangent map. Then the energy of u satisfies the following inequalities:

$$
\begin{array}{ll}
E(u) \leqslant \frac{n}{2(n-2)} \frac{(m-2)^{2}}{4}\left|\mathbb{S}^{m-1}\right| & \text { for } n>p=2 \\
E_{p}(u) \leqslant \frac{(p-2)(n+p-2)}{p(n-p)} \frac{(m-p)^{2}}{4} E_{p-2}(u) & \text { for } n>p>2 \\
E_{p}(u) \geqslant \frac{(p-2)(n+p-2)}{p(p-n)} \frac{(m-p)^{2}}{4} E_{p-2}(u) & \text { for } p>n \geqslant 2
\end{array}
$$

where $\left|\mathbb{S}^{m-1}\right|$ is the volume of \mathbb{S}^{m-1}.

Proof. - By Lemma 2.2, choosing ϕ to be a function of $r=|x|$ we have $(n+p-2)(p-2) E_{p-2}(u) \int_{0}^{\infty}\left(\phi^{\prime}\right)^{2} r^{m-p+1} d r-p(n-p) E_{p}(u) \int_{0}^{\infty} \phi^{2} r^{m-p-1} d r \geqslant 0$. That is,

$$
E_{p}(u) \leqslant \frac{(p-2)(n+p-2)}{p(n-p)} \frac{\int_{0}^{\infty}\left(\phi^{\prime}\right)^{2} r^{m-p+1} d r}{\int_{0}^{\infty} \phi^{2} r^{m-p-1} d r} E_{p-2}(u) \quad \text { for } p<n
$$

or

$$
E_{p}(u) \geqslant \frac{(p-2)(n+p-2)}{p(p-n)} \frac{\int_{0}^{\infty}\left(\phi^{\prime}\right)^{2} r^{m-p+1} d r}{\int_{0}^{\infty} \phi^{2} r^{m-p-1} d r} E_{p-2}(u) \quad \text { for } p>n
$$

Finally using Lemma 2.1 (with $q=m-p+2$) we get immediately the result.

Definition 2.4 (see [5]). - (i) We say that $f: \mathbb{S}^{m-1} \rightarrow \mathbb{S}^{n}$ is a (homogeneous) polynomial map if it is the restriction of a map $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{\mathrm{n}+1}$ whose components $F^{\alpha}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ are homogeneous polynomials.
(ii) A map $f: \mathbb{S}^{m-1} \rightarrow \mathbb{S}^{n}$ is a harmonic k-form if each F^{α} is a harmonic homogeneous polynomial of common degree k.

We have the following.
Proposition 2.5 (See [1] and [8]). - Let $f: \mathbb{S}^{m-1} \rightarrow \mathbb{S}^{n}$ be a harmonic k-form, then f is a p-harmonic map and the p-energy is given by

$$
E_{p}(u)=\frac{(k(k+m-2))^{p / 2}}{p}\left|\mathbb{S}^{m-1}\right| .
$$

REMARK 2.6. - A harmonic 1-form is called a harmonic linear form. If $m=2$ and $n=1$, then all harmonic linear forms $f: S^{1} \rightarrow S^{1}$ are the restriction to \mathbb{S}^{1} of an element $F \in O(2)$. If $n>1$, the harmonic linear forms $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{n}$ are the restriction to \mathbb{S}^{1} of an element $F \in O\left(\mathbb{R}^{2}, \mathbb{R}^{n+1}\right)=\left\{A \in M_{2, n+1}(\mathbb{R}): A A^{T}=I\right\}$. The resulting harmonic linear form $f: S^{1} \rightarrow \mathbb{S}^{n}$ is a totally geodesic embedding of \mathbb{S}^{1} in \mathbb{S}^{n}.

In contrast if $m>n+1$ there are no harmonic linear forms $f: \mathbb{S}^{m-1} \rightarrow \mathbb{S}^{n}$. This because a linear map $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n+1}$ carrying \mathbb{S}^{m-1} to \mathbb{S}^{n} must be injective.

From Theorem 2.3 and Proposition 2.5 we have immediately
Theorem 2.7. - Let $m>n$ and $m \geqslant[p]+1$. Let $\bar{u}=u \circ \pi_{\mathbb{R}}: \mathbb{R}^{m} \rightarrow \mathbb{S}^{n}$ be a p minimising tangent map, where $u: \mathbb{S}^{m-1} \rightarrow \mathbb{S}^{n}$ is a p-harmonic k-form. Then k satisfies the following inequalities:

$$
\begin{cases}k(k+m-2) \leqslant \frac{(n+p-2)}{(n-p)} \frac{(m-p)^{2}}{4} & \text { for } p<n \tag{2.1}\\ k(k+m-2) \geqslant \frac{(n+p-2)}{(p-n)} \frac{(m-p)^{2}}{4} & \text { for } p>n\end{cases}
$$

3. - p-minimising tangent maps and Hopf forms.

Definition 3.1 [5]. - An orthogonal multiplication is a bilinear map

$$
f: \mathbb{R}^{p} \times \mathbb{R}^{q} \rightarrow \mathbb{R}^{n}
$$

which is norm-preserving:

$$
|f(x, y)|=|x||y| \quad \text { for all } x \in \mathbb{R}^{p}, y \in \mathbb{R}^{q} .
$$

The Hopf construction on an orthogonal multiplication f is the map

$$
F: \mathbb{R}^{p} \times \mathbb{R}^{q} \rightarrow \mathbb{R}^{n} \times \mathbb{R}=\mathbb{R}^{n+1}
$$

given by

$$
F(x, y)=\left(|x|^{2}-|y|^{2}, 2 f(x, y)\right) .
$$

Because $|F(x, y)|^{2}=\left(|x|^{2}+|y|^{2}\right)^{2}$, its restriction defines a map

$$
H: \mathbb{S}^{p+q-1} \mathbb{S}^{n}
$$

also called the Hopf construction on f.
Example 3.2. - We list three basic examples of Hopf construction.

1) (The complex Hopf map) The Hopf map $H_{2}: \mathbb{S}^{3} \rightarrow \mathbb{S}^{2}$ is defined by the restriction to

$$
\mathbb{S}^{3}=\left\{(z, w) \in \mathbb{C}^{2}:|z|^{2}+|w|^{2}=1\right\}
$$

of

$$
H_{2}(z, w)=\left(|z|^{2}-|w|^{2}, 2 z \bar{w}\right) \in \mathbb{R} \times \mathrm{C}=\mathbb{R}^{3}
$$

2) (The quaternionic Hopf map) Let H be the skew-field of quaternions. The Hopf map $H_{4}: S^{7} \rightarrow S^{4}$ is defined by identifying \mathbb{R}^{8} as $\mathbb{H} \times \mathbb{H}$ and taking the restriction to

$$
\mathbb{S}^{7}=\left\{\left(q_{1}, q_{2}\right) \in \mathbb{H}^{2}:\left|q_{1}\right|^{2}+\left|q_{2}\right|^{2}=1\right\}
$$

of

$$
H_{4}\left(q_{1}, q_{2}\right)=\left(\left|q_{1}\right|^{2}-\left|q_{2}\right|^{2}, 2 q_{1} \bar{q}_{2}\right) \in \mathbb{R} \times \mathbb{H}=\mathbb{R}^{5}
$$

3) (The Cayley Hopf map) Define the Cayley space by

$$
C a y=\{A=(q, p): q, p \in \mathbb{H}\} .
$$

The Hopf map $H_{8}: \mathbb{S}^{15} \rightarrow \mathbb{S}^{8}$ is defined by identifying \mathbb{R}^{16} as Cay \times Cay and taking the restriction to

$$
\mathbb{S}^{15}=\left\{\left(A_{1}, A_{2}\right) \in \operatorname{Cay}^{2}:\left|A_{1}\right|^{2}+\left|A_{2}\right|^{2}=1\right\}
$$

of

$$
H_{8}\left(A_{1}, A_{2}\right)=\left(\left|A_{1}\right|^{2}-\left|A_{2}\right|^{2}, 2 A_{1} \bar{A}_{2}\right) \in \mathbb{R} \times C a y=\mathbb{R}^{9}
$$

All three Hopf maps are quadratic forms.
Remark 3.3. - In [11], M. Parker classified orthogonal multiplications $\mathbb{R}^{m} \times$ $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ for $m=2$, 3. In particular, for $m=3$ and $n=4$, there is essentially only the multiplication of purely imaginary quaternions, and the Hopf construction provides a quadratic form $f: S^{5} \rightarrow S^{4}$. For general constructions of harmonic k-forms see also [6].

A quadratic form $f: \mathbb{S}^{p+q-1} \rightarrow S^{n}$ is a Hopf form if, modulo orthogonal transformation, it is obtained from the Hopf construction on an orthogonal multiplication.

THEOREM 3.4 [14]. - Every quadratic form $f: \mathbb{S}^{m} \rightarrow S^{n}$ is homotopy equivalent to a Hopf form.
3.1. The case $p=2$.

Theorem 3.5. - Let

$$
m-1>n>2 \text { and } d(n) \leqslant m<2+\frac{6(n-2)}{n}\left(\sqrt{\frac{2 n-2}{n-2}}+1\right)
$$

where $d(n)$ is given in (1.1). Let $\bar{u}=u \circ \pi_{\mathbb{R}}: \mathbb{R}^{m} \rightarrow \mathbb{S}^{n}$ be a minimising tangent map which is the homogeneous extension of a harmonic k-form $u: \mathbb{S}^{m-1} \rightarrow S^{n}$. Then u is homotopy equivalent to a Hopf form.

Proof. - From Theorem 3.4 we only have to prove that u is a quadratic form, i.e. $k=2$. From the first inequality (2.1) (with $p=2$) the greatest value of k is

$$
k_{\max }=\frac{m-2}{2}\left(\sqrt{\frac{2 n-2}{n-2}}-1\right)
$$

If $m<2+\frac{6(n-2)}{n}\left(\sqrt{\frac{2 n-2}{n-2}}+1\right)$, then $k_{\max }<3$. Hence we have $k=1$ or 2 , and from Remark 2.6 the case $k=1$ is excluded.

Suppose $m=2 n$, then the first inequality (2.1) becomes

$$
\begin{equation*}
k(k+2 n-2) \leqslant \frac{n(n-1)^{2}}{(n-2)} . \tag{3.1}
\end{equation*}
$$

Tabulating n from 3 to 8 and using (3.1) we have the following table:

n	possible k
3	2
4	2
5	2
6	2
7	2 and 3
8	2 and 3

We have immediately the following corollary of Theorem 3.5.
Corollary 3.6. - Let $3 \leqslant n \leqslant 6$, and let $\bar{u}=u \circ \pi_{\mathbb{R}}: \mathbb{R}^{2 n} \rightarrow \mathbb{S}^{n}$ be a minimising tangent map which is the homogeneous extension of a harmonic k-form. Then u is homotopy equivalent to a Hopf form.

The most interesting case is when n is a power of two. In this situation P. Yiu [15] proved that (i) if $n \geqslant 16$ is a power of 2 , then any quadratic form $f: \mathbb{S}^{2 n-1} \rightarrow S^{n}$ is constant, (ii) if $n=2,4,8$, then any non constant quadratic form $f: \mathbb{S}^{2 n-1} \rightarrow S^{n}$ is (up to isometries) the Hopf map. Moreover, J. M. Coron and R. Gulliver [3] proved that the homogeneous extension of the Hopf map H_{n} ($n=2,4,8$) is a minimising tangent map.

Theorem 3.7. - A non-constant tangent map $\bar{u}=u \circ \pi_{R}: \mathbb{R}^{8} \rightarrow \mathbb{S}^{4}$, with u a harmonic k-form, is a minimising tangent map if and only if u is the Hopf $\operatorname{map} H_{4}$ (up to isometries).

Proof. - If u is the Hopf map H_{4} then \bar{u} is a minimising tangent map, this is the result of Coron and Gulliver. Conversely, assume that \bar{u} is a minimising tangent map, then from the Table (T) u is a quadratic form and from Yiu's result u is the Hopf map H_{4}.

In the same way we have

Proposition 3.8. - Let $\bar{u}=u \circ \pi_{\mathbb{R}}: \mathbb{R}^{16} \rightarrow S^{8}$, be a minimising tangent map, with u a harmonic k-form. Then u is the the Hopf map H_{8} or a harmonic 3-form.

REmark 3.9. - It is not known whether there is any 3-form $u: \mathbb{S}^{15} \rightarrow S^{8}$ although some general constructions of 3 -forms have been developed [2].

3.2. The case $p>2$

PROPOSITION 3.10. - Let $\bar{u}=u \circ \pi_{\mathbb{R}}: \mathbb{R}^{8} \rightarrow \mathbb{S}^{4}$ be a p-minimising tangent map, where $u: \mathbb{S}^{7} \rightarrow \mathbb{S}^{4}$ is a p-harmonic k-form. Let α be the real root of

$$
(p+2)(p-8)^{2}-108(4-p)=0
$$

Then, if $2<p<\alpha \approx 2.797$, u is the Hopf $\operatorname{map} H_{4}$.

Proof. - If $2<p<\alpha$, from the first inequality (2.1) the degree $k<3$, which implies that u is the Hopf map.

Proposition 3.11. - Let $\bar{u}=H_{n} \circ \pi_{\mathbb{R}}: \mathbb{R}^{2 n} \rightarrow \mathbb{S}^{n}(n=2,4,8)$ be the homogeneous extension of the Hopf map $H_{n}: \mathbb{S}^{2 n-1} \rightarrow \mathbb{S}^{n}$ with $p>n$. If p satisfies:

$$
G_{n}(p)=(n+p-2)(p-2 n)^{2}-16 n(p-n)>0,
$$

then \bar{u} is not a p-minimising tangent map.

Proof. - If \bar{u} is a p-minimising tangent map and $G_{n}(p)>0$, from the second inequality (2.1) the degree $k>2$, which excludes the Hopf maps.

Remark 3.12. - For $n=2,4,8$, the values of p such that $G_{n}(p)>0$ are shown in the following table.

n	p such that $G_{n}(p)>0$
2	$2<p \lesssim 2.219$
4	$4<p \lesssim 4.989$
8	$8<p \lesssim 11.150$

REFERENCES

[1] P. Baird, Harmonic Maps with Symmetry, Harmonic Morphisms, and Deformation of Metrics, Research Notes in Math., 87, Pitman, Boston, London, Melbourne (1983).
[2] P. Bairdand - Y. L. Ou, Harmonic maps and morphisms from multilinear norm-preserving mappings, Internat. J. Math., to appear.
[3] J.-M. Coronand - R. Gulliver, Minimizing p-harmonic maps into spheres, J. Reine Angew. Math., 401 (1989), 82-100.
[4] J. Eellsand - L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc., 20 (1988), 385-524.
[5] J. Eellsand - A. Ratto, Harmonic Maps and Minimal Immersions with Symmetries, Ann. Math. Stud., 130, Princeton University Press (1993).
[6] H. Gauchmanand - G. Toth, Constructions of harmonic polynomial maps between spheres, Geom. Dedicata, 50 (1994), 57-79.
[7] R. Hardtand - F.H. Lin, Mappings minimizing the L^{p}-norm of the gradient, Comm. Pure Appl. Math., 40 (1987), 555-588.
[8] S. Montaldo, Stability of harmonic maps and morphisms, Thesis, Leeds University (1996).
[9] N. Nakauchi, Regularity of minimizing p-harmonic maps into the sphere, Boll. Un. Mat. Ital., 10-A (1996), 143-156.
[10] J. F. Nash, The imbedding problem for Riemannian manifolds, Ann. Math., 63 (1956), 20-63.
[11] M. Parker, Orthogonal multiplications in small dimensions, Bull. London Math. Soc., 15 (1983), 368-372.
[12] R. Schoenand - K. Uhlenbeck, A regularity theory for harmonicmaps, J. Diff. Geom., 17 (1982), 307-335.
[13] R. Schoenand - K. Uhlenbeck, Regularity of minimizing harmonic maps into the sphere, Invent. Math., 78 (1984), 89-100.
[14] R. Wood, Polynomial maps from spheres to spheres, Invent. Math., 5 (1968) 163-168.
[15] P. Yiv, Quadratic forms between spheres and the non-existence of sums of squares formulae, Math. Proc. Cambridge Philos. Soc., 100 (1986), 493-504.

University of Leeds, Department of Pure Mathematics
LS2 9JT Leeds, UK
e-mail: pmtms@amsta.leeds.ac.uk

