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On Interpolation of Bilinear Operators
by Methods Associated to Polygons

FERNANDO COBOS (*) - JOSÉ MARÍA CORDEIRO - ANTÓN MARTÍNEZ (*)

Sunto. – Stabiliamo teoremi di interpolazione bilineare per una combinazione dei me-
todi di K- e J-interpolazione associati ai poligoni, e per il J-metodo. Mostriamo che
un simile risultato fallisce per il K-metodo, e diamo applicazioni all’interpolazione
di spazi di operatori.

Introduction.

An important result of real and complex interpolation methods is the bilin-
ear interpolation theorem. This kind of theorems have a variety of interesting
applications in Analysis, as one can see in the book by Bergh and Löfström [2]
or in the papers by Lions and Peetre [12], Peetre [13], Zafran [16], Favini [9],
Janson [11] and Astashkin [1].

In this paper we investigate the behaviour of bilinear operators under inter-
polation by the methods associated to polygons. These methods are similar to
the real method, but they work with N-tuples (NF3) of Banach spaces instead
of couples. They were introduced by Peetre and one of the present authors
in [7]. The resulting theory has a clear geometrical flavour (see [7] and [6]), and
gives a unified point of view for dealing with spaces studied by Sparr [14] and by
Fernandez [10].

We start by recalling in Section 1 the main properties of methods defined by
polygons. In Section 2 we establish a bilinear interpolation theorem for a combi-
nation of the K- and J-methods, and another one for the J-method. We also show
by means of a counterexample that a similar result fails for the K-method.

Finally in Section 3, we describe an application to interpolation of operator
spaces starting from Banach lattices. This formula does not hold for general
operator spaces as we prove as well.

(*) Supported in part by DGICYT (PB94-0252).
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1. – Interpolation methods defined by means of polygons.

By a Banach N-tuple we mean a family A4]A1 , R , AN ( of N Banach spaces
Aj which are continuously embedded in a common linear Hausdorff space. The
sum S(A) 4A1 1R1AN and the intersection D(A) 4A1 OROAN are then
also Banach spaces when normed by

VaVS(A) 4 infm!
j41

N

Vaj VAj
: a4 !

j41

N

aj , aj �Ajn ,

VaVD(A) 4 max
1 G jGN

]VaVAj
( .

Let P4 P1 R PN be a convex polygon in the plane R2, with vertices Pj 4

(xj , yj ). In what follows, it will be useful to imagine each space Aj from the
N-tuple A as sitting in the vertex Pj .

By means of the polygon P, we may equivalently renorm S(A) by the
K-funtional

K(t , s ; a) 4 infm!
j41

N

t xj s yj
Vaj VAj

: a4 !
j41

N

aj , aj �Ajn .

Here t and s stand for positive numbers. Similarly, the J-funtional

J(t , s ; a) 4 max
1 G jGN

]t xj s yj
VaVAj

(

defines an equivalent norm to V QVD(A) .
Let (a , b) be an interior point of P [ (a , b) �Int P] and let 1 GqGQ. The

K-space A(a , b), q ; K is defined as the set of all elements a�S(A) having a finite
norm

VaV(a , b), q ; K 4g !
(m , n) �Z2

(22am2bn K(2m , 2n ; a) )qh1Oq

( if qEQ) ,

VaV(a , b), Q ; K 4 sup
(m , n) �Z2

]22am2bn K(2m , 2n ; a)( .

The J-space A(a , b), q ; J is formed by all those elements a�S(A) which can be
represented in the form

a4 !
(m , n) �Z2

um , n
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(convergence in S(A) ) with (um , n ) %D(A) and

g !
(m , n) �Z2

(22am2bn J(2m , 2n ; um , n ) )qh1Oq

EQ

(the sum should be replaced by the supremum if q4Q). The norm on
A(a , b), q ; J is

VaV(a , b), q ; J 4 inf{g !
(m , n) �Z2

(22am2bn J(2m , 2n ; um , n ) )qh1Oq}
where the infimum is taken over all representations (um , n ) as above.

K- and J-spaces can be equivalently defined by using integrals instead of
sums (see [7]).

Next we show up some important cases.

EXAMPLE 1.1. – If P coincides with the simplex ](0 , 0 ), (1 , 0 ), (0 , 1 )( and
(a , b) �Int P (i.e., aD0, bD0 with a1bE1), we recover spaces studied by
Sparr in [14].

EXAMPLE 1.2. – If P is equal to the unit square ](0 , 0 ), (1 , 0 ), (0 , 1 ), (1 , 1 )(
and 0 Ea , bE1, then we obtain spaces investigated by Fernandez in [10].

EXAMPLE 1.3. – The classical real interpolation space (A0 , A1 )u , q can be also
described by a similar scheme to the one developed above, but working now in
R, with the segment [0 , 1 ] taking the role of P and 0 EuE1 being an interior
point of [0 , 1 ]. In this case

(A0 , A1 )u , q ; K 4 (A0 , A1 )u , q ; J 4 (A0 , A1 )u , q ( see [2] and [15] ) .

Working with N-tuples (NF3), K- and J-spaces do not coincide in general
(see [14], [8] or [6]). But the following continuous embedding still holds

A(a , b), q ; J %KA(a , b), q ; K .

For the proof see [7], Thm. 1.3. The argument given there also shows that if
(um , n) %D(A) with

g !
(m , n) �Z2

(22am2bn J(2m , 2n ; um , n ) )qh1Oq

EQ ,

then the series !
(m , n) �Z2

um , n is absolutely convergent in S(A). We shall use this

fact in our later considerations.
Let B 4 ]B1 , R , BN ( be another Banach N-tuple which we also imagine

as sitting on the vertices of another copy of the polygon P. By T : A K B
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we denote a linear operator from S(A) into S(B) whose restriction to each
Aj defines a bounded operator from Aj into Bj (T� L(Aj , Bj ) ).

If T : A K B it is easy to check that the restrictions

T : A(a , b), q ; K K B(a , b), q ; K ,

T : A(a , b), q ; J K B(a , b), q ; J ,

are also bounded. According to [6], Thm. 1.9, their norms can be estimated by

VTVA(a , b), q ; K , B(a , b), q ; K
GC max

]i , j , k( � P
]VTVAi , Bi

ci
VTVAj , Bj

cj
VTVAk , Bk

ck (

and a similar inequality holds for J-spaces. Here C is a constant that only de-
pends on P and (a , b), P is the set of all those triples ]i , j , k( such that (a , b)
belongs to the triangle with vertices Pi , Pj , Pk , and (ci , cj , ck ) are the barycen-
tric coordinates of (a , b) with respect to Pi , Pj , Pk . If we work with the conti-
nuous description of K- and J-spaces (i.e., if we replace the sums by integrals),
then C41.

2. – Interpolation of bilinear operators.

In order to extend the bilinear interpolation theorem for the real method
(see [12]) to methods associated to polygons one should be careful with the role
played by K- and J-constructions that now are not equal in general. Other ob-
struction comes from the relationship between duality and bilinear interpola-
tion. As it was shown in [3] and [5], duality for K- and J-spaces requires a more
delicate study than in the case of the real method. Some well-known duality
formulae for couples are no longer valid for N-tuples. These problems are also
reflected in the behaviour of bilinear operators as our next example announ-
ces.

EXAMPLE 2.1. – An interesting application of bilinear interpolation theorem
for couples reads that

(L(A0 , B0 ), L(A1 , B1 ) )u , Q’ L(Au , 1 , Bu , Q )(2.1)

(see [13], page 176). Here A 4 (A0 , A1 ) and B 4 (B0 , B1 ) are Banach couples
with A0 OA1 dense in A0 and A1 . Similarly, one may expect that formula

(L(A1 , B1 ), R , L(AN , BN ) )(a , b), Q ; J ’ L(A(a , b), 1 ; K , B(a , b), Q ; K )(2.2)

holds for N-tuples (and even that it would be a consequence of bilinear interpo-
lation theorem for N-tuples). However (2.2) is not true in general.
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Indeed, let P4 P1 P2 P3 be a triangle and consider the 3-tuples A, B defined
by

A1 4mj4 (j m ): VjVA1
4 !

m42Q

1Q

Nj m NEQ and !
m42Q

1Q

j m 40n ,

A2 4mj4 (j m ): VjVA2
4 !

m42Q

1Q

min ]1, 2m (Nj m NEQn ,

A3 4mj4 (j m ): VjVA3
4 !

m42Q

1Q

min ]1, 22m (Nj m NEQn ,

and B1 4B2 4B3 4K the scalar field. It is not hard to check that A1 4D(A) is
dense in each Aj for j41, 2 , 3. Moreover, L(Aj , Bj ) 4Aj* and

L(A(a , b), 1 ; K , B(a , b), Q ; K )4 L (A(a , b), 1 ; K , K)4 (A(a , b), 1 ; K )* .

Take now the linear functional f�A1* given by

f (j) 4 !
m40

Q

j m 42 !
m421

2Q

j m .

It is easy to verify that f admits continuous extensions to Aj for
j42, 3. Hence

f� 1
3

j41
Aj*’ (L(A1 , B1 ), L(A2 , B2 ), L(A3 , B3 ) )(a , b), Q ; K .

Nevertheless f cannot be continuously extended to A(a , b), 1 ; J , (see [3]). Conse-
quently, (2.2) does not hold.

Example 2.1 points out that bilinear interpolation theorem for N-tuples will
require a careful analysis. We shall return to Example 2.1 in Section 3.

We proceed now to bilinear results. Given a polygon P4 P1 RPN and
(a , b) �Int P, we denote by P the set of all triples ]i , j , k( such that (a , b)
belongs to the triangle with vertices Pi , Pj , Pk .

THEOREM 2.2. – Let P4 P1 R PN be a convex polygon with Pj 4 (xj , yj ), let
(a , b)�Int P and let P be as before. If A4]A1 , R , AN (, B4]B1 , R , BN ( and
E4]E1 , R , EN ( are Banach N-tuples, 1Gp , q , rGQ with 1/p11/q4111/r
and R : S(A)3S(B) KS(E) is a bounded bilinear map, whose restriction to
Aj 3Bj defines a bounded map R : Aj 3Bj KEj with norm Mj for j41, R , N,
then the restriction

R : A(a , b), p ; J 3B(a , b), q ; K K E(a , b), r ; K

is also bounded, and its norm M satisfies

MGC max ]Mi
ci Mj

cj Mk
ck : ]i , j , k( � P( .
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Here C is a constant which only depends on P and (a , b), and (ci , cj , ck ) are
the barycentric coordinates of (a , b) with respect to Pi , Pj , Pk .

PROOF. – Let a� A(a , b), p ; J, b� B(a , b), q ; K and let (l m , n ) be a sequence of
positive numbers such that !

(m, n)�Z2
(22am22bn l m , n )q41. Given any eD0 and any

numbers m , n , s , w , u , v�Z, we can find a descomposition b4!
j41

N

bj so that

!
j41

N

2(s2m1u)xj 2(w2n1v)yj
Vbj VBj

GK(2s2m1u , 2w2n1v ; b)1el s2m1u , w2n1v

(the decomposition does depend on m , n , s , w , u and v but we do not point it out in
our notation for the sake of simplicity).

Given any J-representation a4 !
(m , n) �Z2

am , n of a, we have

K(2s , 2w ; R(a , b))G !
(m , n) �Z2

K(2s , 2w ; R(am , n , b))G

!
(m , n) �Z2

!
j41

N

2(s2m1u)xj 2(w2n1v)yj Mj Vam , n VAj
Vbj VBj

2(m2u)xj 2(n2v)yjG

max
1 GjGN

]22uxj 22vyj Mj( !
(m , n) �Z2

J(2m , 2n ; am , n) !
j41

N

2(s2m1u) xj 2(w2n1v) yj
Vbj VBj

G

max
1 GjGN

]22uxj 22vyj Mj( !
(m , n) �Z2

J(2m , 2n ; am , n ) Q

(K(2s2m1u , 2w2n1v ; b)1el s2m1u , w2n1v ) .

Thus

VR(a , b)V(a , b), r ; KG max
1 GjGN

]2u(a2xj)2v(b2yj) Mj( Q

u !
(s , w) �Z2

u !
(m , n) �Z2

22am22bn J(2m , 2n ; am , n) 22a(s2m1u)22b(w2n1v) Q

(K(2s2m1u , 2w2n1v ; b)1el s2m1u , w2n1v )vrv1Or

.

By Young’s inequality, we obtain

VR(a , b)V(a , b), r ; KG max
1 GjGN

]2u(a2xj)2v(b2yj) Mj( Q

g !
(m , n) �Z2

(22am22bn J(2m , 2n ; am , n))ph1Op

(VbV(a , b), q ; K1e) .

Taking the infimum over all J-representations of a and letting e goes to 0, it follows
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that

VR(a , b)V(a , b), r ; KG max
1 GjGN

]2u(a2xj)2v(b2yj) Mj(VaV(a , b), p ; J VbV(a , b), q ; K .

Since (u , v) �Z2 is arbitrary, we derive that

VR(a , b)V(a , b), r ; KG inf
(u , v) �Z2

] max
1 GjGN

]2u(a2xj)2v(b2yj) Mj((VaV(a , b), p ; J VbV(a , b), q ; KG

C inf
tD0, sD0

] max
1 GjGN

]t xj2a s yj2b Mj((VaV(a , b), p ; J VbV(a , b), q ; K

where C is a constant depending only on P and (a , b). According to [6], Thm. 1.9,
the last infimum is equal to

max ]Mi
ci Mj

cj Mk
ck : ]i , j , k( �P(

which gives the result. r

REMARK 2.3. – In the special case p41 and q4r, if we consider in the
K-spaces the equivalent norm given by

VaV(a , b), q ; K
A 4us

0

Q

s
0

Q

(t 2a s 2b K(t , s ; a))q dt

t

ds

s
v1Oq

then the same conclusion holds with C41. Indeed, fix a�D(A) and apply
the (continuous version of) interpolation theorem mentioned in Section 1 to the
operator Ta(b) 4R(a , b). Then conclude the result by using Minkowski’s
inequality.

Next we show that bilinear maps can be also interpolated if we only work with
J-spaces.

THEOREM 2.4. – Under the same assumption as in Theorem 2.2, the map

R : A(a , b), p ; J3B(a , b), q ; JK E(a , b), r ; J

is also bounded, and inequality

MGCmax ]Mi
ci Mj

cj Mk
ck : ]i , j , k( �P(

is still valid.

PROOF. – Let a� A(a , b), p ; J , b� B(a , b), q ; J and take any J-representations

a4 !
(m , n) �Z2

am , n , b4 !
(m , n) �Z2

bm , n .
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Given any (u , v), (s , w) �Z2, put

Rs , w(a , b) 4 !
(m , n) �Z2

R(am , n , bs2m1u , w2n1v) .

Then

J(2s , 2w ; Rs , w(a , b))G !
(m , n) �Z2

J(2s , 2w ; R(am , n , bs2m1u , w2n1v))G

!
(m , n) �Z2

max
1 GjGN

]2sxj 2wyj Mj Vam , n VAj
Vbs2m1u , w2n1v VBj

( G

max
1GjGN

]22uxj 22vyj Mj( !
(m, n)�Z2

J(2m , 2n ; am , n) J(2s2m1u , 2w2n1v ; bs2m1u, w2n1v) .

It follows that

VR(a , b)V(a , b), r ; JG2au2bvg !
(s , w) �Z2

(22a(s1u)22b(w1v) J(2s , 2w ; Rs , w(a , b)))rh1Or

G

max
1 GjGN

]2(a2xj) u2(b2yj) v Mj( y !
(s , w) �Z2

u !
(m , n) �Z2

22am22bn J(2m , 2n ; am , n) Q

22a(s2m1u)22b(w2n1v) J(2s2m1u , 2w2n1v ; bs2m1u , w2n1v)vrz1Or

G

max
1 GjGN

]2(a2xj) u2(b2yj) v Mj(g !
(m , n) �Z2

(22am22bn J(2m , 2n ; am , n))ph1Op

Q

g !
(s , w) �Z2

(22as22bw J(2s , 2w ; bs , w))qh1Oq

where we have applied Young’s inequality in the last step. Taking the infimum over
all J-representations and using [6], Thm. 1.9, as at the end of Theorem 2.2, we con-
clude that

VR(a , b)V(a , b), r ; JGC max
]i , j , k( �P

]Mi
ci Mj

cj Mk
ck(VaV(a , b), p ; J VbV(a , b), q ; J . r

If we replace J-spaces by K-spaces in the statement of Theorem 2.4, then the
result is no longer valid as we show next.

COUNTEREXAMPLE 2.5. – We have mentioned in Section 1 that for any Ba-
nach N-tuple A, the space A(a , b), q ; J is continuously embedded in A(a , b), q ; K. The
norm of this inclusion can be estimated independently of A (see [7], Thm. 1.3). On
the other hand, embeddings A(a , b), q ; K %KS(A) and D(A) %KA(a , b), q ; J have norms
less than or equal to 1.



ON INTERPOLATION OF BILINEAR OPERATORS ETC. 327

Let now D4 Pi Pj Pk be a triangle whose vertices all belong to P and such
that (a , b) �Int D. Put AA4 ]Ai , Aj , Ak(. According to [4], Lemma 1.4, it follows
that

AA(a , b), q ; K %KA(a , b), q ; K ,

A(a , b), q ; J %KAA(a , b), q ; J ,

with norms less than or equal to 1.
We shall use these general results to identify K-interpolation spaces in some

concrete cases. Let P4 P1 RP6 be a regular hexagon and let (a , b) be the center
of P. For any n�N, let A, B be the 6-tuples given by

Aj4
.
/
´

l1
n for j41, 3, 5 ,

lQn for j42, 4, 6 ,
Bj4

.
/
´

lQ
n for j41, 3, 5 ,

l1
n for j42, 4, 6 .

Here l1
n is Kn with the l1-norm and lQn is defined analogously. Write AA4

]A2 , A4 , A6(, then

lQn 4D(AA) %KAA(a , b), p ; J %KAA(a , b), p ; K %KA(a , b), p ; K %KS(A) 4 lQn .

Whence A(a , b), p ; K4 lQn with equivalence of norms, being the constants in the
equivalence independent of n. The choice BA4 ]B1 , B3 , B5(, gives also that
B(a , b), q ; K4 lQn .

Take now E4]E1 , R , E6( where Ej4K for j41, R , 6. Clearly E(a , b), r ; K4K .
In order to see that Theorem 2.4 fails for K-spaces, consider the bilinear

map R defined by R((j j ), (h j ) )4 !
j41

n

j j h j . It is clear that R : S(A)3S(B) K

S(E) is bounded, and that restrictions R : Aj 3Bj KEj have norm 1. If Theorem
2.4 would be valid for K-spaces, then

R : A(a , b), p ; K 3B(a , b), q ; K K E(a , b), r ; K

would be bounded independently of n. In other words, there would exists some
MEQ such that

n4VR : lQ
n 3 lQ

n KKVGM

for every n�N, which is impossible.

3. – Application to interpolation of operator spaces.

In order to use bilinear results to derive formulae of the kind (2.1) and
(2.2), one needs to modify assumptions of Theorem 2.2 working now with
a bounded bilinear map R : S(A)3D(B) KS(E), whose restrictions R : Aj 3
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(D(B), V QVBj
)KEj are bounded. The problem is to determine whether or not R

admits a bounded extension from A(a , b), p ; J 3B(a , b), q ; K to E(a , b), r ; K.
In the case of the real method for couples, the answer is positive if qEQ.

The argument of the proof of Theorem 2.2 can be repeated with minor modifica-
tions because, dealing with couples, if b�D(B) and b4b0 1b1 , with bj �Bj , then
each bj should belongs to D(B). Moreover, K- and J-spaces coincide, so D(B) is
dense in Bu , q if qEQ. Formula (2.1) is a consequence of this result (see [13],
pag. 176).

In the case of N-tuples (NF3) the answer is negative in general as can be
concluded from Example 2.1.

However, there is an interesting case where the answer is still positive. Re-
call that a Banach lattice N-tuple B 4 ]B1 , R , BN ( is an N-tuple of Banach lat-
tices which are order ideals of a common tological Riesz space Z, with conti-
nuous inclusions (see [5]).

THEOREM 3.1. – Let P4P1 RPN be a convex polygon, let (a , b)�Int P and let
P as before. Assume that A4 ]A1 , R , AN(, E4 ]E1 , R , EN( are Banach N-tu-
ples, that B4 ]B1 , R , BN( is a Banach lattice N-tuple such that D(B) is dense
in Bj for j41, R , N, and that 1 GqEQ, 1 Gp , rGQ with 1/p11/q4111/r. If
R : S(A)3D(B) KS(E) is a bounded bilinear map, whose restriction R : Aj 3

(D(B), V QVBj
)KEj is bounded with norm Mj for j41, R , N, then R may be

uniquely extended to a bilinear map from A(a , b), p ; J 3B(a , b), q ; K to E(a , b), r ; K

with norm at most C max ]Mi
ci Mj

cj Mk
ck : ]i , j , k( � P( where C only depends

on P and (a , b).

PROOF. – Since B is a Banach lattice N-tuple, in order to compute the K-func-
tional for b�D(B) it suffices to consider decompositions given by elements of
D(B), that is,

K(t , s ; b) 4 infm!
j41

N

t xj s yj
Vbj VBj

: b4 !
j41

N

bj , bj �D(B)n
(see, for example, [5], Prop. 3.1). Hence, we can repeat the argument of the
proof of Theorem 2.2 concluding that for any a� A(a , b), p ; J and b�D(B)

VR(a , b)V(a , b), r ; K GC max
]i , j , k( � P

]Mi
ci Mj

cj Mk
ck (VaV(a , b), p ; J VbV(a , b), q ; K .

Now the result follows taking into account that under the assumption on B, the
intersection D(B) is dense in B(a , b), q ; K (see [5], Prop. 3.2). r

We finish the paper by establishing formula (2.2) when B is a Banach lattice
N-tuple.
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COROLLARY 3.2. – Let P, (a , b), P, A, B, p, q, and r as in Theorem 3.1.
Then

(L(B1 , A1 ), R , L(BN , AN ) )(a , b), p ; J ’ L(B(a , b), q ; K , A(a , b), r ; K ) .

PROOF. – Since D(B) is dense in Bj for j41, R , N, each space L(Bj , Aj ) is
continuously embedded in L(D(B), S(A)). Thus (L(B1 , A1 ), R , L(BN , AN ) ) is a
Banach N-tuple.

Let R : L(D(B), S(A) )3D(B) KS(A) be the bounded bilinear map defined
by R(T , b) 4T(b). The restriction R : L(Bj , Aj )3 (D(B), V QVBj

)KAj is bounded
with norm at most 1. Therefore, using Theorem 3.1, R can be boundedly exten-
ded from

(L(B1 , A1 ), R , L(BN , AN ) )(a , b), p ; J 3B(a , b), q ; K to A(a , b), r ; K .

In other words,

(L(B1 , A1 ), R , L(BN , AN ) )(a , b), p ; J ’ L(B(a , b), q ; K , A(a , b), r ; K ) . r

The choice p4Q, q41, and r4Q gives formula (2.2).
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