BOLLETTINO UNIONE MATEMATICA ITALIANA

FILIPPO CAMMAROTO, GIOVANNI LO FARO, JACK R. PORTER

N-sets and near compact spaces

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 2-B (1999), n.2, p. 291–298.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_1999_8_2B_2_291_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 1999.

N-Sets and Near Compact Spaces.

FILIPPO CAMMAROTO (*) - GIOVANNI LO FARO - JACK R. PORTER

Sunto. – Si provano nuovi risultati riguardanti gli «N-sets» e gli spazi «Near-compact». Si completano alcune ricerche pubblicate dai primi due autori nel 1978 e si risolvono due problemi recentemente posti da Cammaroto, Gutierrez, Nordo e Prada.

1. - Introduction and preliminaries.

In this paper, some new results about N-sets and near compact spaces are presented. First, N-sets in Hausdorff spaces are characterized in terms of absolutes, thus, extending the work by Vermeer [V] in 1985. Near compact spaces are shown to be δ -closed (this solves Problem 2 in [CGNP]) and if A is a noncompact N-set in a Hausdorff space X, then A is θ -closed in X but there is a Hausdorff space Y in which X is embedded such that A is not θ -closed in Y. Finally, an example of a near compact space is developed which contains a nonconvergent, particularly closed ultrafilter; this result completes some research started in [CF] and solves Problem 1 in [CGNP].

All spaces under consideration in the first three sections of this paper are assumed to be Hausdorff. Let X be a space. The *semiregularization* of X, denoted as X(s), is the underlying set of X with the topology generated by $\{\operatorname{int}_X(\operatorname{cl}_X U): U \in \tau(X)\}$. It follows (see [PW]) that $\tau(X(s)) \subseteq \tau(X)$ and $\tau(X(s)(s)) = \tau(X(s))$. The space X is *semiregular* if $\tau(X) = \tau(X(s))$; in particular, X(s) is semiregular. A subset A of X is *regular open* if $\operatorname{int}_X(\operatorname{cl}_X A) = A$; so, the topology $\tau(X(s))$ is generated by the regular open subsets of X. A set A of X is *regular closed* if $\operatorname{cl}_X(\operatorname{int}_X A) = A$, i.e., $X \setminus A$ is regular open.

Recall that a subset A of X is an N-set (resp. H-set) if for each cover \mathcal{C} of A by sets open in X, there is a finite subfamily $\mathcal{F} \subseteq \mathcal{C}$ such that $A \subseteq \bigcup \{ \operatorname{int}_X(\operatorname{cl}_X U) : U \in \mathcal{F} \}$ (resp. $A \subseteq \bigcup \{ \operatorname{cl}_X U : U \in \mathcal{F} \}$). A space Y is *near compact* (resp. H-*closed*) if Y is an N-set (resp. H-set) of Y. An equivalent characterization of A being an N-set of X is that A with the topology inherited from X(s) is compact. In particular, X is near compact if and only if X(s) is compact;

^(*) This research was supported by a grant from the C.N.R. (G.N.S.A.G.A.) and M.U.R.S.T. through «Fondi 40%» Italy.

now, using a result in [K], X is near compact if and only if X is H-closed and Urysohn. The reader is referred to [PW] for properties of H-sets and H-closed spaces and for definitions and notations not specifically defined in this paper. A description of the well-known noncompact, minimal Hausdorff space (see 9.8(d) in [PW]) is included as it is frequently referenced in this paper.

EXAMPLE 1.1. – Let $Z = \{(1/n, 1/m) : n, |m| \in \omega \setminus \{0\}\} \cup \{(1/n, 0) : n \in \omega \setminus \{0\}\}$ with the topology inherited from the usual topology of the plane. Let $Y = Z \cup \{a, b\}$ and define a set $U \subseteq Y$ to be open if $U \cap Z$ is open in Z and $a \in U$ (resp. $b \in U$) implies there is some $k \in \omega \setminus \{0\}$ such that $\{(1/n, 1/m) : n \ge k, m \in \omega \setminus \{0\}\} \subseteq U$ (resp. $\{(1/n, -1/m) : n \ge k, m \in \omega \setminus \{0\}\} \subseteq U$). The space Y is minimal Hausdorff, i.e., H-closed and semiregular, but not compact.

There are some differences between the theory of H-sets and H-closed spaces and the theory of N-sets and near compact spaces. For example, if $A \subseteq X \subseteq Y$ where Y is a space and A is an H-set of X, it is easy to show that A is an H-set of Y. However, if A is an N-set of X, it is not necessarily true that A is an N-set of Y. In 1.1, let $A = \{a\} \cup \{(1/n, 0) : n \in \omega \setminus \{0\}\} \cup \{(1/n, 1/m) : n, m \in \omega \setminus \{0\}\}$. Then A is an N-set of A (in particular, A is near-compact) but A is not necessarily an N-set. On the other hand, if A is an H-closed subspace of X, then A is an H-set.

For a space X, let (EX, k_X) denoted the Iliadis absolute of X and (PX, π_X) the Banaschewski absolute of X. The space EX is extremally disconnected and Tychonoff whereas PX is only extremally disconnected; however $\pi_X: PX \to X$ is continuous and a perfect irreducible surjection whereas $k_X: EX \to X$ is only θ -continuous and a perfect irreducible surjection. The underlying set of EXand PX is the set $\{\mathcal{U}: \mathcal{U} \text{ is a fixed open ultrafilter on } X\}$; the topology on EX is generated by $\{OU: U \in \tau(X)\}$ where $OU = \{\mathcal{U} \in EX: U \in \mathcal{U}\}$ and the topology on PX is the finer topology generated by $\tau(EX) \cup \{k_X^-[U]: U \in \tau(X)\}$. Some of the properties of the Iliadis and Banaschewski absolutes which are needed in this paper are listed below.

PROPOSITION 1.2 [PW]. – Let X be a space and $B \subseteq PX$.

(a) For $U \in \tau(X)$, $OU = O(\operatorname{int}_X(\operatorname{cl}_X U))$ and $EX \setminus OU = O(X \setminus \operatorname{cl}_X U)$.

(b) For $U \in \tau(X)$, $k_X[OU] = \operatorname{cl}_X U$ and for $x \in X$, $k_X^-(x) \subseteq OU$ if and only if $x \in \operatorname{int}_X(\operatorname{cl}_X U)$.

(c) (PX)(s) = EX.

(d) A subspace B of EX is compact if and only if B is N-set of PX if and only if B is H-set of PX.

When X is H-closed and Urysohn, we have this characterization of N-sets.

PROPOSITION 1.3. – Let X be H-closed and Urysohn, i.e., X is near compact, and $A \subseteq X$. The following are equivalent:

- (a) A is an N-set of X.
- (b) A is an H-set of X.
- (c) $k_X [A]$ is a compact subspace of EX.
- (d) $\pi_X [A]$ is an H-set of PX.
- (e) A is a compact subspace of X(s).

2. - Absolutes and N-sets.

Vermeer [V] characterized N-sets of H-closed, Urysohn spaces in terms of the absolute (see 1.3 (c, d)). In this section, we extend his characterization to N-sets of Hausdorff spaces. A useful lemma is presented first.

LEMMA 2.1. – If X is a space, $U \in \tau(X)$, and $A \subseteq X$ such that $k_{\overline{X}}[A]$ is compact, then $A \cap \operatorname{cl}_X U$ is an H-set of X.

PROOF. – Since OU is clopen by 1.2 (a), $OU \cap k_{\overline{X}}[A]$ is compact. So, $k_X[OU \cap k_{\overline{X}}[A]] = k_X[OU] \cap A = \operatorname{cl}_X U \cap A$ is an H-set of X.

THEOREM 2.2. – Let X be a space and $A \subseteq X$. The following are equivalent:

(a) A is an N-set of X.

(b) A is an H-set of X and for each H-set B of X with $B \subseteq A$, $k_{\overline{X}}[B]$ is compact.

(c) For each $U \in \tau(X)$, $k_X [A \cap cl_X U]$ is compact.

PROOF. – Suppose (a) is true and A is an N-set of X. Clearly, A is also an H-set of X. Let B be an H-set of X with $B \subseteq A$. Since B is an H-set of X, B is also an H-set of X(s); so, B is closed in X(s). As A is a compact subspace of X(s), B is a compact subspace of X(s). But $k_X: EX \to X(s)$ is also perfect, so, $k_X^-[B]$ is compact. Thus, (a) implies (b). By 2.1, (b) implies (c). To show (c) implies (a), suppose for each $U \in \tau(X)$, $k_X^-[A \cap cl_X U]$ is compact. Using U = X, we have that $k_X^-[A]$ is compact. There is a compact subset $C \subseteq k_X^-[A]$ such that $k_X | C: C \to A$ is irreducible (and onto). The function $f = k_X | C$ is compact. If $D \subseteq C$ is closed in C, then D is compact and $f[D] = k_X[D]$ is an H-set of X. In particular, f[D] is closed in X. So, f[D] is closed in A. Let τ be the topology on A generated by the

base $\{A \setminus f[D]: D \text{ is closed in } C\}$. By 2.3 in [V], $f: C \to (A, \tau)$ is θ -continuous and (A, τ) is minimal Hausdorff, i.e., H-closed and semiregular.

Now, let ρ be the topology on A induced by $\tau(X(s))$. Next, we show that $\rho \subseteq$ τ . A closed base for $\tau(X(s))$ are the sets of the form $\operatorname{cl}_X U$ where $U \in \tau(X)$. By (c), $k_X^{-}[A \cap \operatorname{cl}_X U]$ is compact. Now, $C \cap k_X^{-}[A \cap \operatorname{cl}_X U]$ is closed in C. Thus, $f[C \cap k_X [A \cap \operatorname{cl}_X U]] = k_X[C] \cap A \cap \operatorname{cl}_X U = A \cap \operatorname{cl}_X U$ is closed in (A, τ) . This shows that $\varrho \subseteq \tau$. Note that since X is Hausdorff, so is X(s); hence, (A, ϱ) is a Hausdorff space. As (A, τ) is minimal Hausdorff, it follows that $\rho = \tau$. Finally, we show that (A, ρ) is Urysohn. Let $x, y \in A$ such that $x \neq y$. Now, $k_{\overline{x}}(x)$ and $k_{\overline{X}}(y)$ are disjoint compact subsets of EX. There are disjoint regular open sets U, $V \in \tau(X)$ such that $k_{\overline{X}}(x) \subset OU$, $k_{\overline{X}}(x) \subset OV$, and $OU \cap OV = \emptyset$. By (c), $k_{\overline{X}}[A \cap cl_X U]$ is compact. So, there are disjoint regular open sets $W, T \in \tau(X)$ such that $k_X [A \cap cl_X U] \subseteq OW$, $k_X (y) \subseteq OT$ and $OW \cap OT = \emptyset$. By 1.2 (b), $A \cap$ $\operatorname{cl}_X U \subseteq \operatorname{int}_X(\operatorname{cl}_X W) = W$. Also, $y \in T$ and $W \cap T = \emptyset$. So, $W \cap \operatorname{cl}_X T = \emptyset$ implies $A \cap \operatorname{cl}_X(U) \cap \operatorname{cl}_X(T) = \emptyset$. But $x \in W \cap A \in \varrho$ and $y \in T \cap A \in \varrho$. Also, $\operatorname{cl}_{(A, \varrho)}(W \cap Q)$ $A) \subseteq \operatorname{cl}_{X(s)}(W \cap A) \subseteq \operatorname{cl}_{X(s)}(W) \cap \operatorname{cl}_{X(s)}(A) = \operatorname{cl}_X(W) \cap A; \text{ likewise, } \operatorname{cl}_{(A, o)}(T \cap A)$ $(A) \subseteq \operatorname{cl}_X(T) \cap A$. Thus, $\operatorname{cl}_{(A, \rho)}(W \cap A) \cap \operatorname{cl}_{(A, \rho)}(T \cap A) = \emptyset$. This shows that (A, ρ) is Urysohn. By 7.5(b)(1) in [PW], an Urysohn, minimal Hausdorff space is compact. This completes the proof that A is an N-set of X.

COROLLARY 2.3. – Let X be a space and $A \subseteq X$. The following are equivalent:

(a) A is an N-set of X.

(b) A is an H-set of X and for each H-set B of X with $B \subseteq A$, $\pi_{\overline{X}}[B]$ is an H-set of P(X).

(c) For each $U \in \tau(X)$, $\pi_X [A \cap cl_X U]$ is an H-set of P(X).

PROOF. – Follows from 1.2 (d) and 2.2.

3. – Near compact spaces.

Recall that a set A of a space X is θ -closed (resp. δ -closed) in X if for each $p \in X \setminus A$, there is $U \in \tau(X)$ such that $p \in U$ and $A \cap \operatorname{cl}_X U = \emptyset$ (resp. $A \cap \operatorname{int}_X(\operatorname{cl}_X U) = \emptyset$). Dikranjan and Giuli [DG] investigated those spaces Xwhich are θ -closed in every space Y in which X can be embedded (Y is called a *superspace* of X) and proved that such spaces are compact. Here is a characterization of these spaces when θ -closed is replaced by δ -closed.

PROPOSITION 3.1. – A space X is H-closed if and only if X is δ -closed in every superspace Y of X.

PROOF. – If *X* is δ -closed in every superspace *Y* of *X*, then *X* is H-closed as a δ -closed set is always closed. Conversely, suppose *X* is H-closed and *Y* is a superspace of *X*. Fix $p \in Y \setminus X$. For each $x \in X$, there is an open set $U_x \in \tau(X)$ such that $x \in U_x$ and $p \notin \operatorname{cl}_X U_x$. As *X* is an H-set in *Y*, there is a finite set $F \subseteq X$ such that $X \subseteq \cup \{\operatorname{cl}_X U_x : x \in F\}$. Now, $p \in V = \cap \{X \setminus \operatorname{cl}_X U_x : x \in F\}$ and $V \cap X = \emptyset$. Also, note that *V* is a regular open set. So, *X* is δ -closed in *Y*.

Proposition 3.1 provides another characterization of near compactness and solves Problem 2 in [CGNP].

COROLLARY 3.2. – A space X is near compact if and only if X is Urysohn and δ -closed in every superspace of X.

It would seem that if every regular open cover of a space X has a finite subcover (i.e., X is near compact), it would follow that X is θ -closed in every superspace Y of X. However, the result by Dikranjan and Giuli implies that each noncompact, near compact spaces is not θ -closed in some superspace. In 1.1, the near compact space A is not θ -closed in Y. On the other hand, N-sets behave very nicely in the space housing them as the next result indicates.

PROPOSITION 3.3. – Let A be an N-set in a space X. Then A is θ -closed in X.

PROOF. – Since *A* is a compact subspace of *X*(*s*) and *X*(*s*) is Hausdorff, it follows that if $p \in X \setminus A$, there is a regular open set *U* in *X* such that $p \in U$ and $A \cap \operatorname{cl}_{X(s)} U = \emptyset$. But $\operatorname{cl}_{X(s)} U = \operatorname{cl}_X U$. The proof is completed.

The result in 3.3 motivates this related question: if A is an N-set in a space X and X is a subspace of a space Z, then is A also θ -closed in Z? Using the example 1.1, we know it is not possible to show that A is an N-set in Z (A is an N-set in A but A is not θ -closed in Y). In fact we can extend the result in [DG] to this result.

PROPOSITION 3.4. – Let A be an N-set in a space X. Then A is θ -closed in every superspace Y of X if and only if A is compact.

PROOF. – The result is clear if *A* is compact. Conversely, suppose *A* is θ closed in every superspace *Y* of *X*. Assume *A* is not compact. Then there is a closed filter \mathcal{F} on *A* such that $\cap \mathcal{F} = \emptyset$. Let $Y = X \times [0, 1)$. Points $\{(x, r)\}$ are isolated whenever r > 0. For $(x, 0) \in Y$, a basic open neighborhood of (x, 0) is of the form $U \times [0, a)$ where $x \in U \in \tau(X)$ and $0 < a \leq 1$. Now, *Y* is Hausdorff, *X* is homeomorphic to $X \times \{0\}$ and $X \times \{0\}$ is a closed, nowhere dense closed subset of *Y*. Let $Z = Y \cup \{\infty\}$. A set $V \subseteq Z$ is defined to be open if $V \cap Y \in \tau(Y)$ and $\infty \in V$ implies there is some $F \in \mathcal{F}$ and $0 < a \leq 1$ such that $F \times (0, a) \subseteq U$. Since $cl_Y(F \times (0, a)) = F \times [0, a)$, it follows that *Z* is also Hausdorff. However, in Z, A is not θ -closed in Z. This is a contradiction. So, A is compact.

The first two authors used particularly closed filters to characterized near compact spaces in [CF]. Recall that a nonempty family \mathcal{F} of regular closed sets of a space X is called *particularly closed* if \mathcal{F} has finite intersection property (it may happen that the intersection of two elements of \mathcal{F} is not a regular closed subset of X even though the intersection would be nonempty). A *particularly closed filter* (resp *particularly closed ultrafilter*) is the closed filter generated by a particularly closed family (resp. a maximal particularly closed family).

PROPOSITION 3.5 [CF]. – Let X be a space.

(a) The space X is near compact if and only if every particularly closed filter has nonempty intersection.

(b) If every particularly closed ultrafilter on X converges, then X is near compact.

We now show that the converse of 3.5 (b) is false.

EXAMPLE 3.6. – A particularly closed ultrafilter \mathcal{U} on a near compact space X which does not converge.

The space X is the underlying set of $\beta\omega$ with a finer topology where ω is the discrete set of nonnegative integers. First partition ω into infinite sets $\{A_i: i \in \omega\}$ and let $p_i \in cl_{\beta\omega}(A_i) \setminus \omega$ for each $i \in \omega$. Now, $S = \{p_i: i \in \omega\} \subseteq \beta\omega \setminus \omega$ and $C = cl_{\beta\omega}(S) \subseteq \beta\omega \setminus \omega$. For $q \in cl_{\beta\omega}(S) \setminus S$, if $q \in U \in \tau(\beta\omega)$, then $U \cap S$ is an infinite set. Now, $D = \beta\omega \setminus S$ is dense in $\beta\omega$ and X has the topology generated by $\tau(\beta\omega) \cup D$. Since D is dense in X, $X(s) = \beta\omega$ and, hence, X is near compact. Now, $\mathcal{F} = \{V \in \tau(\beta\omega): q \in cl_{\beta\omega}([V])\}$ is a particularly closed family. Let $\mathcal{U} = \{A \subseteq X: A \text{ is closed and } A \supseteq F \text{ for some } F \in \mathcal{F}\}$. Clearly, $q \in \cap \mathcal{U}$ and since $\beta\omega$ is Hausdorff, $\cap \mathcal{U} = \{q\}$.

First, we show that \mathcal{U} is a particularly closed ultrafilter on X, i.e., that \mathcal{F} is a maximal particularly closed family on X. Let $\emptyset \neq W \in \tau(X)$. Note that $\operatorname{cl}_X W = \operatorname{cl}_X T$ where $T = \operatorname{int}_X(\operatorname{cl}_X W) \in \tau(\beta \omega)$ and that $\operatorname{cl}_X W = \operatorname{cl}_{\beta \omega} T$ (see 2.2(*f*)) in [PW]) is clopen in $\beta \omega$. If $q \notin \operatorname{cl}_X W$, then $q \in \beta \omega \setminus \operatorname{cl}_{\beta \omega} T$ which is clopen in $\beta \omega$; so, $\beta \omega \setminus \operatorname{cl}_{\beta \omega} T \in \mathcal{F}$ and $\operatorname{cl}_{\beta \omega} T \notin \mathcal{F}$. If $q \in \operatorname{cl}_X W = \operatorname{cl}_{\beta \omega} T$, then $\operatorname{cl}_X W \in \mathcal{F}$. This shows that \mathcal{F} is a maximal particularly closed family.

Since the members of \mathcal{F} are clopen in $\beta\omega$, it follows that \mathcal{F} is a filter base. So, to show \mathcal{U} does not converge to the point q, it suffices to show that \mathcal{F} does not converge to q. Now, $q \in D \in \tau(X)$. Suppose $V \in \tau(\beta\omega)$ and $q \in cl_{\beta\omega}V$. Then $S \cap cl_{\beta\omega}V$ is an infinite set. But $D = \beta\omega \setminus S$. So, $cl_{\beta\omega}V \notin D$ for each $cl_{\beta\omega}V \in \mathcal{F}$. This shows that no member of \mathcal{F} is contained in *D*. Hence \mathcal{U} does not converges to *q*.

4. – R-compact and R-near compact spaces.

In this section, no separation axiom on spaces are assumed. In [CN], a concept related to near compactness is introduced. An open cover $\mathcal{C} = \{U_a : a \in J\}$ of a space X is called a *R*-cover [CN] if there is an open cover $\{V_a : a \in J\}$ of X such that $cl_X(V_a) \subseteq U_a$ for $a \in J$. A space X is *R*-compact (resp. *R*-near compact) if each *R*-cover \mathcal{C} of X has a finite subcover (resp. has a finite subfamily $\mathcal{F} \subseteq \mathcal{C}$ such that $X = \bigcup \{ \operatorname{int}_X(cl_X U) : U \in \mathcal{F} \}$). In [DG], Urysohn, *R*-compact spaces are characterized as Urysohn spaces which are θ -closed in every Urysohn superspace (called Urysohn- θ -closed in [DG]). Clearly, a near compact space is *R*-near compact and a *R*-near compact (sometimes called quasi-H-closed) if every open cover has a finite subfamily whose closures cover. The relationships of these concepts are best viewed in this diagram:

The properties of the top row are usually studied in the setting of Hausdorff spaces and those in the bottom row in the Urysohn setting. Little is know about R-near compact spaces. In addition to the two problems about Rnear compact space asked in [CGNP], here is another problem.

PROBLEM. – Is there a Urysohn, R-near compact space which is not R-compact?

The example of a Urysohn-closed space (i.e., Urysohn and weakly-compact) presented in [DG] which is not Urysohn- θ -closed is also not R-near compact.

The diagram suggests that Urysohn, R-near compact spaces might be precisely those Urysohn spaces which are δ -closed in every Urysohn superspace. This is not the case as noted in the following result which is the Urysohn analog of 3.1.

PROPOSITION 4.1. – An Urysohn space X is Urysohn-closed if and only if X is δ -closed in every Urysohn superspaces Y containing X.

PROOF. – Clearly, if X is δ -closed in every Urysohn superspace, then X is Urysohn-closed. Conversely, suppose X is Urysohn-closed. Let Y be a Urysohn superspace containing X. Fix $p \in Y \setminus X$. For each $x \in X$, there are open sets U_x , $V_x \in \tau(Y)$ such that $x \in U_x \subseteq \operatorname{cl}_Y U_x \subseteq Y \setminus \operatorname{cl}_Y V_x \subseteq Y \setminus \{y\}$. Since X is Urysohn-closed, there is a finite set $F \subseteq X$ such that

$$X = \cup \{ \operatorname{cl}_X(X \cap Y \setminus \operatorname{cl}_Y V_x) \colon x \in F \} \subseteq$$

 $\cup \{ \operatorname{cl}_Y(Y \setminus \operatorname{cl}_Y V_x) \colon x \in F \} \subseteq \cup \{ Y \setminus \operatorname{int}_Y(\operatorname{cl}_Y V_x) \colon x \in F \}.$

Now, $p \in V = \cap \{ \inf_{Y} (cl_{Y}V_{x}) : x \in F \}$ is a regular open set in Y and $V \cap X = \emptyset$. So, X is δ -closed in Y.

REFERENCES

- [CF] F. CAMMAROTO G. LO FARO, Proprietà dei filtri particolarmente chiusi e nuove caratterizzazioni degli spazi nearly-compact, Boll. U.M.I. (5), 15-B (1978), 638-648.
- [CGNP] F. CAMMAROTO J. GUTIERREZ, G. NORDO M. A. DE PRADA, Introduccion a los epaciós H-cerrados – Principales contribuciones a las formas debiles de compacidad – Problemas abiertos (Submitted).
- [CN] F. CAMMAROTO T. NOIRI, On R-compact spaces, Math. Vesnik, 41 (1989), 141-147.
- [DG] D. DIKRANJAN E. GIULI, S(n)- θ -closed spaces, Top. and its Appl., 28 (1988), 59-74.
- [K] M. KATĚTOV, Über H-abgeschlossene und bikompacte Raüme, Casopis Pest. Mat., 69 (1940), 36-49.
- [PW] J. PORTER R. G. WOODS, Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, Berlin (1988).
- [V] J. VERMEER, Closed subspaces of H-closed spaces, Pac. J. Math., 118 (1985), 229-247.
 - F. Cammaroto e G. Lo Faro: Dipartimento di Matematica, Università di Messina, Contrada Papardo, Salita Sperone 31, 98166 Sant'Agata, Messina (Italy)

J. R. Porter: Department of Mathematics, University of Kansas, Lawrence, KS 66045 (U.S.A.).

Pervenuta in Redazione il 15 gennaio 1998.