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The Hartogs-Type Extension Theorem
for Meromorphic Mappings

into q-Complete Complex Spaces.

SERGEI IVASHKOVICH - ALESSANDRO SILVA

Sunto. – Si dimostra un risultato di prolungamento per applicazioni meromorfe a va-
lori in uno spazio q-completo che generalizza direttamente il risultato classico di
Hartogs e milgliora risultati di K. Stein..

0. – Introduction.

The purpose of this paper is to prove a result in extending meromorphic
mappings which can be considered as a direct generalization of the original
Hartogs’ extension theorem for holomorphic functions. The extension of an
analytic object in the sense of Hartogs’ has been shown to imply extensions
across subvarieties (Riemann extension) or irreducible branches of fixed di-
mension (Thullen extension) (see [S1]). Moreover, it is clear that to solve the
problem of extending an analytic object in the sense of Hartogs’, it is enough
to show that it extends across the «hole» of a standard Hartogs’ figure.

To be more precise, let D r
n be the polydisc of radius r in Cn , and set

D n »4D 1
n ; then the open subset of Cn1q :

Hn
q (r) »4D n 3 (D q 0D12r

q )ND r
n 3D q(1)

is called the q-concave Hartogs’ figure. Note that D n1q is the envelope of holo-
morphy of Hn

q (r). Let Y be a reduced complex space. Meromorphic mappings
f : Hn

q (r) KY are said to satisfy a Hartogs-type extension Theorem if they ex-
tend to meromorphic mappings f×: D n1q KY . It will be necessary sometimes
to express this property more precisely by saying that the space Y possess a
meromorphic extension property in bidimension (n , q).

Hartogs-type extension Theorems for meromorphic mappings have been
proved when Y is compact Kähler, and when Y is compact with some weaker
metric properties by the first author in [I1], [I2] and [I3]. In this paper we shall
prove the following
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THEOREM. – Every meromorphic mapping f : Hn
q (r) KY , where Y is a

q-complete complex space, extends to a meromorphic mapping from D n1q

to Y.

We recall that a strictly q-convex function r on the complex space Y with
dim Y4N is a real valued C 2 function such that the hermitian matrix of the co-
efficients of the (1 , 1 )-form dd c r has at least N2q11 positive eigenvalues at
all points of Y . (Smooth objects on a complex space Y are by definition the pull-
backs of smooth objects in domains of CM under appropriate local embeddings.
The number q is independent of such embeddings).

The complex space Y is called q-complete if there exists a strictly q-convex
exhaustion function r : YKR1 .

We remark that in the case q41, that is when Y is Stein, and when f is
holomorphic, our Theorem, via proper embedding of Y into CM , reduces to the
extension of holomorphic functions and it gives back the classical theorem of
Hartogs, [H].

More generally our Theorem provides Hartogs’ type extension of mero-
morphic mappings into complex subspaces of CPN 0CPN2q , the Stein case be-
ing of course included as CPN 0CPN21 .

Another point, which we would like to mention in this Introduction is that
our Theorem improves on the following result due to K. Stein, [St]:

Let D be a domain in Cq12 , qF1, and K%%D be a compact subset in D
with connected complement. Let Y be a normal complex space of dimension q.
Then every holomorphic mapping f : D0KKY extends to a holomorphic
mapping from D to Y.

Indeed, since every noncompact irreducible complex space of dimension q
is q-complete by a theorem of Ohsawa, [O], we have the folloving immediate
corollary of our Theorem:

COROLLARY. – Let Y be an irreducible non compact complex analytic
space of dimension q. Every meromorphic mapping f : Hn

q (r) KY , nF1, ex-
tends to a meromorphic mapping from D n1q to Y.

Hence, if Y is compact and f : Hn
q (r) KY is not surjective, if we delete from

Y one point which is not in the image of f and we call the resulting space Y 8 , let
us apply Corollary 1 to f : H q

n (r) KY 8 and we obtain in particular (see sect. 4)
the following improvement of the theorem of Stein:

COROLLARY. – Let Y be an irreducible non compact complex analytic
space of dimension q. For every domain D%Cq11 , qF1, and for every
compact subset K%%D with connected complement, every nonsurjective
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meromorphic mapping f : D0KKY extends to a meromorphic mapping
from D to Y.

In the last section we shall discuss among other open questions also some-
ones arising from the attempts to remove the condition on Y to be noncompact
in this last statement.

1. – Preliminaries.

Let X and Y be reduced complex spaces with X normal. A meromorphic
mapping f : XKY is defined as an irreducible, locally irreducible analytic sub-
set G f %X3Y (the graph of f ), such that the restriction to G f , pNG f

: G f KX , of
the natural projection p : X3YKX is proper, surjective and generically one
to one, see [R].

The set f [x] »4 ]y�Y : (x , y) �G f ( is a compact subvariety in Y and the set
of points x�X such that dim f [x] F1 is analytic by the Remmert proper map-
ping theorem and has codimension at least two, because of the condition of ir-
reducibility of G f . This set is called the fundamental set of f or the set of points
of indeterminancy of f and will be denoted by F .

If X1 is a normal subspace of X , X1 +F , we denote by fNX1
the meromor-

phic mapping with a graph equal to the (unique!) irreducible component of
G f O (X1 3Y), which projects onto X1 .

We shall list now some statements needed for the proof of our Theorem.
First of all let us define the set

En
q (r) »4 (D n21 3D r

13D q )N (D n21 3D 13A q (12r , 1 ) )4D n21 3H q
1 (r) ,(2)

where A q (12r , 1 ) »4 ]z�C q : 12rEVzVE1(, and V Q V is a polydisc norm
in Cq .

The following lemma for q41 can be found in [I4], Lemma 2.2.1. No
changes in the proof are needed for qF1:

LEMMA 1. – If any meromorphic map f : En
q (r) KY extends to a meromor-

phic map f×: D n1q KY then the space Y possesses a meromorphic extension
property in bidimension (n , q).

We shall make use also of one result on meromorphic families of analytic
subsets from [I4].

Let S be a set, and W%%Cq an open subset equipped with the usual Eu-
clidean metric. Y is again some complex space.

DEFINITION. – (i) By a family of q-dimensional analytic subsets in the
complex space X4W3Y we shall understand a subset F %S3W3X such
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that, for every s�S the set Fs 4 F O ]s(3W3X is the graph of a meromor-
phic mapping of W into X.

(ii) If S is a topological space and the complex space X is equipped
with some Hermitian metric h, we say that the family F is continuous at the
point s0 �S if the H 2 lim

sKs0
Fs 4 Fs0

. (Here by H 2 lim
sKs0

Fs we denote the limit of

closed subsets of Fs in the Hausdorff metric on W3X).

(iii) When S is a complex space itself, we shall call the family F mero-
morphic if the closure F× of the set F is an analytic subset of S3W3X .

We say that F is continuous if it is continuous at each point of S . If W0 is
open in W then the restriction FW0

is naturally defined as F O (S3W0 3X).
Then the statement about meromorphic families that we are going to need

can be formulated as follows. (For standard notions and facts from pluripoten-
tial theory we refer to [Kl]).

Let us consider a meromorphic mapping f : V3W0 KX into a complex
space X , where V is a domain in Cp . Let S be some closed subset of V and s0 �S
some accumulation point of S . Suppose that for each s�S the restriction
fs 4 fN]s(3W0

extends to a meromorphic mapping on W&&W0 . We suppose ad-
ditionally that there is a compact subset K%%X such that for all s�S ,
fs (W) %K .

Let n j denote the minima of volumes of j-dimensional compact analytic sub-
sets contained in our compact K%X . We have n j D0 by Lemma 2.3.1 from [I4].
Fix some W0 %%W1 %%W and put

n4min ]vol (Aq2 j ) Qn j : j41, R , q( ,(3)

where Aq2 j are running over all (q2 j)-dimensional analytic subsets of W , in-
tersecting W1 . Clearly nD0. We are are going to express our statement in
terms of the volumes of graphs over W . Indeed, let we 4dd c

VzV

2 be an eu-
clidean metric form on W%Cq and wh be an hermitian metric form on X and let
us consider G fs

, for s�S , as analytic subsets of W3X .Their volumes are going
to be

vol (G fs
) 4 s

G fs

(p1* we 1p2* wh )q 4s
W

(we 1 (p1 )* p2* wh )q ,(4)

where p1 : W3XKW and p2 : W3XKX are the projections. Then:

LEMMA 2. – Let us suppose that there exists a neighbourhood U of s0 in V
such that, for all s1 , s2 �SOU

Nvol (G fs1
)2vol (G fs2

)NEnO2 .(5)
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If s0 is a (locally) regular point of S then there exists a neighbourhood v 8 of s0

in V such that f extends to a meromorphic mapping on V 83W0 .

Here a locally regular point is ment in the sense of pluripotential theory,
(see [Kl]). Further, slightly modifying arguments from [I3] we shall derive
now the following version of so called Continuity Principle.

Let f : H1
q (r) KY be a given meromorphic mapping and let us define

As
q (12r , 1 ) »4 ]s(3A q (12r , 1 ) for s�D n . We suppose that for s in some

nonempty subset S%D 1 the restriction fs »4 fNA q
s (12r , 1 ) is well defined and ex-

tends to a meromorphic mapping on the polydisc D q .

LEMMA 3. – Let us suppose that f : H1
q (r) KY is a meromorphic mapping

and:

(i) there is a compact subset K%%Y such that f(D 1 3A q (12r , 1 ) )%K
and f(]s(3D q )%K for all s�S ;

(ii) there is a constant C0 EQ such that vol (G fs
) GC0 for all s�S .

Then:

1. Either there is a neighborhood U of 0 in D 1 and a meromorphic ex-
tension of f on U3D q , or

2. 0 is an isolated point of S.

The volumes here are measured with respect to the Euclidean metric on Cq

and some Hermitian metric h on Y . The condition of boundedness in (ii) clearly
does not depend on the particular choice of h . In the following, we shall refer
to this statement as to C.P. The condition n41 is important here, (cfr.
Example 1 in [I3]). We shall also discuss related questions in the last
section.

To derive the proof of this statement from the reasonings in [I3] we shall
need some notions and results from the theory of cycle spaces (due to D.Bar-
let, see [B2]) as they where adapted to our «noncompact» situation in [I3].(See
also [Fj]).

In what follows all the complex spaces considered are supposed to be re-
duced, normal and countable at infinity. Let us recall that an analytic cycle of
dimension q in a complex space Y is a formal sum Z4!

j
nj Zj , where ]Zj ( is a

locally finite sequence of analytic subsets (always of pure dimension q) and nj

are positive integers called multiplicities of the Zj’s. The space NZN»40
j

Zj is
called the support of Z .

We are going to associate the following space of cycles to a given meromor-
phic mapping f : D n 3A q (12r , 1 ) KX , satisfying conditions of Lemma 3. Let
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us fix some 0 EcE1 and let us consider the set C8
f , C of all analytic cycles Z of

pure dimension q in Y»4D 11q 3X , such that:

(a) ZO [D n3A q (12r , 1 )OX] 4G fz
O ]z(3A q (12r , 1 )3X for some

z�D(c).

(b) vol (Z) EC , where C is some constant, CDC0 , C0 as in
Lemma 3.

Condition (a) means in particular that for such z the mapping fz extends
meromorphically from A q

z (12r , 1 ) to ]z(3D q .
Let us define Cf , C to be the closure of C8f , C in the usual topology of currents.

In [I3] it was shown that Cf , C »4 ]Z� Cf , C : vol (Z) EC( is an analytic space of
finite dimension in the neighborhood of each of its points.

Let f : D n 3A q (12r , 1 ) KX be a meromorphic mapping and let us denote
by C0 the subset of Cf , C consisting of cycles which are limits of ]G fsn

( for snK0,
sn �S . It is a compact subset (by Bishop’s theorem) of the topological space
Cf , 2C . For every cycle Z� C0 let us choose a neighborhood WZ such that C0NWZ

is
analytic. Let WZ1

, R , WZN
be a finite covering of C0 and let us remark that

there is an e 0 D0 such that for any s�SOD n (e 0 ) we have G fs
% 0

j41

N

WZj
.

Now we are prepared to give a proof of Lemma 3. Let us consider a univer-
sal family Z»4 ]Za : a� Cf , 2C0

(. It is complex space of finite dimension. We
have an evaluation map

F : Z KD 11q 3X

defined by Za � Z KZa %D 11q 3X . Let us consider the union C×0 of those com-
ponents of Cf , 2C0

which intersect C0 and recall, that C0 stands here for the set of
all limits of ]G fsn

, sn �S(. At least one of those components, say K , contains
two points s1 and s2 s.t. Zs1

projects onto ]0(3D k and Zs2
projects onto ]s(3

D k with sc0. This is just because S contains more then one point. Let us con-
sider the restriction ZNK of the universal space to K . It is an irreducible com-
plex space of finite dimension. Choose points z1 �Zs1

and z2 �Zs2
and join them

by an analytic disc f : DK ZNK , f(0) 4z1 , f(1 /2) 4z2 . Then the composition
c4p i F i f : DKD is non degenerate because c(0) 40 cs4c(1O2). Thus
c is proper and obviously so is the map F : ZNf(D) KF(ZNf(D) ) %D 11q 3X . Thus
F(ZNf(D) ) is an analytic set in U3D k 3X for small enough U extending G f by
reason of dimension.

We shall make use also of the following result due to D. Barlet ([B1] Propo-
sition 3):

LEMMA 4. – Let X be a reduced complex space (of finite dimension)
and let r : XKR1 be a strictly q-convex function. Let h be some C 2-smooth
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Hermitian metric on X. Then there exists an Hermitian metric h1 and
a function c : R1KR1 (both of class C 2 ) such that:

(i) h1 Fh ;

(ii) the (q , q)-form V4dd c [ (c i r) wh1
q21 ] is strictly positive on X.

Here wh is the (1 , 1 )-form canonically associated with h . In our case we
need X4D n1q 3Y and we shall use only the fact that on X there exists a
strictly positive (q , q)-form which is dd c-exact: in fact d-exactness is going to
be sufficient for us. We recall that a (q , q)-form V is called strictly positive if
for any x�X and linearly independent vectors v1 , R , vq �Tx X one has
V x (iv1 Rv1 , R , ivq Rvq ) D0.

2. – Proof of the Theorem.

We are going to give in this section the proof of the main result of this
note:

THEOREM. – Every meromorphic mapping f : Hn
q (r) KY , where Y is a

q-complete complex space, extends to a meromorphic mapping from D n1q

to Y.

Step 1. Case n41.

Let us denote by W the biggest open subset of D 1 such that f extends mero-
morphically to HW (r) »4 (D 1 3A q (12r , 1 ) )N (W3D q ), and let us remark
explicitly that the complex space X4D 11q 3Y is (obviously) q-complete.

We apply Barlet’s Theorem, Lemma 4, sect. 1, by taking as r a strictly q-
convex exhaustion of X in order to have a strictly positive dd c-exact (q , q)-
form V on X . Let w be a fixed (q21, q21)-form of class C 2 such that
dd c w4V . Let us denote by F the set of points of indeterminancy of f .

By shrinking the polydisc D 11q , we may suppose, without loss of generali-
ty, that fz is defined in a neighborhood of Dq for all z�W . In the same way we
may suppose that w�C 2 (D11q 3Y), i.e. it is smooth up to the boundary.

We need to prove that W4D 1 . Suppose not, and fix a point z0 �¯WOD 1 .
Let us denote by V some disc centered at z0 which is contained in D 1 . For z�
VOW one has

vol (G fz
) 4 s

G fz

V4 s
G fN ¯Dq

z

d c wGC(6)

where the constant C does not depend on z�VOW , while d c w is of f class C 1

on D11q 3Y .
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To obtain the estimate (6) we have used the fact that we can measure the
volumes of analytic sets of pure dimension q contained in some compact part of

X by means of sV with V a strictly positive (q , q)-form on X .

We are going to check if the conditions of the Continuity Principle, Lem-
ma 3, sect. 1 are satisfied. The inequality (6) says that the second assumption
of C.P. is satisfied.

To check if the first one is satisfied, let us suppose that there exists a se-
quence ]zn ( %VOW , converging to zQ�D 1 , such that ]G n »4G fzn

( is not con-
tained in any relatively compact subset of D11q 3Y . If n is big enough, the re-
striction rNG n

will have then a strict maximum in the interior of G n . This is im-
possible because the Levi form of rNG n

has at least one positive eigenvalue at
each point of G n . Let us remark also that the q-complete space Y cannot con-
tain any compact q-dimensional subspace.

C.P. says now that f meromorphically extends to V1 3D q for some neigh-
borhood V1 of z0 in D . This proves that W4D 1 .

Step 2. Case nF2.

This will be done by induction on n . By Lemma 1, sect. 1 all we need is to
extend meromorphic mappings from En

q (r) to D n1q . For n41, we have
E1

q (r) 4H1
q (r) and thus this is already done by Step 1.

Notice that En11
q (r) 4D 1 3En

q (r), and let us denote by En , z
q (r) »4 ]z(3

En
q (r) for z�D 1 . We remark that by the induction hypothesis the restriction

fNEn , z
q (r) meromorphically extends to D n1q

z »4 ]z(3D n1q for all z�D 1 . We de-
note by W the maximal open subset in D 1 such that our map f extends mero-
morphically to W3D n1q .

Set S4D 1 0W and let us consider the family ]G fs
: s�S( of analytic subsets

in X»4D n1q 3Y . Here, we denote the graph of the restriction fs »4 fNDn1q
s

by
G fs

, as usual.
Let us define Sk »4 ]s�S : vol (G fs

) Gk Q (n/2 )(, where n is as in Lemma 2,
sect. 1 with W4D n1q , and W0 4D n1q

12rO2 . By the maximality of S and by Lem-
ma 2, sect. 1 we see that all points of each Sk are (locally) regular, thus each Sk

is polar. So S is a polar subset of D 1 , in other words it is a set of harmonic mea-
sure zero in D 1 .

By some linear coordinate transformation in C11n1q we are going to
change a little bit the band of the D n1q-direction, in order to prove in the same
manner that f meromorphically extends to the whole of D 11n1q . In fact, let us
consider linear changes L of coordinate systems in C11n1q whose associated
matrices are of the form (L1 , L2 ), where L1 is (a number) close to zero and L2 is
close to the identity map of Cn1q into itself. For each L of this form we can ex-
tend f onto D 11n1q 0S), where S»4L 21 (S L 3D n1q ) and S L is a set of har-
monic measure zero in D 1 .
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In an appropriate coordinate system the si,gularity set S is a the product of
n1q11 closed sets of harmonic measure zero in the plane. Thus S is pluripo-
lar and of Hausdorff dimension zero.

Hence, by using the fact that D 11n1q 3Y is (obviously) (n1q)-complete
and Lemma 3, sect. 1, we can remove the singularity S and the proof is
complete. q.e.d.

3. – Consequences and open questions.

Let us start with some direct consequences of the Theorem.

COROLLARY 1 (Thullen type extension Theorem). – Let V%Cn be an open
subset, V%V be an analytic subvariety of dimension q and G be an open sub-
set of V which intersects every q-dimensional branch of V. Every meromor-
phic mapping f : (V0V)NGKY , where Y is a q-complete complex space, ex-
tends to a meromorphic mapping from V to Y.

In particular one has

COROLLARY 2 (Riemann type extension Theorem). – Let V%Cn be an open
subset, V%V be an analytic subvariety of dimension q21. Every meromor-
phic mapping f : V0VKY , where Y is a q-complete complex space, extends to
a meromorphic mapping from V to Y.

The proofs of Corollaries 1 and 2 are immediate after [S1], p. 5.
A general Thullen type extension Theorem for meromorphic mappings has

been proved by Siu when Y is compact Kähler in [S2]. We have also:

COROLLARY 3. – Let Y be a complex analytic space of dimension q and let
us suppose that every irreducible component of Y of dimension q is non com-
pact. Every meromorphic mapping f : Hn

q (r) KY , extends to a meromorphic
mapping from D n1q to Y.

In fact, every complex space of dimension N with no compact irreducible
component of dimension N is N-complete, by a Theorem of Ohsawa [O], Th. 1.

As it has been mentioned in the Introduction, Corollary 4 immediately
gives an improvement on a Theorem of K. Stein [St]:

COROLLARY 4. – Let Y be a compact complex space of pure dimension q.
For every domain D%Cq11 , qF1, and for every compact subset K%%D with
connected complement, every nonsurjective meromorphic mapping
f : D0KKY extends to a meromorphic mapping from D to Y.
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We shall end with discussing some open questions, which naturally arise
from the results and attempts of this paper.

QUESTION 1. – Let Y be a compact complex three-fold. Prove that every
meromorphic (or holomorphic) map f : H1

2 (r) KY extends to D 3 0]discrete set
of points(.

In particular, if K is compact, K%D 3 with connected complement then
every meromorphic map f : D 3 0KKY extends to D 3 0]finite set of points(.

For the proof of such type of statements one can try to use special metrics
on Y . Namely, a compact complex threefold possesses an Hermitian metric h ,
such that its associated (1 , 1 )-form v h satisfies dd c v 2

h 40. This can help to
bound the volumes of the images of two-discs in Y .

The next question arises when one tries to prove Corollary 3 without as-
suming Y to be noncompact

QUESTION 2. – Let Y be a compact complex manifold (space) of dimension
qF2. Suppose that there exists a meromorphic map f : B*

q11 KY from the
punctured ball in Cq11 onto Y such that for any eD0 the restriction fe »4

fNB
*
q11 (e) of f to the punctured e-ball is still surjective. Prove that Y is

Moishezon.

In the case of positive answer to Question 2, one can extend f meromorphi-
cally across zero. A somewhat stronger statement may be needed:

QUESTION 28. – Let M be a strongly pseudoconvex hypersurface in the
punctured ball B*

q11 such that 0 �M and M divides B*
q11 into two parts, say

B 1 and B 2 . Let f : B 1KY be given as in Question 2. Let us suppose that M
is concave from the side of B 1. Prove that if for any eD0 the restriction
fNB

*
q11 (e)OB 1 of f is still surjective, f extends meromorphically across zero.

QUESTION 3. – Can one remove the condition n41 from Lemma 3?

Such attempt is likely to lead to the «non analytic» version of Remmert
proper mapping theorem and to the questions of local flattenings. The major
problem here is that Cf , C is not going to be an analytic space and F will not be
proper in general.
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