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Gevrey Solvability for Semilinear Partial
Differential Equations with Multiple Characteristics.

TODOR GRAMCHEV (*) - LUIGI RODINO (**)

Sunto. – Vengono considerate equazioni alle derivate parziali semilineari con caratte-
ristiche multiple. Si studia in particolare la loro risolubilità locale e la buona posi-
tura del problema di Cauchy nell’ambito delle classi di Gevrey.

1. – Introduction and statement of the main results.

The present paper studies semilinear PDE of the form

P(x , D) v1F(x , ¯a v)NaNGm21 4 f (x)(1.1)

with linear part

P(x , D) 4 !
NaNGm

ca (x) D a(1.2)

having analytic or Gevrey coefficients, and multiple characteristics. The vecto-
rial notations in (1.1), (1.2) are standard, in particular in (1.2) we write D a for
(2i)NaN ¯a . As it concerns the nonlinear term F , it is a smooth complex-valued
C Q (Rn 3CN : C) function, where N4 !

a�Z1
n , NaNGm21

1 .

Our general results will be for two cases: in the first one we assume that F
in (1.1) is an entire function in v , R , ¯a v , R , NaNGm21, analytic with re-
spect to x4 (x1 , R , xn ) say in an open neighborhood V of the origin in Rn ,
while in the second one, much more involved from the technical point of view,
we only require that F is G u Gevrey in all variables, with F(x , 0 ) 40 in any
case.

In fact, one of the main problems under investigation of the present paper
is the solvability of (1.1) for a right-hand side f (x) in the Gevrey class G s ,
1 EsEQ (in the second case 1 EuGsEQ), i.e. we assume for a suitable

(*) Partially supported by funds 40 %, MURST, Italy, by research grant MM-
410/94 with MES, Bulgaria and by a Coordinated Research Project of the University of
Cagliari.

(**) Supported by funds 40 %, MURST, Italy.
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constant CD0

sup
x�V

N¯a f (x)NGC NaN11 (a! )s , a�Zn
1 .(1.3)

Note that the setting f�G s represents an intermediate choice between the
choice of f in the analytic class, for which solvability is granted by the Cauchy-
Kowalewsky theorem, and f�C Q , for which solvability heavily depends on the
lower order terms in (1.1), (1.2). We address to L. Rodino [44], M. Mascarello,
L. Rodino [34] for a general introduction to the study of linear PDE in Gevrey
class. Furthermore, if the operator P(x , D) is weakly hyperbolic, we will study
the local well-posedness of the corresponding Cauchy problem for (1.1).

The results in both directions will be based on a kind of a nonlinear calcu-
lus in the framework of suitable Banach spaces of Gevrey functions. We show a
priori estimates for nonlinear superpositions, generalize Moser type estimates
and as a consequence we are able to apply fixed point theorems in Gevrey-Ba-
nach spaces. Let us recall that in the C Q category and more generally, in the
framework of the classical Sobolev spaces, the main tools are a priori energy
estimates for strictly hyperbolic systems with or without the use of the theory
of the paradifferential operators. We cite for example M. Taylor [45]. A typical
problem is the following one: given a smooth function F , with F(0) 40, and
given two Banach spaces of regular functions X%Y (say, Sobolev type), can we
find a positive continuous function g defined on [0 , 1Q[, depending only on F
and X , such that the following estimate holds

VF(u)VX GVuVX g(VuVY ) , for all u�X .(E)

We stress that (E) has been proved in such a general form for F�C Q , X4

H s
p (Rn ), sDn/p , Y4L Q (Rn ) by means of paradifferential operators tech-

niques by J.-M. Bony [2] and Y. Meyer [36] (see also J. Rauch and M.
Reed [42] for an alternative proof when p42). The estimate (E) has been
proved by H. Chen and L. Rodino [6] for F being analytic and

X4H s , t
s (Rn ) 4 ]u� S(Rn ): Ve tNDN1/s

uVH s EQ( ,

Y4Hs
s0 , t (Rn ) ,

n

2
Es0 Es ,

for tD0, sD1, as an application of the paradifferential calculus in Gevrey
classes developed by the authors. We stress that, in the limit case s41, simi-
lar type of spaces of analytic functions and estimates as (E) have been employ-
eed in the study of the analytic regularity in the x variables for tD0 of the sol-
utions of the Navier-Stokes type equations and more generally, semilinear
parabolic equations with the nonlinear term being an entire function, cf. C.
Foias and R. Temam [17], K. Promislow [41], A. Ferrari and E. Titi [16]. See
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also C. D. Levermore and M. Oliver [33], where analyticity for a generalized
Euler equation is investigated.

At present we are not aware of any results on the estimate (E) in the
framework of the Banach G s Gevrey spaces assuming that F is G u with 1 E

uGs . We mention that M. Cicognani and L. Zanghirati [8] study the G s regu-
larity of the solutions to some weakly hyperbolic equations provided uEs ,
while M. Reissig and K. Yagdjian [43] investigate the Gevrey well-posedness
for second order weakly hyperbolic equations in one space dimension but
without estimates of the type (E).

Before presenting our results, we would like to give three model examples
of equations of the type (1.1), which will serve both as an illustration of the
main novelties of our paper and as a comparison with the previous results on
nonlinear PDE with multiple characteristics.

a) Let P be weakly hyperbolic with respect to xn of multiplicity m . Then
in case F is analytic, as a corollary from results on the local well-posedness of
the Cauchy problem for general fully nonlinear weakly hyperbolic systems
due to J. Leray and Y. Ohya [32] and K. Kajitani [30], the local solvability in G s

for 1 EsEm/(m21) is valid.
If s4m/(m21) or F is G u Gevrey, 1 EuGs , we are not aware of general

results of G s local well-posedness and even G s local solvability.
We are able to show such results. We stress that in the case s4u we im-

pose a kind of small norm requirement of the nonlinearity in order to have
solvability and local well-posedness. Actually the smallness requirement for
the critical index s4u comes from the nonlinear superposition estimates.

b) Let n42 and P4 (Dx2
1 ic1 x2

2h1 Dx1
) i R i(Dx2

1 icm x2
2hm Dx1

), where
cj �R00, hj �N , j41, R , m . If all cj , hj are equal and F is linear in ¯a

x u ,
NaNGm21, it is well known that if sDm/(m21) the operators could be not
solvable under suitable assumptions on the lower order term, see for example
T. Okaji [38], while for 1 EsGm/(m21) positive results are proved by
T. Gramchev [23]. If not all cj are equal, there are the classical results of
V. Grushin [26] on nonsolvability in C Q provided suitable discrete conditions
on the lower order terms are imposed, see A. Corli and L. Rodino [11] for the
Gevrey case. We will show that if all cj have the same sign, the semilinear
equation (1.1) is G s solvable for any 1 GsGm/(m21) with smallness require-
ments if s4m/(m21).

c) If n42, we can consider P as a product of Mizohata type operators as
in b) and first order hyperbolic operators. For such operators we do not know
any results concerning the equation (1.1). We will prove results on local solv-
ability in G s , 1 EsGm/(m21), with smallness requirements if s4m/(m21).

We hope that our nonlinear calculus in the Gevrey-Banach spaces will lead
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in the future to applications for fully nonlinear PDE with multiple characteris-
tics via Nash-Moser type theorem (see T. Gramchev and M. Yoshino [25] for
rapidly convergent method in Gevrey classes on the torus for normal forms of
Gevrey orientation preserving mappings of the unit circle). As it concerns the
Cauchy problem for second order nonlinear weakly hyperbolic equations and
the use of Nash-Moser theorem in the C Q category we refer to the recent sur-
vey paper of P. D’Ancona and M. Reissig [13] and the references therein.

Let us begin by presenting the results in the case of the analytic nonlinear-
ity. We shall also assume here that the coefficients of the linear part P(x , D)
are analytic in V . In the following we shall only argue on the principal symbol
of the linear part

pm (x , j) 4 !
NaN4m

ca (x) ja ,(1.4)

assuming it has multiple characteristics and satisfies suitable hypotheses
which guarantee solvability of the linear equation

P(x , D)v4 f �G s .(1.5)

Before specifying such hypotheses, we recall that a local solution v (not
subjected to any initial or boundary condition) of the semilinear equation (1.1)
exists for any f�C Q (V) when pm (x , j) is elliptic, see for example S. Alinhac
and P. Gérard [1] § 3.2.4, and also when pm (x , j) is of real principal type, as
shown by J. Goodman and D. Yang [20] in the fully nonlinear case by means of
the Nash-Moser method, see K. Payne [37] for a systematic presentation. The
local solvability result keeps valid for (1.1) with f�C Q (V) when pm (x , j) is
complex-valued of principal type, provided it satisfies somewhat stronger con-
ditions than the Nirenberg-Trèves linear solvability (P) condition, as it was
proved by B. Dehman [14], T. Gramchev and P. Popivanov [24], J. Hounie [27];
precisely, it was assumed

(1.6) dj Re pm (x , j)c0 and Im pm (x , j) does not change sign for (x , j)

in a neighborhood of the characteristic manifold .

Observe that (1.6) is satisfied by all the sub-elliptic symbols pm (x , j), cf. F.
Trèves [46], Vol. II, § 11.3 and L. Hörmander [29], Vol. IV, § 27.3. More recent-
ly, J. Hounie and P. Santiago [28] obtained local solvability for (1.1) under (P)
condition in full generality.

Coming now to symbols with multiple characteristics, we shall assume
pm (x , j) has a smooth decomposition into factors satisfying (1.6). Precisely,
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let us write S for the characteristic manifold:

S4 ](x , j) �V3 (Rn 00), pm (x , j) 40( .(1.7)

Let kF1 be a fixed integer.
We suppose for every r4 (x0 , j 0 ) �S there exists a conic neighborhood G r

of r such that

pm (x , j) 4em2k (x , j) a1 (x , j)R ak (x , j) for (x , j) �G r ,(1.8)

where em2k (x , j) is an analytic elliptic symbol homogeneous of order m2k ,
and the first order homogeneous symbols aj (x , j), j41, R , k , are analytic of
nondegenerate principal type, i.e. dj aj (x , j) c0 when aj (x , j) 40 in G r . After
a re-setting of the elliptic factor em2k (x , j) and possibly after a linear change
of variables and a shrinking of G r , there is then no loss of generality in
assuming

¯j n
Re aj (x , j) D0 for all j41, R , k and (x , j) �G r .(1.9)

Modelling on (1.6) we add

Im aj (x , j) F0 for all j41, R , k and (x , j) �G r .(1.10)

One can obviously replace (1.10) with

Im aj (x , j) G0 for all j41, R , k and (x , j) �G r ,(1.11)

since in this case the change of variable x 8n 42xn allows a new factorization
satisfying (1.9), (1.10).

Looking first to the linear equation (1.5), we observe that the assumption
in (1.10), (1.11), that all the Im aj (x , j) have the same sign, is essential. In fact
it is known from the above mentioned works of V. Grushin [26] , A. Corli and
L. Rodino [11] and also A. Menikoff [35] that sub-elliptic factors with conflict-
ing signs may give rise to non-hypoellipticity and non-solvability results for f�
C Q and also f�G s , 1 EsEQ .

It is also well known that, under the assumptions (1.8), (1.9), (1.10), the lo-
cal solvability of the linear equation (1.5) with f�G s , k/(k21) EsEQ , as
well as with f�C Q , depends on the lower order terms; see A. Corli [9], [10], T.
Gramchev [22], P. Popivanov [39], [40]. What we may expect, without any as-
sumption on lower order terms, is G s-solvability for 1 EsEk/(k21).

This is in fact our preliminary result concerning the linear equation, which
we express in a microlocal form using the Gevrey-Sobolev spaces H s , c

t , s , by
short H s

s , of all the functions f such that

V f VHs
s 4Ve tc (x , D) f VH s EQ ,

where s represents the Gevrey order, s the Sobolev index, t is a positive par-
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ameter, c (x , j) a suitable symbol, homogeneous of degree 1 /s for large NjN ,
so that 0

t , s
H s , c

t , s &G s locally; see the next § 2.

THEOREM 1.1. – Under the assumptions (1.8), (1.9), (1.10) for the principal
symbol pm (x , j) in the neighborhood G r of r , the linear equation

P(x , D)v4 f �H s
s , 1 EsEk/(k21) , s�R ,

admits a solution v�H s1m2k(121/s)
s , microlocally at r .

A more precise statement will be given in § 3, where we shall obtain the
theorem following closely the arguments of K. Kajitani and S. Waka-
bayashi [31] concerning micro-hyperbolic operators. Note that for the sol-
ution v we get a loss of k(121/s) E1 derivatives in the Gevrey-Sobolev spaces
H s

s , whereas in the standard Sobolev spaces the loss for multiple characteris-
tics would be at least k/2 in any case.

Aiming now at the local solvability of the semilinear equation (1.1), we shall
have first to patch together the microlocal results from Theorem 1.1; this re-
quires a global choice of the weight c which in the definition of H s

s and in The-
orem 1.1 may depend on r�S . Besides, to face the nonlinearity, we shall need
H s

s to be an algebra, that is granted, as shown in § 2, if we shall assume further
c is sub-additive. In turn, this will lead us to strengthen the assumptions (1.8),
(1.9), (1.10). Precisely, we are able to treat (1.1) in two particular cases. The
first case is when

(1.12) for all r�S we may choose the neighborhood G r and the factors
aj (x , j), j41, R , k , in (1.8) so that aj (x , j) is real-valued and
¯j n

aj (x , j) D0 in Gr .

Observe that the local coordinates x are now assumed to be fixed indepen-
dent of r�S , and we cannot change the role of the dual variable j n when
changing r and G r . Since aj (x , j) is real-valued in (1.12), the assumption (1.10)
is trivially satisfied.

In the second case we shall allow Im aj (x , j) to be not identically zero. We
assume for x4 (x1 , x2 ) in a neighborhood V of the origin in R2 and j4

(j 1 , j 2 ) �R2 00 we have a global factorization of type (1.8):

pm (x , j) 4em2k (x , j) (j 2 1l 1 (x) j 1 )R(j 2 1l k (x) j 1 )(1.13)

with em2k (x , j) elliptic and l 1 (x), R , l k (x) analytic in V satisfying

Im l j (x) F0 for all j41, R , k and x�V .(1.14)

Therefore (1.9), (1.10) are valid for j 1 D0, and (1.9), (1.11) for j 1 E0.
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THEOREM 1.2. – Let pm (x , j) satisfy (1.12), or else (1.13), (1.14). Then the
semilinear equation

P(x , D) v1F(x , ¯a v)NaNGm21 4ef (x) ,

where eD0, f �G s , 1 EsEk/(k21), compactly supported in a neighborhood
of the origin V4 ]NxNEd(, admits a solution v in V , if e and d are suffi-
ciently small.

We recall that here F is assumed to be entire function with respect to ¯a v ,
analytic with respect to x with F(x , 0 ) 40, and the coefficients of P(x , D) are
analytic in V . The solution v is classical, i.e. v�C m (V).

It will be not actually necessary that both e and d are small; for a precise
bound involving e and d see § 4. In our proof in § 4 we shall avoid the use of
Nash-Moser method, but rely on the classical iterative procedure.

A model equation satisfying (1.13), (1,14) is a nonlinear perturbation of the
m-th power of the Mizohata operator

(Dx2
1 ix2

2h Dx1
)m v1F(x , ¯a v)NaNGm21 4ef (x) .

Observe that, if we replace 2h by an odd exponent, the corresponding linear
equation is not solvable in C Q , neither in G s , 1 EsEQ ; see F. Cardoso [3],
M. Cicognani and L. Zanghirati [7], R. Goldman [19], T. Gramchev [23].

Concerning (1.12), we observe that in this case we are very near to the clas-
sical results of Leray and Ohya. Precisely, if we assume further (1.8) is valid
globally for j�Rn 00 with em2k 41, our equation is hyperbolic, having smooth
characteristics of multiplicity Gk , and the Cauchy problem with G s-data, 1 E

sEk/(k21), is well posed (J. Leray and Y. Ohya [32]; see K. Kajitani [30] for
non-smooth characteristics). Local solvability is then obvious.

Let us come now to the case of the Gevrey nonlinearity. Changing nota-
tions, we shall write t for the «time» variable, and denote by x the «space»
variables in Rn . We shall limit here attention to linear parts satisfying (1.12) or
(1.13), (1.14) of a particular form, with coefficients depending only on t . Pre-
cisely we are assuming that

P(t , ¯t , ¯x ) 4 Lm i R i L1(1.15)

where

Lj 4¯t 1 aa j (t), ¯x b, j41, R m .(1.16)

We may assume the vectors a j (t) are C Q in a neighborhood I of t40.
The nonlinear term is supposed to be a G u function depending on ¯x

a u , a�
Zn

1 for some u� [1 , m/(m21) ], namely F�G u (CN : C), F(0) 40. According
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to (1.12), (1.13), (1.14), we assume:

(1.17) all a j are real-valued, or else n41 and Im a j (t) F0 ( orG0)

for all j41, R , m .

We consider the equation

P(t , ¯t , ¯x ) u1F(u , R , ¯x
a u , R)NNaNGm21 4 f (t , x) ,(1.18)

where x is in an open neighborhood V of the origin in Rn , and if all a j are real-
valued, we consider initial data

¯ t
j uNt40 4u 0

j (x) , j40, 1 , R , m21 .(1.19)

Now we state the main result for a Gevrey nonlinearity.

THEOREM 1.3. – Let F�G u (CN : C), F(0) 40, 1 GuGsGm/(m21). As-
sume (1.17) is satisfied for P as in (1.15), (1.16). Let f (t , x) �C 0 ([2
T0 , T0 ]: G s

0 (V) ) , T0 D0 and uj
0 (x) �G s

0 (V), j40, 1 , R , m21. If s4u we re-
quire that

sup
x�V

N¯x
a u 0

j (x)NGk NaN11 (a! )s , j40, 1 , R , m21 , a�Z1
n ,(1.20)

sup
NtNGT0 , x�V

N¯x
a f (t , x)NGk NaN11 (a! )s , a�Z1

n ,(1.21)

where kD0 is a constant depending on the nonlinear term F. Then we can
find T08�]0 , T0 [ such that there exists u(t , x) �C m (]2T08 , T08 [: G s (V) ) sol-
ution to (1.18) (respectively to the Cauchy problem (1.18), (1.19) provided all
a j are real-valued).

More precise statements will be given in § 9. A natural question is whether
Theorem 1.2 is valid in the case of a Gevrey nonlinearity; at this moment we
are not able to extend in this direction the proof of Theorem 1.3, which takes
advantage of the particular form (1.15), (1.16), (1.18).

Finally, concerning the solvability of (1.1) in the case when f�C Q or f�G s

with sDm/(m21) we expect that, to obtain positive results, we shall have to
impose conditions of Levi type on the nonlinear perturbation (for second order
nonlinear hyperbolic equations see [43] and the discussion and the references
in [13]). We purpose to discuss the problem in the future. Preliminary results
in this direction are for example in G. Garello [18] concerning local solvability.
About Sobolev-C Q well-posedness of the Cauchy problem for weakly hyper-
bolic nonlinear equations there exist other results, with applications to diffe-
rent models in Mathematical Physics, see for example W. Craig [4].
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PART I: THE CASE OF ANALYTIC NONLINEARITY

2. – Gevrey-Sobolev spaces and non-linear operators.

We write

x4 (x 8 , xn ) 4 (x1 , R , xn21 , xn ), and j4 (j 8 , j n ) 4 (j 1 , R , j n21 , j n )

for the dual variables. In this section dD0 is fixed, and we argue for
x4 (x 8 , xn ) �Rn21 3]2d , d[.

DEFINITION 2.1. – We say that c (xn , j 8 ) �C Q (]2d , d[3Rn21 ) is a weight
function of order r , 0 ErE1, if c (xn , j 8 ) F0 and for some positive con-
stants C and r:

(2.1) ND j
xn

D b
j 8 c (xn , j 8 )NGC j1NbN11 j! b!(11Nj 8 N)r2NbN

for all b�Zn21
1 , j�Z1 , xn �]2d , d[, j 8�Rn21 , Nj 8NDr .

DEFINITION 2.2. – Let c be a weight function of order r41/s , 1 EsEQ ;
fix sD0, tD0. We write H s , c

t , s (Rn21 3]2d , d[) for the space of all functions f
in L 2 (Rn21 3]2d , d[) such that

V f VH s , c
t , s

4Ve tc (xn , D 8 ) f (x)VH s (Rn213]2d , d[) EQ(2.2)

where

e tc (xn , D 8 ) f (x) 4 (2p)2n11se ix 8 j 8 e tc (xn , j 8 ) fA(j 8 , xn ) dj 8 .(2.3)

We have denoted by fA the Fourier transform of f with respect to x8, and by H s

the standard Sobolev spaces.

Gevrey-Sobolev spaces of similar, and even more general type, were stud-
ied by several authors; see in particular Kajitani [30] and Kajitani-Wak-
abayashi [31] for a systematic presentation.

As for infinite order pseudo-differential operators of the type (2.3), see also
Rodino [44]. Since c is assumed here (x 8 , j n )-independent, an inverse of
e tc (xn , D 8 ) is given in the present case by the operator

e 2tc (xn , D 8 ) f (x) 4 (2p)2n11se ix 8 j 8 e 2tc (xn , j 8 ) fA(j 8 , xn ) dj 8 .(2.4)

So we have the isometry between Hilbert spaces:

e tc (xn , D 8 ) : H s , c
t , s (Rn21 3]2d , d[) KH s (Rn21 3]2d , d[)(2.5)
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with inverse

e 2tc (xn , D 8 ) : H s (Rn21 3]2d , d[) KH s , c
t , s (Rn21 3]2d , d[) .(2.6)

For the benefit of the non-specialists, we give a self-contained proof of the
following basic proposition, showing in particular that local solvability for
H s , c

s , t -data implies solvability for G s-data as considered in (1.3).

PROPOSITION 2.1. – Let f be in G s
0 (Rn21 3]2d , d[), space of all the func-

tions satisfying (1.3) for x�Rn21 3]2d , d[, with compact support there.
Then for every weight function c of order r41/s and for all sD0, we can
find tD0 such that f�H s , c

t , s (Rn21 3]2d , d[).

The proof is a consequence of the following elementary lemmas.

LEMMA 2.2. – For every multi-order b4 (b 1 , R , b n21 ) �Zn21
1 and j�Z1 ,

we have

Dx 8
b e tc (xn , D 8 ) 4e tc (xn , D 8 ) D b

x 8 ,(2.7)

D j
xn

e tc (xn , D 8 ) 4 !
0 GhG j

q(j2h) r (xn , D 8 ) e tc (xn , D 8 ) Dxn
h(2.8)

where qm (xn , D 8 ), m40, r , R , jr are pseudo-differential operators with
symbol satisfying for suitable constants clg the estimates

NDxn
l Dj 8

g qm (xn , j 8 )NGclg (11Nj 8 N)m2NgN(2.9)

for all g�Zn21
1 , l�Z1 , xn �]2d , d[, j 8�Rn21 . In particular we have

q0 (xn , j 8 ) 41 , qr (xn , j 8 ) 4 jt(Dxn
c)(xn , j 8 ) .(2.10)

PROOF. – A direct proof of (2.7) is obvious, granted the standard properties
of the oscillatory integrals (2.3). As for (2.8), (2.9), we may obtain it by induc-
tion on j , since from (2.3)

Dxn
e tc (xn , D 8 ) 4t(Dxn

c)(xn , D 8 ) e tc (xn , D 8 ) 1e tc (xn , D 8 ) Dxn

and

Dxn
j11 e tc (xn , D 8 ) 4 !

0 GhG j
q( j2h) r (xn , D 8 ) e tc (xn , D 8 ) Dxn

h11 1

!
0 GhG j

[ (Dxn
q( j2h)r )(xn , D 8 )1tq( j2h) r (xn , D 8 )(Dxn

c)(xn , D 8 ) ] e tc (xn , D 8 ) D h
xn

.

The same argument gives (2.10).
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LEMMA 2.3. – Let qm (xn , j 8 ) satisfy the estimates (2.9), mF0, and let s be
an integer with mGs . Then

Vqm (xn , D 8 ) f VGC !
NvNGs

VDx 8
v f V(2.11)

where norms are taken in L 2 (Rn21 3]2d , d[).

The proof is obvious by Fourier transform.

LEMMA 2.4. – When sF0 is an integer, the following can be taken as equi-
valent norms in H s , c

t , s (Rn21 3]2d , d[):

(i) !
NaNGs

VD a e tc (xn , D 8 ) f V ,

(ii) !
NaNGs

Ve tc (xn , D 8 ) D a f V ,

(iii) !
Na1bNGs

VD a e tc (xn , D 8 ) D b f V .

PROOF. – The norm (i) corresponds to our very definition in (2.2). On the
other hand, considering norm in L 2 (Rn21 3]2d , d[), we may estimate using
Lemma 2.2 and splitting a4 (a 8 , a n )

!
NaNGs

VD a e tc (xn , D 8 ) f VG !
Na 8N1a nGs

!
0 GhGa n

Vq(a n2h) r (xn , D 8 ) e tc (xn , D 8 ) D (a 8 , h) f V .

Then we apply Lemma 2.3 to estimate

Vq(a n2h) r (xn , D 8 ) e tc (xn , D 8 ) D (a 8 , h) f VGC !
NbNGa n2h

VD b
x 8 e tc(xn , D 8 ) D (a 8 , h) f V .

Using (2.7), observing that N(a 81b , h)NGN(a 8 , a n )NGs and combining
with the preceding inequality, we have proved that the norm (i) can be esti-
mated by (ii). In the same way we obtain the converse. Similar arguments ap-
ply to (iii).

PROOF OF PROPOSITION 2.1. – Referring to the norm (ii) in Lemma 2.4, we
have

V f VH s , c
t , s

4 !
NaNGs

Ve tc (xn , j 8 ) (D a f )A(j 8 , xn )VL 2 (Rn21
j 8 3]2d , d[) .

On the other hand, it follows from the assumption (1.3):

NDx 8
b D a f (x)NGCs

NbN11 (b! )s , x�Rn21 3]2d , d[ ,

where we limit consideration to NaNGs , and b�Zn21
1 . Fourier transforming

with respect to x 8 , we have

N(j 8 )b (D a f )A(j 8 , xn )N4Nse 2ix 8 j 8 Dx 8
b D a f (x) dxNGCs

NbN11 (b! )s
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for a new constant Cs depending on supp f . This implies as standard (cf. for
example § 1.6 in Rodino [44]):

N(D a f )A(j 8, xn )NGC 8s (C 8s /(11Nj 8N) )M (M! )s

for any positive integer M , and hence

N(D a f )A(j 8, xn )NG inf
M

C 8s (C 8s /(11Nj 8N) )M (M! )sGC 9s e 2e(11Nj 8N)r

where r41/s , and e is a suitable positive constant. For t sufficiently small
tc (xn , j 8 ) Ge(11Nj 8N)r /2 and we conclude

Ne tc (xn , j 8 ) (D a f )A(j 8 , xn )NGC 9s e 2e(11Nj 8N)r /2

for xn �]2d , d[, j 8�Rn21 . Therefore V f VH s , c
t , s

is bounded, and we obtain
Proposition 2.1.

It is evident from the proof of Proposition 2.1 that the assumption of G s-
regularity could be relaxed with respect to the xn-variable. We now turn atten-
tion to the main theme of this paragraph; precisely, we want to study when
H s , c

t , s (Rn21 3]2d , d[) is an algebra.
To this end we first produce the following definitions and examples.

DEFINITION 2.3. – The non-negative function F on RN is said to be sub-ad-
ditive if

F(s1 t) GF(s)1F(t) for all s , t�RN .

EXAMPLE 2.1. – F(t) 4NtNr is sub-additive in RN for 0 GrG1. The follow-
ing functions are sub-additive for t�R , 0 GrG1:

F(t) 4 t r
1 , i.e. F(t) 40 for tG0, 4 t r for tD0 ;

F(t) 4 t r
2 , i.e. F(t) 4 (2t)r for tE0, 40 for tD0 .

Let us observe that if F(t) is a sub-additive function in RN , and cF0, then
also cF(t) is sub-additive. Moreover, if F 1 (t) and F 2 (t) are sub-additive, also
F 1 (t)1F 2 (t) is sub-additive. It follows in particular that, for c , d�R1N ]0(

with ccd and 0 GrG1, the function F(t) 4ct2
r 1dt r

1 is sub-additive in R . In
terms of the function sign t4 t/NtN , setting c4A2B , d4A1B , we can
rewrite F(t) 4 (A1B sign t)NtNr , with ADNBN .

Other examples can be obtained by observing that if t4 (t1 , t2 ) �RN 4

RN1
t1

3RN2
t2

, and F(t1 ) is sub-additive in RN1
t1

, then F(t1 ) in RN , i.e. F(t1 )31t2
, is

also sub-additive.
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DEFINITION 2.4. – The non-negative function F on RN is said to be essen-
tially sub-additive if for some CD0

F(s1 t) GF(s)1F(t)1C for all s , t�RN .

EXAMPLE 2.2. – Let F be continuous sub-additive in RN ; let F
A be continu-

ous non-negative with F
A(t) 4F(t) when NtNFr , for some rD0; then F

A is es-
sentially sub-additive in RN , as it is easy to prove. Therefore, using Examples
2.1 and letting W(t) �C Q (RN ), 0 GWG1, W(t) 41 for tF1, W(t) 40 for NtNG

1/2 , we obtain that the C Q functions

F(t) 4CW(t)NtNr , C�R1 , 0 GrG1 , t�RN ,

F(t) 4 (A1B sign t) W(t)NtNr , ADNBN , 0 GrG1 , t�R ,

are essentially sub-additive.

THEOREM 2.5. – Let the weight function c (xn , j 8 ) �C Q (]2d , d[3Rn21 )
be essentially sub-additive with respect to j 8, i.e.

c (xn , j 81h 8 ) Gc (xn , j 8 )1c (xn , h 8 )1C(2.12)

for some constant C independent of j 8 , h 8�Rn21 and xn �]2d , d[.
Then for sFn13 the space H s , c

t , s (Rn21 3]2d , d[) is an algebra, and for
a suitable constant Cs we have

VuvVH s , c
t , s

GCs VuVH s , c
t , s

VvVH s , c
t , s

.(2.13)

PROOF. – We limit ourselves to consider integers sFn13, applying then
interpolation for arbitrary sDn13. Referring to the norm (ii) in Lemma 2.4
we have

VuvVH s , c
t , s

4 !
NaNGs

Ve tc (xn , D 8 ) D a (uv)VGCs !
NaNGs

!
b1g4a

Ve tc (xn , D 8 ) D b uD g vV4

C 8s !
Nb1gNGs

Ve tc (xn , D 8 ) (e 2tc (xn , D 8 ) u 8b e 2tc (xn , D 8 ) v 8g )V

were we take L 2-norms in Rn21
x 8 3]2d , d[ and

u 8b (x) 4e tc (xn , D 8 ) D b u , v 8g (x) 4e tc (xn , D 8 ) D g v .

Applying Fourier transform with respect to x 8 , we obtain

VuvVH s , c
t , s

GC 8s !
Nb1gNGs

NNsH(xn , j 8, h8 ) uA8b (j 82h8 , xn ) vA 8g (h8, xn ) dh8NN
L 2 (Rn21

j 8 3]2d , d[)

where H(xn , j 8 , h 8 ) 4exp [tc (xn , j 8 )2tc (xn , j 82h 8 )2tc (xn , h 8 ) ].
Since H is bounded in ]2d , d[3Rn21

j 8 3Rn21
h 8 , in view of the assumption
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(2.12), we conclude

VuvVH s , c
t , s

GC 9s !
Nb1gNGs

NNsNuA8b (j 82h 8, xn )NNvA 8g (h 8, xn ) dh8NN
L 2 (Rn21

j 8 3]2d , d[)
.

If sFn13, NgN1NbNGs , then one at least of the inequalities NbNGs2

(n21)O222, NgNGs2 (n21)O222 must be satisfied, and we may write
using Young estimates and setting t4s2 (n21)O222

VuvVH s , c
t , s

GC 9s !
NbNG t
NgNGs

u s
2d

d

VuA8b (j 8, xn )V

2
L 1 (Rn21

j 8 ) Vv
A 8g (j 8, xn )V

2
L 2 (Rn21

j 8 ) dxn
v1/2

1

C 9s !
NbNGs
NgN G t

u s
2d

d

VuA8b (j 8, xn )V

2
L 2 (Rn21

j 8 ) Vv
A 8g (j 8, xn )V

2
L 1 (Rn21

j 8 ) dxn
v1/2

G

C 9s !
NbNG t
NgNGs

sup
Nxn NGd

VuA8b (j 8, xn )VL 1 (Rn21
j 8 ) Vv 8g V1C 9s !

NbNGs
NgNG t

sup
Nxn NGd

VvA 8g (j 8, xn )V

2
L 1 (Rn21

j 8 ) Vu 8b V .

Since u , v�H s , c
t , s and NbNGs , NgNGs , we have from Lemma 2.4, (ii)

u 8b , v 8g �L 2 (Rn21
x 3]2d , d[) and Vu 8b VGVuVH s , c

t , s
, Vv 8g VGVvVH s , c

t , s
. On the other

hand, we may estimate as standard

sup
Nxn NGd

VuA8b (j 8 , xn )VL 1 (Rn21
j 8 ) GCs sup

Nxn NGd
!

NrNG (n21)O211
VD r

x 8 u 8b (x 8 , xn )VL 2 (Rn21
x 8 ) G

GC 8s !
NvNG (n21)O212

VD v u 8b VGC 8s VuVH s , c
t , s

if NbN1 (n21)O212 Gs , in view of Lemma 2.4 (iii). Estimating in the same
way sup

Nxn NGd
VvA 8g (j 8 , xn )VL 1 (Rn21

j 8 ) we conclude VuvVH s , c
t , s

GCs VuVH s , c
t , s

VvVH s , c
t , s

for a

new constant Cs .

EXAMPLE 2.3. – In the proof of Theorem 1.2 we shall apply Theorem 2.5 for
the following two weight functions, with W�C Q (Rn21 ), 0 GW(j 8 ) G1,
W(j 8 ) 41 for Nj 8NF1, W(j 8 ) 40 for Nj 8NG1/2:

c (xn , j 8 ) 4g11
xn

d 0
h W(j 8 )Nj 8 Nr ,(2.14)

c (x2 , j 1 ) 4g11
x2

d 0

sign j 1h W(j 1 )Nj 1 Nr ,(2.15)

which are essentially sub-additive in view of Examples 2.2 if d 0 Dd . Theorem
2.5 for the weight (2.14) was already in Kajitani [30].
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We now consider functions E(x , z): Rn21
x 8 3]2d , d[3CN

z KC , compactly
supported with respect to the variables x . More precisely we assume for
1 Es 8Es

E(x , z) 4!
b

fb (x) z b , fb�G s 8 (Rn21
x 8 3]2d , d[) , z�CN ,(2.16)

where supp fb%K%%Rn21
x 8 3]2d , d[ and

sup N¯a fb (x)NGl b A NaN (a! )s 8(2.17)

with positive constants A and l b , the function

EA(z) 4!
b

l b z b(2.18)

being entire.

THEOREM 2.6. – Let E(x , z) be of the form (2.16), (2.17), (2.18). Let

vj �H s , c
t , s (Rn21 3]2d , d[) , j41, R , N ,

with sFn13 and c satisfying (2.12); set V4 (v1 , R , vN ). Then E(x , V) is in
H s , c

t , s (Rn21 3]2d , d[).

LEMMA 2.7. – Let f be in G s 8
0 (Rn21 3]2d , d[), with 1 Es 8Es . Then

f�H s , c
t , s (Rn21 3]2d , d[) ,

for every weight function c of order r41/s , for all tD0 and sF0. More-
over, if

sup N¯a f (x)NGlA NaN (a! )s 8 ,(2.19)

then V f VH s , c
t , s

GlAs , where As depends only on A from the right-hand side of
(2.19) and supp f.

PROOF OF LEMMA 2.7. – Arguing as in the proof of Proposition 2.1, we ob-
tain for NaNGs:

N(D a f )A(j 8, xn )NGlCs e 2e(11Nj 8N)r 8

,

where r 841/s 8 , and Cs , e depend on A and supp f . Referring to the norm (ii)
in Lemma 2.4 and observing that r 8Dr , we get the the conclusion.

PROOF OF THEOREM 2.6. – We write with obvious vectorial notation

VE(x , V)VH s , c
t , s

G!
b

V fb V b
VH s , c

t , s
G!

b
Cs

NbN
V fb VH s , c

t , s
VVV

b
H s , c

t , s
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where we have applied Theorem 2.5 with Cs as in (2.13). Using then Lem-
ma 2.7, we conclude

VE(x , V)VH s , c
t , s

GAs!
b

l b (Cs VVVH s , c
t , s

)b4As EA(Cs VVVH s , c
t , s

) .

Let V 8 be a bounded open set, say a neighborhood of the origin, in Rn21
x 8 .

We define V4V 83]2d , d[ and

H s , c
t , s , comp (V) 4 ] f �H s , c

t , s (Rn21 3]2d , d[), supp f is a compact subset of V( ;

H s , c
t , s , loc (V) 4 ] f � D8 (V), Wf �H s , c

t , s , comp (V) for every W�G s 8
0 (V), 1 Es 8Es( ;

H s , c
t , s (V) 4 ] f is the restriction to V from H s , c

t , s (Rn21 3]2d , d[)( .

We understand from now on sFn13, as assumed in Theorem 2.5. Then
H s , c

t , s (V), endowed by the standard quotient norm, is an algebra and (2.13) is
valid with the same constant Cs . To prepare the applications in the next sec-
tions, le us consider as in § 1

J(v) 4F(x , ¯a v(x) )NaNGm21(2.20)

where F is entire function with respect to z4 (¯a v) �CN , and we allow now
G s 8-regularity with respect to x in a neighborhood V4V 83]2d , d[ of the
origin, according to (2.17), (2.18). Let us assume further for some integer
kF0:

¯g
z F(x , 0 ) 40 if NgNGk , x�V .(2.21)

PROPOSITION 2.8. – Under the preceding assumptions for F, there exist two
entire functions F1 (w), F2 (w) in C ,

F1 (w)4 !
hFk11

l 1h w h , F2 (w)4 !
hFk

l 2h w h with l 1hF0 , l 2hF0 ,(2.22)

such that for all v, v1 , v2 �H s1m21, c
t , s (V)

VJ(v)VH s , c
t , s

GF1 (VvVH s1m21, c
t , s

)(2.23)

VJ(v1 )2J(v2 )VH s , c
t , s

GVv12v2 VH s1m21, c
t , s

F2 (max ]Vv1 VH s1m21, c
t , s

, Vv2 VH s1m21, c
t , s

( )(2.24)

where norms are in H s , c
t , s (V) and the hypotheses of Theorem 2.5 on c and s

are assumed to be satisfied.

PROOF. – From (iii) in Lemma 2.4 we have

V¯a vVH s , c
t , s

GVvVH s1m21, c
t , s

for NaNGm21 .
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Applying the proof of Theorem 2.6 to V4 (¯a v)NaNGm21 , we then get (2.23)
with

F1 (w) 4As !
NbNDk

l b (Cs w)NbN .

As for F2 (w), we use Taylor formula to write:

F(x , z 1 )2F(x , z 2 ) 4 az 1 2z 2 , G(x , z 1 , z 2 )b ,

G(x , z 1 , z 2 ) 4s
0

1

Fz (x , z 1 1 t(z 2 2z 1 ) ) dt , z 1 , z 2 �CN ,

and then we apply Theorem 2.6 to G(x , ¯a v1 , ¯b v2 )NaN , NbNGm21 in order to de-
fine F2 (w).

3. – Proof of Theorem 1.1 and local solvability of the linear equation.

Since we are looking for local, or microlocal, solvability at the origin, it will be
not restrictive to multiply the coefficients ca (x) of P(x , D) in (1.1), (1.2) by a
function x�G s 8

0 (V), with 1 Gs 8Es , x(x) 41 in a smaller neighborhood of the
origin. From now we shall then assume ca (x) �G s 8

0 (V) for NaNGm , V4V 83

]2d , d[, with V 8 bounded neighborhood of the origin in Rn21 and dD0.
Following the notations and the definitions of the preceding § 2, we consid-

er here a weight function c (xn , j 8 ) of order r41/s satisfying (2.12), and the
corresponding Gevrey-Sobolev spaces H s , c

t , s (Rn21 3]2d , d[), H s , c
t , s , comp (V),

H s , c
t , s , loc (V), H s , c

t , s (V), where tD0 and sFn13.
From Lemma 2.4, Theorem 2.5, Lemma 2.7 we have that for sFm1n13

P(x , D): H s , c
t , s (Rn21 3]2d , d[) KH s2m , c

t , s (Rn21 3]2d , d[) ;

we may also regard P(x , D) as continuous map:

P(x , D): H s , c
t , s , loc (V) KH s2m , c

t , s , comp (V) ,

P(x , D): H s , c
t , s (V) KH s2m , c

t , s (V) .

Consider

PA4e tc (xn , D 8 ) P(x , D)e 2tc (xn , D 8 ) ;(3.1)
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in view of (2.5), (2.6) we have

PA: H s (Rn21 3]2d , d[) KH s2m (Rn21 3]2d , d[)

and

P4e 2tc (xn , D 8 ) PAe tc (xn , D 8 ) .(3.2)

We can now give the following more precise statement of Theorem 1.1. Let us
fix attention on a weight function of type (2.14):

c (xn , j 8 ) 4g11
xn

2d
h W(j 8 )Nj 8Nr ,(3.3)

where r41/s and W�C Q
0 (Rn21 ), 0 GWG1, W(j 8 ) 41 for Nj 8NF1, W(j) 40

for Nj 8NG1/2 .

THEOREM 3.1. – Let the principal symbol pm (x , j) of P(x , D) satisfy (1.8),
(1.9), (1.10) in a conic neighborhood G of the point (x0 , j 0 ), with x0 40 say,
j 80 c0. Let tD0 be fixed and let c (xn , j 8 ) be chosen as in (3.3) with 1/r4

sEk/(k21). Let V4V 83]2d , d[ be sufficiently small. Define PA according
to (3.1). Then there exists a linear map

EA: H s (Rn21 3]2d , d[) KH s1m2k(121/s) (Rn21 3]2d , d[)

such that

PAEA4x(x)l(D)1RA ,(3.4)

where x(x) is fixed arbitrary in C Q
0 (V) with support in a neighborhood of x0

and l(j) in C Q (Rn ) homogeneous of degree 0 for large NjN , arbitrary with
support in a conic neighborhood of j 0 . Moreover RA is a linear regularizing
map, i.e.

RA: H s (Rn21 3]2d , d[) KH t (Rn21 3]2d , d[)

for all tF0.

Coming back to the equation

P(x , D)v4 f �H s , c
t , s (Rn21 3]2d , d[) ,

we may rewrite it in the form

PAe tc (xn , D 8 ) v4e tc (xn , D 8 ) f �H s (Rn21 3]2d , d[) .
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Setting

E4e 2tc (xn , D 8 ) EAe tc (xn , D 8 ) , R4e 2tc (xn , D 8 ) RAe tc (xn , D 8 ) ,

we then obtain Theorem 1.1 with

v4Ef �H s1m2k(121/s), c
t , s (Rn21 3]2d , d[) .

In fact, in view of (3.4), the function v is a microlocal solution in the sense
that

P(x , D) v4e 2tc (xn , D 8 ) x(x) l(D) e tc (xn , D 8 ) f1Rf ,(3.5)

where we take x(x) 41 in a neighborhood of x0 , l(j) 41 in a conic neighbor-
hood of j 0 , and

R : H s , c
t , s (Rn21 3]2d , d[) KH t , c

t , s (Rn21 3]2d , d[)

for all tF0.
Aiming to applications to semilinear equations, we shall content here with

(3.5); we observe however that a more explicit meaning to (3.5) could be given
in terms of the Gevrey-Sobolev wave front sets of Chen Hua-Rodino [6].

The proof of Theorem 3.1 will be based on the following preliminary
results.

DEFINITION 3.1. – We say that q(x , j) �C Q (V3Rn ) is in the class U m , M ,
mF0 integer, M�R , if q(x , j) is a polynomial with respect to j n :

q(x , j) 4 !
m

j40
qM2 j (x , j 8 ) j j

n ,(3.6)

where the symbols qr (x , j 8 ), r4M2 j , j40, 1 , R , m , are compactly sup-
ported with respect to x and satisfy the estimates

ND a
x D b

j 8 qr (x , j 8 )NGCab (11Nj 8N)r2NbN(3.7)

for a�Zn
1 , b�Z1

n21 , with suitable constants Cab independent of x�V , j 8�
Rn21 . When m40 we understand q(x , j) is j n-independent satisfying esti-
mates (3.7) with r4M .

The corresponding pseudo-differential operators q(x , D) map H l
loc (Rn21 3

]2d , d[) into H l2N
comp (Rn21 3]2d , d[), N4 max (m , M), since U m , M is includ-

ed in the class S N
0, 0 , cf. Hörmander [29]. It is known that the rules of the sym-

bolic calculus do not apply in full force to operators with symbol in S N
0, 0 . How-

ever we may note that if q ( j) (x , j) �U mj , Mj j41, 2 , then we get q(x , D) 4

q (1) (x , D) q (2) (x , D) with q(x , j) �U m11m2 , M11M2 . Moreover in any conic sub-
set G of V3Rn where Nj 8NFeNj n N for some eD0, we have U m , M %S M

1, 0 , i.e.
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(3.6), (3.7) imply

ND a
x D g

j q(x , j)NGCag (11NjN)M2NgN for (x , j) �G .

At a symbolic level, this will allow applications in G of the standard S m
r , d theory

for construction of parametrices, see again Hörmander [29].

PROPOSITION 3.2. – Let P(x , D) be a linear partial differential operator
with coefficients in G0

s 8 (V), V4V 83]2d , d[, 1 Es 8Es , and let c (xn , j 8 )
be a weight function of order r41/s satisfying (2.12). Fix tD0. Then the op-
erator PA defined by (3.1) can be written as a pseudo-differential operator with
symbol

pA(x , j) �U m , m .

Precisely we have

pA(x , j) 4pm (x , j)1qm2 (12r) (x , j)1qm22(12r) (x , j)

where:

i) pm (x , j) is the principal symbol of P(x , D);

ii) qm2 (12r) (x , j) �U m , m2 (12r) is given by

it¯j n
pm (x , j) ¯xn

c (xn , j 8 )2 it !
n21

j41
¯xj

pm (x , j) ¯j j
c (xn , j 8 ) ;(3.8)

iii) qm22(12r) (x , j) �U m , m22(12r) .

We point out that this proposition is, essentially, a particular case of Propo-
sition 2.13 in Kajitani-Wakabayashi [31], see also Proposition 2.5 in Kaji-
tani [30]. Aiming to a self contained proof, for benefit of non-specialists, we ob-
serve first that Lemma 2.2 gives for a4 (a 8 , a n ) �Zn

1 , a n F1:

(3.9) e tc (xn , D 8 ) Dx
a e 2tc (xn , D 8 ) 4

4D a
x 2a n t(Dxn

c)(xn , D 8 ) Dx 8
a 8 D a n21

xn
1qNaN22(12r) (xn , D)

where qNaN22(12r) �U NaN , NaN22(12r) . This corresponds to Proposition 3.2 in the
case P4D a . Moreover we have the following:
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LEMMA 3.3. – Let a�G s 8
0 (V), 1 Es 8Es . Then, for c (xn , j 8 ) as in Proposi-

tion 3.2:

(3.10) e tc (xn , D 8 ) a(x)e 2tc (xn , D 8 ) 4

a(x)1t !
n21

j41
Dxj

a(x) ¯j j
c (xn , D 8 )1q22(12r) (x , D 8 ) ,

where q22(12r) (x , j 8 ) �U 0, 22(12r) .

PROOF. – We may write

e tc (xn , D 8 ) a(x) e 2tc (xn , D 8 ) 4q(x , D 8 )

where the symbol of the pseudo differential operator q(x , D 8 ) is given by the
oscillatory integral

q(x , j 8 ) 4 (2p)2n11se ix 8 h 8 e tc (xn , j 81h 8 )2tc (xn , j 8 ) aA(h 8 , xn ) dh 8 .(3.11)

As before aA denotes the Fourier transform of a(x 8, xn ) with respect to x 8 .
Using Taylor formula, we may write for every NF2

e tc (xn , j 81h 8 )2tc (xn , j 8 ) 4

11 !
j41

n21

t¯j j
c (xn , j 8 ) h j 1 !

2 GNbNEN
(b! )21 l b (xn , j 8 ) h 8b1rN (xn , j 8 , h 8 )

where

rN (xn , j 8 , h 8 ) 4 !
NbN4N

h 8b

b!
s
0

1

l b (xn , j 81 th 8 ) e tc (xn , j 81 th 8 )2tc (xn , j 8 ) dt(3.12)

with

l b (xn , j 8 ) 4e 2tc (xn , j 8 ) ¯b
j 8 e tc (xn , j 8 ) .(3.13)

Inserting in (3.11) we obtain (3.10) with

q22(12r) (x , j 8 ) 4 !
2 GNbNEN

(b! )21 Dx
b a(x) l b (xn , j 8 )1RN (x , j 8 ) ,

where

RN (x , j 8 ) 4 (2p)2n11se ix 8 h 8 rN (xn , j 8, h 8 ) aA(h 8, xn ) dh 8 .

To prove q22(12r) �U 0, 22(12r) , we observe first that l b (xn , j 8 ) �U 0, 2NbN(12r) ,
as it is easy to deduce by induction. Therefore it will be sufficient to estimate
RN . From (2.12) and (2.1) we have

c (xn , j 81 th 8 ) Gc (xn , j 8 )1C(11Nh 8N)r(3.14)
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for a suitable constant C ; applying in (3.12) we obtain

NrN (xn , j 8, h 8 )NGC 8 (11Nj 8N)2N(12r) (11Nh 8N)2N e C(11Nh 8N)r .

On the other hand, from the proof of Lemma 2.7 we have

N(D g a)A(h 8, xn )NGC 9g e 2e(11Nh 8N)r 8

,(3.15)

where eD0 and r 841/s 8Dr . Inserting in the expression of RN (x , j 8 ) we
conclude

NRN (x , j 8 )NGCR(11Nj 8N)2N(12r) .

In general, for a4 (a 8, a n ) �Z1
n , b�Z1

n21 , we have

Dx
a Dj 8

b RN (x , j 8 ) 4

(2p)2n11 !
j1h4a n

a n !

j! h!
se ix 8 h 8 ha 8 D j

xn
D b

j 8 rN (xn , j 8, h 8 ) Dxn
h aA(h 8, xn ) dh 8 .

Now from (3.12) and (3.14) we obtain easily for a suitable MD0

ND j
xn

D b
j 8 rN (xn , j 8, h 8 )NGC 8jb (11Nj 8N)2(N1NbN)(12r)1 jr (11Nh 8N)M e C(11Nh 8N)r ;

hence using (3.15) we get the rough estimates

ND a
x D b

j 8 RN (x , j 8 )NGCab (11Nj 8N)2N(12r)1NaN .

By taking N large enough, these are sufficient to conclude

ND a
x D b

j 8 q22(12r) (x , j 8 )NGC 8ab (11Nj 8 N)22(12r)2NbN .

Lemma 3.3 is therefore proved.

PROOF OF PROPOSITION 3.2. – Using (3.9), Lemma 3.3 and the remarks after
Definition 3.1, we have for a4 (a 8, a n ), NaNGm , a n F1:

e tc (xn , D 8 ) ca (x) D a e 2tc (xn , D 8 ) 4ca (x) D a
x 1 ita n ca (x)(¯xn

c)(xn , D 8 ) D a 8
x 8 Dxn

a n21 2

it !
j41

n21

¯xj
ca (x) ¯j j

c (xn , D 8 ) D a1qNaN22(12r) (x , D) ,

with qNaN22(12r) �U NaN , NaN22(12r) . This proves Proposition 3.2 for an operator
with symbol ca (x)ja . Summing for NaNGm , we obtain the conclusion in
general.

We may now return to Theorem 3.1. Also for this proof we note similarity
with the arguments of Kajitani-Wakabayashi [31], concerning micro-hyperbol-
ic operators. We shall deduce Theorem 3.1 from the following:
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LEMMA 3.4. – Let the principal symbol pm (x , j) of P(x , D) satisfy (1.8),
(1.9), (1.10) in a conic neighborhood G of the point (x0 , j 0 ), x0 40, j 0 c0. Let
c (xn , j 8 ) be chosen as in (3.3) with 1/r4sEk/(k21) and tD0 be fixed. De-
fine PA according to (3.1) and let pA(x , j) �U m , m be the corresponding symbol.
Then, possibly after a shrinking of G and for large NjN , we have

pA(x , j) 4gm2k (x , j) »
j41

k

l ( j) (x , j)1pAm21 (x , j) , (x , j) �G(3.16)

where:

(i) gm2k (x , j) 4em2k (x , j)1gm2k2 (121/s) (x , j), with

(I) em2k (x , j) �U m2k , m2k homogeneous of order m2k with respect
to j and elliptic in G;

(II) gm2k2 (121Os) (x , j) �U m2k , m2k2 (121/s) .

(ii) For j41, R , k we have

l ( j) (x , j) 4j n 1y 1
( j) (x , j 8 )1y 1/s

( j) (x , j 8 )1y 122(121/s)
( j) (x , j 8 ) with :

(I) y ( j)
1 (x , j 8 ) homogeneous of order 1 with respect to j 8 , satisfy-

ing

Im v1
( j) (x , j 8 ) F0 for all j41, R , k and (x , j) �G ;

(II) v( j)
1/s (x , j8)4i(tO2d)Nj8N1/s1t(11xn O2d) vA ( j)

1/s (x , j8), where vA ( j)
1Os(x , j8)�

U 0, 1 /s is independent of t , d (as well as em2k (x , j), v ( j)
1 (x , j 8 )

are);

(III) v ( j)
122(121/s) (x , j 8 ) �U 0, 122(121/s) .

(iii) pAm21 (x , j) �U m , m21 .

PROOF. – In view of the assumption (1.9), we may rewrite (1.8):

pm (x , j) 4em2k (x , j) »
k

j41
(j n 2y ( j)

1 (x , j 8 ) ) ,(3.17)

where em2k (x , j) is a new elliptic factor in G and v ( j)
1 (x , j 8 ), j41, R , k , are

homogeneous of order 1 with respect to j 8 . Since (1.10) is invariant under the
multiplication by elliptic factors preserving (1.9), we have Im v ( j)

1 (x , j) F0 for
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all j41, R , k and (x , j) �G . Applying Proposition 3.2 we then obtain with the
present choice of c (xn , j 8 ):

pA(x , j) 4em2k (x , j) »
k

j41
(j n 2v1

( j) (x , j 8 ) )1 i
t

2d
Nj 8N1/s3

{¯j n
em2k (x , j) »

k

j41
(j n 2y ( j)

1 (x , j 8) )1em2k (x , j) !
k

j41
»
hc j

(j n 2v (h)
1 (x , j 8)}1

tg11
xn

2d
h qm2 (121Os) (x , j)1qm22(121Os) (x , j) ,

where qm2 (121/s) �U m , m2 (121/s) , qm22(121/s) �U m , m22(121/s) , and qm2 (121/s)

does not depend on t and d . We may then impose (3.16), and determine
gm2k2 (121/s) , y ( j)

122(121/s) , pAm21 by a straightforward algebraic computa-
tion.

Before proving Theorem 3.1, we recall some basic facts concerning S m
r , d-

classes. We argue on a symbol q(x , j) �S m
1, 0 (G), that is we assume estimates as

those in the remark after Definition 3.1 are satisfied. We say that q(x , j) is of
type (m , m 8 , r , d) in G , m 8Gm , 0 GdErG1, if for suitable positive con-
stants c , C , cab we have in G

Nq(x , j)NFcNjNm 8 for NjNFC ,(3.18)

NDx
a Dj

b q(x , j)NGcab Nq(x , j)N(11NjN)2rNbN1dNaN .(3.19)

If q(x , j) is of type (m , m 8 , r , d) then it admits an inverse q 8 (x , j) �
Sr , d

2m 8 (G), i.e.

NDx
a Dj

b q 8 (x , j)NGc 8ab (11NjN)2m 82rNbN1dNaN

and qJq 84! (a! )21 ¯a
j q(x , j) Dx

a q 8 (x , j) A1, cf. Hörmander [29]. We ob-
serve the following:

(3.20) If q(x , j) is of type (m , m 8, r , d) and l(x , j) �S m 82e
1, 0 (G) for some

eD0, then q(x , j)1l(x , j) is also of type (m , m 8, r , d).

(3.21) Assume qj (x , j) is of type (mj , m 8j , r , d), j41, 2 . Then q(x , j) 4

q1 (x , j) q2 (x , j) is of type (m1 1m2 , m 81 1m 82 , r , d).

Assume q(x , j) is of type (m , m 8 , r , 12r) with 1 /2 ErG1, in G . Let x4

x(y , h), j4j(y , h) be a C Q diffeomorphism, with components homogeneous in
h of degree 0 , 1 respectively, defined from a cone L to the cone G . Then

r(y , h) 4q(x(y , h), j(y , h) ) is of type (m , m 8, r , 12r) in L .(3.22)
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PROOF OF THEOREM 3.1. – As in Lemma 3.4, consider pA(x , j) �U m , m , sym-
bol of PA, which we regard as element of S m

1, 0 (G), according to the remark after
Definition 3.1. Let us prove that pA(x , j) is of type (m , m2k(121/s), 1 /s , 12

1/s) in G . Expressing pA(x , j) as in (3.16), we first observe that we may ignore
pAm21 (x , j) in view of (3.20). Moreover, in view of (3.21), it will be sufficient to
check that every l ( j) (x , j) is of type (1 , 1 /s , 1 /s , 121/s), since gm2k (x , j) is
of type (m2k , m2k , 1 , 0 ) because of the ellipticity of its principal symbol
em2k (x , j). As for l ( j) (x , j), we may apply again (3.20) and limit ourselves to
study the factors

l 8 (x , j) 4j n 1y 1 (x , j 8 )1 i
t

2d
Nj 8N1/s1tg11

xn

2d
h vA1/s (x , j 8 ) ,

where we omit the index j for simplicity of notations.
Let us write

m 1/s (x , j 8 ) 4
t

2d
Nj 8N1/s1tg11

xn

2d
hIm vA1/s (x , j 8 )

and observe that

m 1/s (x , j 8 ) F
t

4d
Nj 8N1/s(3.23)

if d is chosen sufficiently small. Let us also write

n 1/s (x , j 8 ) 4tg11
xn

2d
h Re vA1/s (x , j 8 ) ,

v1 (x , j 8 ) 4n 1 (x , j)1 im 1 (x , j 8 ) .

It will be now useful to perform a change of variables y(x , j), h(x , j) with
C Q-inverse x4x(y , h), j4j(y , h) as in (3.22), by imposing

h n 4j n 2n 1 (x , j 8 )

(cf. Hörmander [29], Egorov [15], where the map y4y(x , j), h4h(x , j) was
constructed to be symplectic, that is not necessary here). In view of (3.22), we
are therefore reduced to consider in the corresponding cone L

lA(y , h) 4h n 1 imA 1 (y , h)1 imA 1/s (y , h)1nA 1/s (y , h) ,(3.24)

where from Lemma 3.4 we have

mA 1 (y , h) 4m 1 (x(y , h), j 8 (y , h) )F0 ,(3.25)
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and moreover for some CD0

mA 1/s (y , h) 4m 1/s (x(y , h), j 8 (y , h) )FCNhN1/s(3.26)

in view of (3.23). As for nA 1/s (y , h) 4n 1/s (x(y , h), j 8 (y , h) ) , we simply observe
that it is real valued, homogeneous with respect to h of order 1 /s .

We have to prove that lA(y , h) in (3.24) is of type (1 , 1 /s , 1 /s , 121/s).
To this end, we first observe that for positive constants c , C and large NhN

we have in L

c(Nh n N1Nh 8N1/s1mA 1 (y , h) )GNlA(y , h)NGC(Nh n N1Nh 8N1/s1mA 1 (y , h) )(3.27)

in view of (3.25), (3.26). Therefore obviously

NlA(y , h)NFcNhN1/s .

On the other hand for bc0

ND a
y D b

h lA(y , h)NGcab (11NhN)12NbNGc 8ab NlA(y , h)N(11NhN)121/s2NbNG

c 9ab NlA(y , h)N(11NhN)2NbN/s ,

whereas in the case b40, ac0

ND a
y lA(y , h)NGca (11NhN)Gc 8a NlA(y , h)N(11NhN)121/sGc 9a NlA(y , h)N(11NhN)(121/s)NaN .

We have then proved that lA(y , h) is of type (1 , 1 /s , 1 /s , 121/s) in L and
therefore pA(x , j) is of type (m , m2k(121/s), 1 /s , 121/s) in G . We may
then construct in G

q(x , j) �S m , m2k(121/s)
1 /s , 121/s

such that pAJqA1. Consider in the same class the symbol

eA(x , j) 4qJ(x(x)l(j) )

which, because of the assumptions on x(x) and l(j), is well defined in V3Rn .
Let finally EA be a properly supported pseudo-differential operator with sym-
bol eA(x , j). If l(j) 40 in a conic neighborhood of the manifold j 840, the sym-
bol of PAEA can be computed as standard and (3.4) is satisfied for a suitable reg-
ularizing map RA. Since EA has the required continuity property, Theorem 3.1 is
proved.

REMARK 3.1. – If in the hypotheses of Theorem 3.1 we replace (1.10) with
(1.11), then the conclusions keep valid provided in the statement we refer to
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the weight function

c (xn , j 8 ) 4g12
xn

2d
h W(j 8 )Nj 8Nr .

In fact, it is sufficient to observe that this choice of c (xn , j 8 ) gives in the pre-
ceding proof

mA 1/s (y , h) G2CNhN1/s(3.28)

and from (1.11) we have

mA 1 (y , h) G0 .(3.29)

The basic estimate (3.27) reads then

c(Nh n N1Nh 8N1/s2mA 1 (y , h) )GNlA(y , h)NGC(Nh n N1Nh 8N1/s2mA 1 (y , h) )(3.30)

and we may conclude as before.

We begin now to prove Theorem 1.2 in the linear case.

THEOREM 3.5. – Let the principal symbol pm (x , j) of P(x , D) satisfy (1.12),
or else (1.13), (1.14). Let tD0 be fixed and let c (xn , j 8 ) be chosen as in (3.3)
with 1/r4sEk/(k21), in the case when (1.12) is satisfied; when (1.13),
(1.14) are satisfied, define instead

c (x2 , j 1 ) 4g11
x2

2d
sign j 1h W(j 1 )Nj 1 Nr ,

cf. Example 2.3. Let V4V 83]2d , d[ be sufficiently small. Then there exists
a linear map

E : H s , c
t , s (Rn21 3]2d , d[) KH s1m2k(121/s)

t , s (Rn21 3]2d , d[)

such that

P(x , D) Eu4x(x)u1Ru ,

where we may fix x(x) arbitrary in G s 8
0 (V), 1 Es 8Es , with x(x) 41 in a

smaller neighborhood of the origin. Moreover R is a linear regularizing map,
in the sense that for all tF0

R : H s , c
t , s (Rn21 3]2d , d[) KH t , c

t , s (Rn21 3]2d , d[) .

Shrinking further V , we obtain E : H s , c
t , s , comp (V) KH s1m2k(121/s), c

t , s (V) such
that P(x , D) E4Id1R , with R regularizing as before.
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PROOF. – Using the notations in the first part of this section, we begin by
constructing EA such that

PAEA4x(x)1RA ,(3.31)

where EA and RA have the continuity properties in Theorem 3.1. The proof of
Theorem 3.1 and the Remark 3.1 give actually EA1 such that

PAEA1 4x(x) l(D)1RA1 ,

where, in view of (1.12), or (1.13), (1.14), we may take any l(j) �C Q (Rn ) homo-
geneous of degree zero with l(j) 40 in a conic neighborhood of the manifold
j 840, and RA1 is regularizing (on the standard Sobolev spaces). On the other
hand we have

pA(x , j) 4 !
j40

m

qm2 j (x , j 8 ) j j
n

with qm2 j (x , j 8 ) �U 0, m2 j . It is not restrictive to assume q0 (x , j 8 ) 41; there-
fore from Proposition 3.2

pA(x , j) 4pm (x , j)1qm2 (12r) (x , j)

where qm2 (12r) �U m21, m2 (12r) , hence �S m2 (12r)
0 , 0 in view of the remarks

after Definition 3.1. Assume supp (12l(j) ) is included in a sufficiently small
neighborhood G 0 of the manifold j 840, so that pm (x , j) is elliptic in G 0 . We
can then construct EA2 such that

PAEA2 4x(x) (12l(D) )1RA2 ,

where RA2 is regularizing. The symbol eA2 (x , j) of EA2 will be computed in S 2m
0, 0 by

taking p 21
m (x , j) as principal part in G 0 . Observing that

pA(x , j) Jp 21
m (x , j) 411r2(12r) (x , j)

with r2(12r) �S0, 0
2(12r) in G 0 , we can find by standard iteration s2(12r) �

S 2(12r)
0 , 0 such that

(11r2(12r) (x , j) )J(11s2(12r) (x , j) )A1

and define

eA2 (x , j) 4p 21
m (x , j) J(11s2(12r) (x , j) )Jx(x) (12l(j) ) .

Taking EA4EA1 1EA2 we get (3.31). Returning to the operator P(x , D) we find
then E and R as required, with

P(x , D) Eu4e 2tc (xn , D 8 ) x(x) e tc (xn , D 8 ) u1Ru .
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As final step, we rewrite the preceding formula with x(x) replaced by x 0 (x) �
G s 8

0 (V), x 0 (x) 41 for x� supp x . Replacing further here E by Ex , it remains to
compute

e 2tc (xn , D 8 ) x 0 (x) e tc (xn , D 8 ) x(x) 4x(x)2e 2tc (xn , D 8 ) RA3 e tc (xn , D 8 )

where

RA3 4 (12x 0 (x) ) e tc (xn , D 8 ) x(x) e 2tc (xn , D 8 )

maps H s (Rn21 3]2d , d[) into H t (Rn21 3]2d , d[) for all t , as it follows easily
from the proof of Lemma 3.3. This concludes the proof of Theorem 3.5.

REMARK 3.2. – The two weight functions c (xn , j 8 ) considered in Theorem
3.5 are essentially sub-additive; that is necessary in our paper for the applica-
tion to the semilinear case. Looking only for local solvability of linear equa-
tions, Theorem 3.5 could be extended to more general P(x , D) by using non-
sub-additive weight functions.

4. – Local solvability for semilinear equations.

The purpose of this section is to prove Theorem 1.2. In fact, a more precise
assertion will be given.

First we state an abstract theorem on solvability in the framework of the
Gevrey-Sobolev spaces H s , c

t , s . Let tD0, sD1 be fixed, and let s and c satisfy
the hypotheses of Theorem 2.5. We impose on the nonlinearity F the same as-
sumption as in Theorem 2.6, Proposition 2.8, namely

F(x , Q) �G s 8 (V : H(CN ) ) , N4 !
a�Z1

n , NaNGm21
1 , 1 Gs 8Es ,(4.1)

where H(CN ) is the space of the entire functions in CN . We require further
that

F(x , 0 ) 40 , x�V .(4.2)

We may then apply Proposition 2.8 with k40 and obtain (2.23), (2.24) for
suitable functions F1 , F2 .

Our main assumption is the existence of an operator E right parametrix of
the linear operator P in the following sense P i E4Id1R , where E and the
remainder R satisfy the following properties: for every tD0, sFn13 there
exists a positive nondecreasing continuous function C : [0 , d 0 ] K [0 , 1Q[,



TODOR GRAMCHEV - LUIGI RODINO94

C(0) 40 such that

VRwVH s , c
t , s

G C(d)VwVH s , c
t , s

, w�H s , c
t , s (V d ) , 0 EdGd 0 ,(4.3)

VEwVH s1m21, c
t , s

G C(d)VwVH s , c
t , s

, w�H s , c
t , s (V d ) , 0 EdGd 0 ,(4.4)

where V d4 ]NxNEd(.
In view of (4.3) and (4.4) we can define

as (d) »4 sup
0 cw�H s , c

t , s (V d )

VRwVH s , c
t , s

VwVH s , c
t , s

G C(d) ,

bs (d) »4 sup
0 cw�H s , c

t , s (V d )

VEwVH s1m21, c
t , s

VwVH s , c
t , s

G C(d) ,

for every d�]0 , d 0 ]. Now we can state our main abstract theorem.

THEOREM 4.1. – Under the hypothesis (4.1)-(4.4) we claim that for every

f �H s , c
t , s (V d )O E8 (V d ) , sFn13, tD0, 0 EdGd 0

there exists a solution v�H s1m21, c
t , s (V d ) of the semilinear PDE

P(x , D) v1F(x , v , R , ¯x
a v , R)NNaNGm21 4 f (x) , x�V d(4.5)

of the form v4Ew with w�G s
0 (V d ) satysfying

Vw2 f VH s , c
t , s

G1(4.6)

provided d and V f VH s , c
t , s

satisfy the relations

.
/
´

as (d)(V f VHt , s
s , c 11)1F1 (bs (d)(V f VHt , s

s , c 11))G1 ,

as (d)1bs (d) F2 (bs (d)(V f VHt , s
s , c 11))E1 .

(4.7)

PROOF. – We shall reduce the problem to the application of the fixed point
theorem in a suitable Banach space. We look for a solution v(x) to (4.5) in the
following form v(x) 4Ew(x). Then the equation (4.5) is reduced to

.
/
´

w(x) 4 Kw(x)1 f (x) ,

Kw(x) 42Rw2F(x , Ew , R , ¯x
a Ew , R)NNaNGm21 .

(4.8)

We write for simplicity B s 4B s (V d ) instead of H s , c
t , s (V d ). Set

Xd »4 ]w�G s
0 (V d )OB s (V d ): Vw2 f VB s G1( .
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We will show that under the hypotheses of Theorem 4.1 the operator
Uw»4 Kw1 f is contraction in Xd provided the restrictions (4.7) hold.

a) First we prove that U preserves Xd . Indeed, taking into account
(2.23), the definition of as , bs and the first inequality in (4.7) we have for
w�Xd

(4.9) VUw2 f VB s 4VKwVB s GVRwVB s 1VF(Q , Ew , R , ¯a
x Ew , R)NNaNGm21 VB s G

as (d)VwVB s 1F1 (bs (d) VwVB s )Gas (d)(11V f VH s , c
t , s

)1F1 (bs (d)(11V f VH s , c
t , s

) )G1 .

Hence U(Xd ) %Xd .

b) Now we deduce the contraction property. Using again the definition
of as , bs , (2.24) and the second inequality in (4.7) we obtain the following
estimate

VK(w1 )2K(w2 )VB sGVw12w2 VB s (as (d)1bs (d) F2 (bs (d)(V f VH s , c
t , s

11)))4qVw12w2 VB s

for every all w1 , w2 �Xd with q4as (d)1bs (d) F2 (bs (d)(V f VH s , c
t , s

11))E1.
Theorem 4.1 is proved.

PROOF OF THEOREM 1.2. – We want to apply Theorem 4.1. Observe first that
the assumptions on the nonlinearity F in Theorem 1.2 can be relaxed as in
(4.1). Secondly, using Proposition 2.1, we have that f�G s

0 (V) implies f�H s , c
t , s ,

for c defined as in Theorem 3.5, 1 EsEk/(k21), a suitable tD0 and any sF

n13. Then, applying Theorem 3.5 to the linear part, we check that (4.3), (4.4)
are satisfied, if d 0 is fixed sufficiently small, cf. the proof of Theorem 3.1 and
the arguments used in [24]. At this moment, we fix d and e in Theorem 1.2 in
such a way that (4.7) is satisfied. We then obtain from Theorem 4.1 a solution
v�H s1m21, c

t , s (V d ). Since H s1m21, c
t , s (V d ) %H s1m21 (V d ) %C m (V d ) under our

assumption on s , Theorem 1.2 is proved.

PART II: THE CASE OF GEVREY NONLINEARITY

5. – Banach spaces of Gevrey functions.

Our aim in the present second part of the paper is to prove Theorem 1.3.
We begin by a new analysis of Gevrey-Sobolev spaces; more precisely, in the
following definitions the exponential weight of Part I is replaced by infinite
sums of L p-norms, cf. J. Leray and Y. Ohya [32]. We also mention that infinite
sums of L 2-norms have been used by P. D’Ancona and S. Spagnolo [12] in or-
der to study the lifespan for second order nonlinear hyperbolic equations with
analytic data while C. Wagschal [47] and D. Gourdin et M. Mechab [21] relied
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upon formal norms of Gevrey type for the study of the Goursat problems in
Gevrey classes. This frame will allow to treat Gevrey nonlinearity, cf. Sections
6, 7, 8, limiting however applications to linear principal parts depending on t
only, see Section 9 where the proof of Theorem 1.3 is concluded by direct
estimates.

First we introduce certain Banach spaces of Gevrey functions. Let us fix
sF1 and let V%Rn be an open set. For each 1 GpGQ , TD0 we set

Es (L p ; T) 4Es (L p (V); T) 4 ]f (x) �G s (V): l f lL p , T
s EQ((5.1)

where

l f lL p , T
s 4 !

k40

Q T k

(k! )s
V¯k f VL p ,(5.2)

with

V¯k f VL p 4
.
/
´

max
a�Z1

n , NaN4k
N¯a

x f (Q)NL p (V)

max
a�Z1

n , NaN4k
N¯a

x f (Q)NL Q (V)

if 1 GpEQ ,

if p4Q
(5.3)

and if p4Q we will write l f lT »4 l f lL Q , T and Es (T) »4Es (L Q ; T).
Furthermore, for any given nonnegative integer s we define in K%%

Rn :

Es (H s
p ; T) 4 ]f (x) �G s (K): l f lH s

p , T
s EQ((5.4)

where

l f lH s
p , T

s 4v s , p , n !
k40

Q T k

(k! )s
V¯k f VH s

p
,(5.5)

with

VgVH s
p

»4 !
j40

s

V¯ j gVL p(5.6)

and v s , p , n is a positive constant, which usually will be assumed to be equal
one, unless specified for sDn/p as

v s 4v s , p , n »4 sup
u , v�H s

p 00
u VuvVH s

p

VuVH s
p
VvVH s

p

v .(5.7)

In our application for equations of the type (1.18) we have a special variable
t . For that reason we introduce another type of Banach spaces which could be
viewed as analogues of the weighted spaces in part I.



GEVREY SOLVABILITY FOR SEMILINEAR PARTIAL ETC. 97

For any given m�Z1 and T�]0 , T0 [ we denote

Es (C m (H s
p ); T)4 ] f �C m ([2T/2 , T/2 ]: G u (K) ) : l f lC m (H s

p ); T
s EQ((5.8)

where

l f lC m (H s
p ), T

s 4v s , p , n !
n40

m

!
k40

Q

sup
NtNGT/2

g (T2 t)k1n

(k1n) !s
V¯t

n ¯k f (t)VH s
ph .(5.9)

Finally, if in addition m�Z1 , we define

(5.10) Es (m , C m (H s
p ); T)4 ] f �C m ([2T/2 , T/2 ]: G u (K) ) : l f ls

m , C m (H s
p ); T EQ(

where

(5.11) l f lm , C m (H s
p ), T

s 4v s , p , n !
n40

m

!
k40

Q

sup
NtNGT/2

g (T2 t)k1n1m

(k1n1m) !s
V¯t

n ¯k f (t)VH s
ph .

Clearly

(5.12)

.
˜
ˆ
´

Es (C m (H s
p ); T)%Es (m , C m (H s

p ); T) and

l f lm , C m (H s
p ); T

s G
3m T m

2m (m! )s l f lC m (H s
p ); T

s

for all TD0, m�Z1 , m�Z1 .
We have

THEOREM 5.1. – Let sF1, TD0, m�Z1 and either 1 EpEQ , sDn/p or
p41, sFn or p4Q , sF0. Then Es (H s

p ; T) and Es (C m (H s
p ); T) are Banach

algebras provided v s , p , n is given by (5.7).

PROOF. – Let f , g�Es (H s
p ; T). We write

(5.13) l fg lH s
p , T 4v s !

k40

Q T k
V¯k ( fg)VH s

p

(k! )s
Gv s !

k40

Q

!
j40

k gk

j
h T k

V¯ j f¯k2 j gVH s
p

(k! )s
G

v 2
s !

k40

Q

!
j40

k ( j! )s21 ((k2 j) !)s21

(k! )s21

T j
V¯ j f VH s

p

( j! )s

T k2 j
V¯k2 j gVH s

p

((k2 j) !)s
G l f lH s

p , Tl g lH s
p , T .

In a similar way we show that Es (C m (H s
p ); T) is Banach algebra. The proof

is complete.
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To prepare the results of the next sections, we start by improving well-
known results for the action of smooth functions in the classical Sobolev
spaces as well some Moser type estimates.

LEMMA 5.2. – Given two integers sF1 and rDn/p1 [s/2 ] we cand find a
positive constant CD0 depending on s , p , r and n only such that

Vg i uVH s
p
GVuVH s

p
(NVgVC 1 1CVgVC s (VuVH r

p
)s21 )(5.14)

for all g�C s (RN : R), g(0) 40 and u� (H t
p (V) )N , t4 max ]s , r(. Here VgVC s

stands for VgVC s (K) with K4u(V) %RN .

PROOF. – First we note that the Taylor formula yields

Vg(u)VL p GNVgVC 1 VuVL p .(5.15)

Let now a�Z1
n , 1 Gk4NaNGs . We have from Faà di Bruno formula

V¯k (g i u)VL p G max
NaN4k

!
n41

N

V¯zn
gVL Q V¯a

x un VL p 1!
j42

k 4(N21) j
V¯ j gVL Q

j!
3

!
k11R1kj4k

k1F1, R , kjF1

k!

k1 ! R kj !
V» ¯kj vj VL p

where the second term is further estimated by

Ck VgVC k !
j42

k

!
k11R1kj4k

k1F1, R , kjF1

V» ¯kj vj VL p(5.16)

with the convention that !
j42

1

equals 0.

Given 2 G jGk let us consider a fixed j-uple (k1 , R , kj ) with k1 1R1kj 4

k , knF1 for n41, R , j . Choose and fix km to satisfy

km4 max ]k1 , R , kj ( .(5.17)

Since k1 1R1kj 4kGs the definition of km implies

knG [s/2 ] for ncm , n41, R , j .(5.18)

Now we get, using the embedding theorems for the Sobolev spaces, the follow-
ing chain of inequalities with d4r2 [s/2 ]2n/pD0

(5.19) V» ¯kj vn VL p GV¯km vm VL p »
1 GnG j , ncm

V¯kn vn VL Q G

C j21
VuVH s

p
»

1 GnG j , ncm
Vvn VH [s/2 ]1n/p1d

p
GC j21

VuVH s
p
(VuVH r

p
) j21 .
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Observing that

max
NaN4k

!
n41

N

V¯zn
gVL Q V¯a

x un VL p GNVgVC 1 V¯k uVL p(5.20)

we conclude the proof by substituting (5.19) in (5.16) and summing from 0 to s .

LEMMA 5.3. – Let K%%Rd , f �G u (K : R) and f (0) 40. Then for every RD0,
r , s�N such that BR (0) %%K , sDn/p and rDn/p1 [s/2 ] one can find CD0
satisfying

V(¯z
a f ) (u(Q) )VH s

p
GC NaN11 (NaN! )u

VuVH s
p
(11VuVH r

p
)s21(5.21)

provided

u� (H s
p (Rn ) )d , VuVL Q GR .(5.22)

PROOF. – We apply Lemma 5.2 to g(z) 4¯ z
a f (z) and use that fact one can

find Cs D0 such that

V¯ z
a f (Q)VC s GCs

NaN11 (NaN! )u(5.23)

for all a�Zd
1 . The proof of is complete.

REMARK 5.1. – The interesting case in (5.21) is of course rEs . It seems that
one can extend the polynomial estimates for s positive real numbers (see the
results of J. Rauch and M. Reed [42] in the framework of the L 2 Sobolev
spaces H s , sDn/2). In fact, one could prove more precise results than (5.14),
namely by using the results for the multiplication in the Sobolev spaces H s

p .

Next we present a generalization of the Moser type estimates for the prod-
uct of two functions (e.g. see (A.5.3) Lemma, p. A.12, J. Goodman and D.
Yang [20])

LEMMA 5.9. – Given j smooth functions h1 , R , hj on K%%Rn and two real
numbers sF0 and rDn/p one can find a positive constant C depening on
s , r , p and n only such that

Vh1 h2 Rhj VH s
p
GC j !

m41

j

Vhm VH s
pu »

1 GnG j
ncm

Vhg VH r
pv(5.24)

for all j�N and all smooth functions h1 , R , hj on K.
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PROOF. – Let A4As , p , n D0 be the positive constant verifying the Moser
estimate

VuvVH s
p
GA(VuVH s

p
VvVH r

p
1VuVH r

p
VvVH s

p
) , u , v�C Q (K) .(5.25)

We proceed by induction, observing that

Vh1 h2 R hj11 VH s
p
GAVhj11 VH s

p
Vh1 R hj VH r

p
1AVh1 R hj VH s

p
Vhj11 VH r

p
.(5.26)

Next we use the supposed validity of (5.24) for j and the Schauder lemma

sup
jF1

u Vu1 R uj VH r
p

Vu1 VH r
p
R Vuj VH r

p

v1/j

4»vEQ(5.27)

for all smooth um g 0, m41, 2 , R and conclude that

Vh1 h2 R hj11 VH s
p
GC j11»

i41

j11

Vhi VH r
p
!
m41

j11
Vhm VH s

p

Vhm VH r
p

g Av j

C j11
1

A

C
h(5.28)

and the induction holds provided CD0 is chosen to satisfy CF

2 max ]A , v(.

6. – Nonlinear maps in Gevrey Banach spaces.

The main aim of this section is to study nonlinear superpositions in Gevrey
Banach spaces.

Let us begin with a more precise analysis of the Faà di Bruno formula. We
recall the if a�Z1

n 00 and k»4NaN the Taylor formula implies

¯x
a ( f(g(x) ))4 !

j41

k

!
NbN4 j

f (b) (g(x) )
b!

¯y
a ((g(y)2g(x) )b )Ny4x .(6.1)

For fixed b�Z1
d , j4NbN we use the lexicographical order and write

g b4g1
b 1

R gd
b d 4h1 R hj .(6.2)

Using standard combinatorial arguments we get

ga , b (x) 4¯y
a ((g(y)2g(x) )b )Ny4x 4 !

(k , j)
M k

j (k1 , R , kj ; g) ,(6.3)

!
(k , j)

4 !
k11R1kj4k

k1F1, R , kjF1

,(6.4)
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where M k
j (k1 , R , kj ; g) is a sum of k!O(k1 ! R kj ! ) terms of the type

¯g1
h1 (x) R ¯g j

hj (x)

with gm4 (g 1
m , R , g n

m ) �Z1
n 00, Ngm N4km , gmGa for 1 GmG j . We will write

for brevity in the following symbolic way

M k
j (k1 , R , kj ; g) 4

k!

k1 ! R kj !
¯k1 h1 (x) R ¯kj hj (x) .(6.5)

If g(t) 4g(t , x) �(C q (I : C Q (V) ))d , I4 [2T , T] for some TD0 we will
write analogously for k4NaN , k1qF1, NbN4 jF1

(6.6) ga , b
q (x) 4¯t , y

(q , a) ((g(t , y)2g(t , x) )b)Nt4 t , y4x 4

!
(k , q , j)

M k , q
j (k1 , q1 , R , kj , qj ; g)

where

!
(k , q , j)

4 !
k11q11R1kj1qj4k1q
k11q1F1, R , kj1qjF1

,(6.7)

M k , q
j (k1 , q1 , R , kj , qj ; g) 4

(k1q) !

(k1 1q1 ) ! R (kj 1qj ) !
»
n41

j

¯ t
qn ¯kn

x hn (t , x) .(6.8)

We have

PROPOSITION 6.1. – Let 1 GpGQ , r , s�N satisfying sDn/p and rD

n/p1 [s/2 ] if 1 GpEQ and sF0, rF [s/2 ] if p4Q . Then we can find a posi-
tive constant C, depending on s , p , r and n only, having the following
properties:

i) for given g� (C Q (V) )d , a�Z1
n , k4NaNF1, b�Z1

d , 1 G j4NbNGk
the following inequality holds

Vga , b VH s
p
GC j !

k11R1kj4k
k1F1, R , kjF1

k!

k1 ! R kj !
!
n41

j uV¯kn gVH s
p
»

1 GmG j
mcn

V¯km gVH r
pv ;(6.9)

ii) for given g(t) �C q (I : C Q (V) )d , t�I4 [2T , T] for some TD0, q�
Z1 a�Z1

n , k4NaN , k1qF1, b�Z1
d , 1 G j4NbNGk the following estimate
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is true

(6.10) Vga , b
q (t)VH s

p
GC j !

k11q11R1kj1qj4k1q
k11q1F1, R , kj1qjF1

(k1q) !

(k1 1q1 ) ! R(kj 1qj ) !
3

!
n41

j uV¯t
qn ¯kn g(t)VH s

p
»

1 GmG j
mcn

V¯t
qm ¯km g(t)VH r

pv ;

PROOF. – We note that (6.2), (6.4) and (6.5) yield

Vga , b VH s
p
G !

k11R1kj4k
k1F1, R , kjF1

k!

k1 ! R kj ! NN»
n41

j

¯kn hnNN
H s

p

.(6.11)

Next we apply Lemma 5.4 from the previous section and take into account that
the definition of hj implies that for all gF0

V¯kn hn VH g
p
GV¯kn gVH g

p
, n41, R , j .

In similar way we deal with part ii). The proof is complete.

We need another auxiliary assertion, where again the interesting case is
rEs .

POPOSITION 6.2. – Let 1 GpGQ , r , s�N satisfying sDn/p and rDn/p1

[s/2 ] if 1 GpEQ and sF0, rF [s/2 ] if p4Q . Let CD0 be the corresponding
constant from Proposition 6.1. Then we claim:

i) for given g� (C Q (V) )d , f�C Q (K : R), K»4g(V) %Rd , kF1, the fol-
lowing inequality holds

(6.12) V¯k ( f i g)VH s
p
G

A(11VgVH r
p
)s21!

j41

k C j

j!
V f VC j1sgVgVH s

p
S 0

k , j (g)1VgVH r
p
!
n41

j

S n
k , j (g)h
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where

S 0
k , j 4 !

(k , j)

k!

k1 ! R kj !
»

1 GmG j
V¯km gVH r

p
;(6.13)

S n
k , j 4V¯kn gVH s

p
!

(k , j)

k!

k1 ! R kj !
»

1 GmG j
mcn

V¯km gVH r
p

(6.14)

for n41, R , j ;

ii) for given g(t) �C q (I : C Q (V) )d , t�I4 [2T , T] for some TD0, q�
Z1 , k�Z1 , k1qF1, the following estimate is true

(6.15) V¯ t
q ¯k ( f i g)(t)VH s

p
G

A(VgVC q (H r
p ) )s21 !

j1 l41

k1q
C j

( j1 l) !
V f VC j1sgVgVC q (H s

p ) T 0
k , j , l ( g)1VgVC q (H r

p ) !
n41

j1 l

T n
k , j , l ( g)h

where

(6.16) T 0
k , j , l 4 !

(k , q , j)

(k1q) !

(k1 1q1 ) ! R (kj 1qj ) !
»

1 GmG j1q
V¯km gVC qm (H r

p ) ;

(6.17) T n
k , j , l 4V¯kn gVC qn (H s

p ) !
(k , q , j)

(k1q) !

(k1 1q1 ) ! R (kj 1qj ) !
»

1 GmG j
mcn

V¯km gVC qm (H r
p )

for n41, R , j1q .

PROOF. – Let us limit ourselves to i). In view of (6.1), (6.3) we can
write

V¯k ( f i g)VH s
p
G !

NaN 4k
!
j41

k

!
NbN4 j

1

b!
V f (b) (g) gab VH s

p
.(6.18)

Applying the Moser estimate (5.25), we further estimate by

C !
NaN4k

!
j41

k

!
NbN 4 j

1

b!
(V f (b) (g)VH s

p
Vgab VH r

p
1V f (b) (g)VH r

p
Vgab VH s

p
) .(6.19)

By the Schauder lemma, (6.2) and (6.5)

Vgab VH r
p
Gv r

j !
(k , j)

k!

k1 ! R kj !
»
m41

j

V¯km gVH r
p

.(6.20)

Moreover V f (b) (g)VH s
p
, V f (b) (g)VH r

p
are estimated by Lemma 5.2, while for Vgab V
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we apply Proposition 6.1, i). Plugging in, we conclude the proof by means of the
Stirling formula.

We fix now a closed set K%Rd with smooth boundary and we take f (z) �
G u (K : R). Let 1 GpGQ and s�N , with sDn/p if 1 GpEQ while in the case
p4Q we require sF0. We assume that

lim sup
kKQ

g V¯k1s f VL p

(k! )u h1/k

4k f 4k( f , K , s , p , n , u) EQ .(6.21)

We note that if K is compact, the restriction (6.13) is superfluous.
Let g�C Q (V : Rd ) 4 (C Q (V) )d and g belongs to some Banach space X . If

K%Rd is a neighborhood of the origin we will denote

X K »4 ]g�X : g(x) �K , for x�V( .(6.22)

REMARK 6.4. – In particular, if the hypercube BR (0 ; d) in Rd centered at
the origin with a side RD0 is contained in K , then

] g�X : VgVL Q GR( %X K .(6.23)

Furthermore, if g�E s (H s
p ; T ; Rd ), (respectively g�E s (m , C m (H s

p ); T ; Rd ) ,
m , m�Z1 ) and sDn/p if 1 GpEQ and sF0 when p4Q then g�X K provid-
ed l g lH s

p , T (respectively T 2ml g lm , C m (H s
p ), T) is small enough. This is a conse-

quence from the Sobolev embedding theorems and the definition of the
Gevrey Banach spaces.

Now we state the first result on nonlinear maps in the scale of the Gevrey
Banach spaces.

THEOREM 6.3. – Let V%Rn and let f (z) �G u (K : R) for some uF1, K%Rd .
Let 1 GpGQ and s , r�N , with sDrDn/p1 [s/2 ] if 1 GpEQ while in the
case p4Q we require that sFrFs/2 F0. Let us fix kDk f . Then we
have:

i) if s4u we can find a constant C 8D0, depending on k , s , r , n and p
only, such that

l f i g lH s
p , T

s GC 8l g lH s
p , T

s
(11VgVH r

p
)s21

12Ckl g lH r
p , T

s
(6.24)

provided TD0, g�Es (H s
p ; T ; Rd )K and l g lH r

p , T
s EC 21 412d k21 ;
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ii) if sDu there exists a constant C 8D0, depending on k , s , r , n and p
only, such that for all TD0 and g�Es (H s

p ; T ; Rd )K

l f i g lH s
p , T

s GC 8l g lH s
p , T

s (11VgVH r
p
)s21 exp (g(l g lH r

p , T
s )1/(s2u) )(6.25)

where gD0 depends only on s , u , C and k . Here CD0 is the constant from
Proposition 6.1.

PROOF. – First we show a combinatorial inequality. Let jF2 and
k1 , R , kj �N be fixed. We claim that

j! k1 ! R kj !

(k1 1R1kj ) !
4

k1 ! R kj !

( j11) R ( j1k1 1R1kj 2 j)
G1 .(6.26)

Indeed, without loss of generality we may assume k1 Fk2 FRFkj . If k1 41
clearly k1 1R1kj 4 j and (6.16) holds. Let now k1 F2 and let r be the largest
index s such that ks F2. Hence we can write

k1 ! R kj !

( j11) R ( j1k1 1R1kj 2 j)
4

k1 ! R kr !

( j11) R ( j1k1 1R1kr 2r)

and since

k1 ! R kj !4 »
n41

r

(23R3kn ) G2333R(11k1 1R1kr 2r)

we obtain (6.16) in view of the inequality jF1.
Let us choose and fix k �]k f , k[. We observe that the choice of k implies

that there exists C1 D0 satisfying

V f VC j1s GC1 k j ( j! )u , j�Z1 .(6.27)

Combining (6.17) with (6.12), cf. Lemma 5.3, we obtain with CD0 being the
constant in Proposition 6.1 and AD0 being the constant in Proposition 6.2

(6.28) !
k41

Q T k

(k! )s
V¯k ( f i g)VH s

p
G

A(11VgVH r
p
)s21 !

k41
!
j41

k T k C j

k! j!
V f VC j1sgVgVH s

p
S 0

k , j ( g)1VgVH r
p
!
n41

j

S n
k , j ( g)hG

AC1 (11VgVH r
p
)s21!

j41

Q
k j

( j! )(s2u)
u!

m40

j

G j
m
v
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where

(6.29) G j
0 4VgVH s

p
!

krF1, r41, R , j
u j! k1 ! R kj !

(k1 1R1kj ) !
vs21

»
n41

j T kn
V¯kn gVH r

p

(kn ! )s
G

VgVH s
p
(l g lH r

p , T
s ) j ,

(6.30) G j
m4VgVH r

p
!
q41

Q T km
V¯km gVH s

p

(q! )s
!

krF1, r41, Rj , rcm
u j! k1 ! R kj !

(k1 1R1kj ) !
vs21

3

»
1 GnG j , ncm

T kn
V¯kn gVH r

p

(kn ! )s
G l g lH s

p , T
s

VgVH r
p
(l g lH r

p , T
s ) j21 G l g lH s

p , T
s (l g lH r

p , T
s ) j

for m41, R , j . Hence,

!
m41

j

G j
mG l g lH s

p , T
s ( j(l g lH r

p , T
s ) j )(6.31)

and plugging (6.27) and (6.21) into (6.18) we get

(6.32) !
k41

Q T k

(k! )s
V¯k ( f i g)VH s

p
GAC1 (11VgVH r

p
)s21

VgVH s
p
!
j41

Q (Ck) j

( j! )s2u
(l g lH r

p , T
s ) j 1

AC1 (11VgVH r
p
)s21l g lH s

p , T
s !

j41

Q j(Ck) j

( j! )s2u
(l g lH r

p , T
s ) j G

2C 9 AC1 (11VgVH r
p
)s21l g lH s

p , T
s !

j41

Q k j (l g lH r
p , T

s ) j

( j! )s2u

where C 94 sup
jF1

((11 j)(kOk) j )E1Q . Taking into account the estimate of

V f i gVH s
p

in Lemma 5.2 (or Lemma 5.3 for a40) we observe that evidently if
s4u (6.22) leads to the proof of the assertion in part i) while in the case sDu
ii) follows from the fact that for any rD0 there exist aD0 and bD0 such
that

!
j40

Q z j

( j! )r
Ga exp (bz 1Or ) , zF0 .(6.33)

The validity of (6.33) for zF1 follows readily from the Stirling formula.
The proof is complete.
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7. – Estimates with loss of derivatives.

Let now m�N , mF2, I3V%Rt 3Rn
x . Set d»4 !

a�Z1
n , NaNGm21

1 and let K%
Rd be a neighborhood of the origin. We claim

PROPOSITION 7.1. – Let n , s and m be positive integers, 1 GpGQ , mF2,
sD2n/p12m22. Let f �C s (Rd : R). For given u(t , x) �C m21 (I : C Q (V) ) ,
we set

U(t , x) 4 (U1 (t , x), R , Ud (t , x) )4 ]¯a
x u(t , x)(NaNGm21(7.1)

and

fm21 (U) 4 f (u , R , ¯a
x u , R)NNaNGm21 .(7.2)

We will suppose that

U(t , x) �K , for t�I , x�V .(7.3)

Then we can find a positive constant C , depending on s , p , n , m and K such
that for every j�N and all

hm (t , x) 4Uv(m) (t , x) , v(m) � ]1, R , d( , m41, R , j

the following a priori estimate holds

(7.4) V fm21 (U) ¯k1 h1 R ¯kj hj VC 0 (H s
p ) G

C j11
V f VC suVuVC 0 (H s1m21

p ) (11 (VuVC 0 (H s
p ) )s21 ) »

m41

j

V¯km uVC 0 (H s
p ) 1

VuVC 0 (H s
p ) (11 (VuVC 0 (H s

p ) )s21 ) !
m41

j

V¯km uVC 0 (H s1m21
p ) »

1 GnG j , ncm
V¯kn uVC m21 (H s

p )v
for all positive integers k1 , R , kj .

PROOF. – In view of the choice of s , m and p we can find r�Z1

satisfying

s2m11 FrDn/p1 [s/2 ] i.e. sFr1m21 Dn/p1 [s/2 ]1m21 .(7.5)



TODOR GRAMCHEV - LUIGI RODINO108

Applying Lemma 5.4 we get

(7.6) V fm21 (U) ¯k1 h1 R ¯kj hj VC m21 (H s
p ) G

C j11
V fm21 (U)VC m21 (H s

p ) »
m41

j

V¯km hm VC m21 (H r
p ) 1

V fm21 (U)VC m21 (H r
p ) !

m41

j

V¯km hm VC m21 (H s
p ) »

1 GnG j , ncm
V¯kn hm VC m21 (H r

p ) .

Now, the definition of hm and (7.5) imply that

V¯km hm VC m21 (H r
p ) 4V¯km Uv(m) VC m21 (H r

p ) GV¯km uVC m21 (H r1m21
p ) GV¯km uVC m21 (H s

p )(7.7)

for all m41, R , j . On the other hand, Lemma 5.2 and (7.5) yield

(7.8) V fm21 (U)VC m21 (H s
p ) GCVUVC m21 (H s

p ) (dV f VC 1 1UV f VC s (VUVC m21 (H r
p ) )s21 )G

CVuVC m21 (H s1m21
p ) (dV f VC 1 1UV f VC s (VuVC m21 (H s

p ) )s21 ) .

Applying Lemma 5.2 with r4sDn/p we get also

(7.9) V fm21 (U)VC m21 (H r
p ) GCVuVC m21 (H s

p ) (dV f VC 1 1UV f VC s (VuVC m21 (H s
p ) )s21 )

Combining (7.5), (7.6), (7.7), (7.8) and (7.9), we conclude the proof.

If s and p are fixed we will write for brevity l u lm21, T
s »4

l u lm21, C m21 (H s
p ), T

s for m�N , TD0, I4 [2T/2 , T/2 ], where l u lm21, C m21 (H s
p ), T

s

is defined in (5.11).
The next theorem will play a crucial role for the solvability of (1.1) when

the nonlinear term is Gevrey.

THEOREM 7.2. – Let sD2n/p12m22 be an integer. Assume further that
f�G u (Rd : R) and f (0) 40. Let RD0 and K4BR (0) be the ball with center 0
and radius R . Set k f D0 to be the constant defined in (6.18). Then for each
kDk f there exists C1 D0 such that for every

u�Bs
R/2 (C m21 (H s

p ), T) , i.e. u�Es (C m21 (H s
p ), T) , l u lH s

p , T ER/2(7.10)

the following properties hold (we use the notation (7.2), writing for short u in-
stead of U) :



GEVREY SOLVABILITY FOR SEMILINEAR PARTIAL ETC. 109

i) if u4s then

l fm21 (u) lm21, T
s GC1l u lm21, T

s 1

12Ckl u lC m21 (H s
p ), T

(7.11)

provided Ck l u lC m21 (H s
p ), T E1;

ii) if sDu then

l fm21 (u) lm21, T
s GC1l u lm21, T

s exp (g(l u lC m21 (H s
p ), T )1/(s2u) ) .(7.12)

Here CD0 (respectively gD0) is the constant in Proposition 6.1 (respect-
ively Theorem 6.3).

PROOF. – First, we introduce some notations. For given b�Z1
N we use the

lexicographical order and write

]¯t , x
a u(NaNGm21 4 (v1 , R , vN )

and then for given b4 (b 1 , Rb N ) �Z1
N we put j4NbN and write in the lexico-

graphical order

v1
b 1

R vN
b N 4h1 h2 R hj

namely

.
`
/
`
´

hm4v1 ,

hb 11m4v2 ,

Q Q Q

hb 11R1b N211m4vN ,

for m41, R , b 1 ,

for m41, R , b 2 ,

for m41, R , b N

(7.13)

with the evident convention to skip hm if b 1 40 etc.
Now the proof follows from Proposition 7.1 and evident modifications of the

arguments used in the proof of Theorem 6.3 with r satisfying s2m11 FrD

n/p1 [s/2 ] and taking into account the inequality

V¯ t
q ¯k v(t)VH r

p
GV¯ t

q ¯k u(t)VH r1m21
p

.(7.14)

8. – The fundamental estimate.

Here is the main result of the paper on estimates on superpositions in the
Banach Gevrey spaces, which generalizes Theorem 7.2 and allows to use the
contraction principle.
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THEOREM 8.1. – Let g�G u (RN : Cd ), N , d�N and let n , s�N , m , m�Z1 ,
1 GpGQ , sD2n/p . Then we can find two polynomials

Pj (z) 4p j
0 1p j

s2 j z s2 j , ps2 j
j D0 , p j

0 F0 , j40, 1(8.1)

with p j
0 and p j

s2 j depending on s , n , p and g only, having the following
properties:

i) if u4s then for every RD0 one can find kD0 such that

(8.2) l Ug(V) lm , C m (H s
p ), T

s G l U lm , C m (H s
p ), T

s
P0 (l V lC m21 (H s

p ), T
s )

12kl V lC m (H s
p ), T

s
1

l V lm , C m (H s
p ), T

s l U lC m (H s
p ), T

s P1 (l V lC m (H s
p ), T

s )

12kl V lC m (H s
p ), T

s

for all U�(Es (C m (H s
p ), T))d , V�(B R

s (C m (H s
p ), T))N , cf. the notation

(7.11);

ii) if sDu then

(8.3) l Ug(V) lm , C m (H s
p ), T

s G

l U lm , C m (H s
p ), T

s P0 (l V lC m21 (H s
p ), T

s ) exp (C (l V lC m (H s
p ), T

s )1/(s2u) )1

l V lm , C m (H s
p ), T

s l U lC m (H s
p ), T

s P0 (l V lC m (H s
p ), T

s ) exp (C (l V lC m (H s
p ), T

s )1/(s2u) )

for all U�(Es (C m (H s
p ), T))d , V�(Es (C m (H s

p ), T))N .

PROOF. – Fix r4 [n/p]1 [s/2 ]11. The choice of s implies sDr . We
have

(8.4) l Ug(V) lm , C m (H s
p ), T 4 !

l40

m

!
k40

Q

sup
t�I

(T2 t)k1m1 l
V¯ t

l ¯k (U(t) g(V(t) ))VH s
p

((k1 l1m) !)s
.

On the other hand, there exists C4C(r , s , n , p) D0 such that

(8.5) V¯ t
l ¯k (U(t) g(V(t) ))VH s

p
G !

q40

l

!
j40

k gk

j
hg l

q
h C 3

(V¯ t
l2q ¯k2j U(t)VH s

p
V¯ t

q
¯ j (g(V(t) ))VH r

p
1V¯ t

l2q ¯k2j U(t)VH r
p
V¯ t

q
¯ j (g(V(t) ))VH s

p
) .
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Therefore, plugging (8.3) into (8.2), we get

(8.6) l Ug(V) lm , C m (H s
p ), T GC !

l40

m

!
k40

Q

!
q40

p

!
j40

k gk

j
hg l

q
hM k , m , m

j , l 3

u sup
t�I

(T2 t)k2 j1 l2q1m

((k2 j1 l2q1m) !)s
V¯ t

l2q ¯k2 j U(t)VH s
p

sup
t�I

(T2 t) j1q

(( j1q) !)s
V¯ t

q
¯ j g(V(t) )VH r

p
1

sup
t�I

(T2 t)k2 j1 l2q

((k2 j1 l2q) !)s
V¯ t

l2q ¯k2 j U(t)VH r
p

sup
t�I

(T2 t) j1q1m

(( j1q1m) !)s
V¯ t

q
¯ j g(V(t) )VH s

p
v

where M k , m , m
j , l is the maximum between

(8.7)
(( j1q) ! (k2 j1 l2q1m) !)s

((k1 l1m) !)s
and

(( j1q1m) ! (k2 j1 l2q) !)s

((k1 l1m) !)s
.

We claim that for all kF jF1, mFqF0, m�Z1

M»4 M k , m , m
j , p gk

j
hgp

q
hG1 .(8.8)

Indeed, the subsequent inequalities and (8.7) yield (8.8)

gk

j
hg l

q
hGgk1 l

j1q
h ,(8.9)

(8.10) gk1 l

j1q
h (( j1q) ! (k2 j1 l2q1m) !)s

((k1 l1m) !)s
G

(( j1q) ! (k2 j1 l2q) !)s21

((k1 l) !)s21

»
n41

m

(k2 j1 l2q1n)s

»
n41

m

(k1 l1n)s

G1 ,

(8.11) gk1p

j1q
h (( j1q1m) ! (k2 j1p2q) !)s

((k1p1m) !)s
G

(( j1q) ! (k2 j1p2q) !)s21

((k1p) !)s21

»
n41

m

( j1q1n)s

»
n41

m

(k1p1n)s

G1

for all integers 0 G jGk , 0 GqG lGm , mF0.
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Combining (8.6) and (8.7) we get

(8.12) l Ug(V) lm , C m (H s
p ), T GC !

l40

m

!
k40

Q

!
q40

l

!
j40

k

3

u sup
t�I

(T2 t)k2 j1 l2q1m

((k2 j1 l2q1m) !)s
V¯ t

l2q ¯k2 j U(t)VH s
p

sup
t�I

(T2 t) j1q

(( j1q) !)s
V¯ t

q
¯ j g(V(t) )VH r

p
1

sup
t�I

(T2 t)k2 j1p2q

((k2 j1 l2q) !)s
V¯ t

l2q ¯k2 j U(t)VH r
p

sup
t�I

(T2 t) j1q1m

(( j1q1m) !)s
V¯ t

q
¯ j g(V(t) )VH s

p
v4

C (l U ls
m , C m (H s

p ), Tl g(V) lC m (H r
p ), T 1l U lC m (H r

p ), Tl g(V) ls
m , C m (H s

p ), T ) .

Now we apply the arguments in the proofs of Theorem 6.3 and Theorem 7.2
in order to estimate

l g(V) lm , C m (H s
p ), T

s and l g(V) lC m (H r
p ), T

and conclude the proof of Theorem 8.1.

9. – Proof of Theorem 1.3.

Let us now consider the equation (1.18) with P defined by (1.15) and (1.16).
We will require less regularity, namely

a j (t) 4 (a j
1 (t), R , a j

n (t) )�C m21 (R : Cn ) , j41, R , m(9.1)

We set

A j (t) 4s
t

0

a j (t) dt , j41, R , m ;(9.2)

A(z1 , R , zm ) 4A 1 (z1 )1R1A m (zm ) .(9.3)

In view of (1.17) if L is not hyperbolic we have n41 and

Im (A j (t)2A j (t) ) jF0 provided (t2t) jD0 .(9.4)
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Therefore, we define right inverse operators of Lj in the following way:

(9.5) Lj
21 f (t , x) 4s

0

t

f(t , x1A j (t)2A j (t) ) dt if all a j (t) �C m21 (I : Rn ) ,

(9.6) FxKj (Lj , c
21 f (t , Q) )4 s

6c

t

e i(A j (t)2A j (t) ) j f×(t , j) dt , 6jD0 otherwise ,

where c is a positive constant, [2c , c] %I , f�C0
Q (]2c , c[3Rn ) and NtNEc .

More precisely, one checks easily that Lj i Lj
21 f4 f (respectively Lj i Lj , c

21 f4 f )
for all f�C Q

0 (Rn11 ) (respectively f�C0
Q (Rn11 ), f40 for NtNFc) if a j �

C m21 (R : Rn ) (respectively n41 and Im (a j (t) )g0) . We set

L21 »4 L1
21

i R Lm
21 if all aj (t) , 1 G jGm are real-valued ,(9.7)

L21
c »4 L1, c

21
i R Lm , c

21 otherwise ,(9.8)

Now we can reduce the solution of (1.20) (respectively (1.20) and (1.21) if
the equation is hyperbolic) to the integral equation

w(t , x) 4 Ku(t , x)1U 0 (t , x)(9.9)

where

Ku»4 L21
i Fm21 (u) if L is hyperbolic ,(9.10)

Ku»4 L21
c i Fm21 (u) otherwise ,(9.11)

while

U 0 (t , x) 4
.
/
´

L21 f (t , x)1U
A0 (t , x)

Lc
21 f (t , x)

if L is hyperbolic ,

if L is not hyperbolic ,
(9.12)

where UA0 stands for the unique solution of the Cauchy problem

.
/
´

Lm i Lm21 i R i L1 U40

¯ j
t U(0 , x) 4u 0

j (x)

for t�I , x�V ,

for x�V , j40, 1 , R , m21 .
(9.13)

in the hyperbolic case.
In particular, in the hyperbolic case we have with the notation (7.2)

Ku(t , x) 4s
0

t

s
0

z1

R s
0

zm21

FP (u ; t , z , x) dz ,(9.14)

FP (u ; z , t , x) 4Fm21 (U(t , x1A(t , z 8 )2A(z) )(9.15)



TODOR GRAMCHEV - LUIGI RODINO114

with z4 (z1 , R , zm), z 84 (z1 , R , zm21 ); while in the nonhyperbolic case we
have

Ku×(t , j) 4 s
sign (j) c

t

s
sign (j) c

z1

R s
sign (j) c

zm21

e if(t , z) j FP (u ; zm , j) dz , jc0 ,(9.16)

FP (u ; t , j) 4s
R

e 2ixj Fm21 (u(t , x) ) dx ,(9.17)

f(t , z) 4A1 (t)2A1 (z1 )1R1Am (zm21 )2Am (zm ) .(9.18)

We claim that

THEOREM 9.1. – Let F�G u (RN : C), F(0) 40, 1 GuGsGm/(m21). Let
1 GpGQ , s�N , sF2n/p12m22. Choose RD0 and consider B0 (R) %RN .
Then there exist two positive constants C and C1 , depending on s , n , p , m and
k f only such that, with the notations of Theorem 7.2:

i) if u4s then

(9.19) l Fm21 (u1 )2Fm21 (u2 ) lm21, T
s G

C1l u1 2u2lC m21 (H s
p ), T

s
11 gmax

j41, 2
]l ujlC m21 (H s

p ), T
s (hs21

12C max
j41, 2

]l ujlC m21 (H s
p ), T

s (

for all uj �B R
s (C m21 (H s

p ), T) with RGk21 , j41, 2 ;

ii) if sDu then

(9.20) l Fm21 (u1 )2Fm21 (u2 ) lm21, T
s GC1l u1 2u2lC m21 (H s

p ), T
s 3

g11 gmax
j41, 2

]l ujlC m21 (H s
p ), T

s (hs21h exp gC max
j41, 2

]lujlC m21 (H s
p ), T

s (h1/(s2u)

for all uj �Bs
R (C m21 (H s

p ): T) , j41, 2 .

PROOF. – Using the Taylor formula we obtain

Fm21 (u1 )2Fm21 (u2 ) 4 aU1 2U2 , Gb ,(9.21)

G4s
0

1

˘U F(U l ) dl ,(9.22)

where

U l4U2 1l(U1 2U2 ) , l� [0 , 1 ] .(9.23)

Then we apply Theorem 8.1 and conclude the proof.
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THEOREM 9.2. – Let F�G u (RN : C), F(0) 40, 1 GuGsGm/(m21). Let
1 GpGQ , s�N , sF2n/p12m22. Choose RD0 and consider B0 (R) %RN .
Furthermore, if P is not weakly hyperbolic, we assume that p42. Then there
exist two positive constants C and C1 , depending on s , n , p , m and k F only
such that, with the preceding notation

i) if u4s then

(9.24) l Ku1 2 Ku2lC m21 (H s
p ), T

s G

C1 T l u1 2u2lC m21 (H s
p ), T

s
11 gmax

j41, 2
]l ujlC m21 (H s

p ), T
s (hs21

12C max
j41, 2

]l ujlC m21 (H s
p ), T

s (

for all TD0, uj �Bs
R (C m21 (H s

p ), T) with RGk21 , j41, 2;

ii) if sDu then

(9.25) l Ku1 2 Ku2lC m21 (H s
p ), T

s GC1 T l u1 2u2lC m21 (H s
p ), T

s 3

g11 gmax
j41, 2

]l ujlC m21 (H s
p ), T

s (hs21h exp gC max
j41, 2

]lujlC m21 (H s
p ), T

s (h1/(s2u)

for all TD0, uj �Bs
R (C m21 (H s

p ), T) , j41, 2 .

PROOF. – We consider first the hyperbolic case. Straightforward calcula-
tions yield that for each integer 0 G lGm21 one can find l11 continuous
functions Cl , q (t), q40, 1 , R , l such that

¯ l
t ¯

k
x Ku(t , x) 4 !

q40

l

Cl , q (t) H
q , l
k (t , x) ,(9.26)

H
q , l
k 4s

0

t

R s
0

zm212q

¯ l2q
t ¯x

k FP
q (u ; t , z1 R , zm2q , x) dz1 R dzm2q ,(9.27)

where

(9.28) FP
q (u ; t , z1 R , zm2q , x) 4

F(U(t , x1 Aq (t , z1 , R , zm2q21 )2 Aq (z1 , R , zm2q21 , zm2q ) )) ,

Aq (z1 , R , zm2q21 , zm2q ) 4 !
n41

m2q

A n (zn ) .(9.29)
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On the other hand

(9.30)
(T2 t)k1 l

((k1 l) !)s
VH

q , l
k (t)VH s

p
G

((k1 l2q1m21) !)s

((k1 l) !)s
s
0

t

R s
0

zm212q

(T2 t)k1 l

(T2zm2q )k1q1m21
dz1 R dzm2q 3

sup
t�I

(T2t)k1 l2q1m21

((k1 l2q1m21) !)s
V¯t

l2q ¯k (F i U)(t)VH s
p

.

We need two technical lemmas.

LEMMA 9.3. – One can find a positive constant C such that

(9.31) s
0

t

R s
0

zm212q

(T2 t)k1 l

(T2zm2q )k1 l2q1m21
dz1 R dzm2q G

CT

»
n41

m

(k1 l2q211n)

for all nonnegative integers 0 GqG lGm21, kF0.

PROOF. – One checks by induction that for all integers 2 GnGm11 and all
real numbers 0 G tET the following estimate holds

(9.32) s
0

t

R s
0

zn21

1

(T2zn )m
dz1 R dznG

.
`
`
/
`
`
´

(T2 t)2m1n

(m2n)(m2n11) R (m21)

2ln (12 t/T)

(n21) !

s
0

t

2ln (12t/T)dt

(n22) !

if mFn11 ,

if m4n ,

if m4n21 .

Hence, we obtain

s
0

t

R s
0

zm212q

(T2 t)k1 l

(T2zm2q )k1 l2q1m21
dz1 R dzm2q GC k , l , m

q (t , T) ,(9.33)
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where

C k , l , m
q (t , T) »4

.
`
`
/
`
`
´

(T2 t)

(k1 l21) R (k1 l2q1m22)

2(T2 t) ln (12 t/T)

(m2q21) !

s
0

t

2ln (12t/T) dt

(m22) !

if k1 lF2 ,

if k1 l41 ,

if k4 l4q40 ,

(9.34)

for 0 G tGT/2 . The proof is complete since (9.34) implies that there is a positi-
ve constant verifying

sup
TD0

max
NtNGT/2

Cq
k , l , m (t , T)

T
G

C

»
n41

m

(k1 l2q211n)

for all nonnegative integers 0 GqG lGm21, kF0.
Next we need a combinatorial estimate.

LEMMA 9.4. – Set

(9.35) R k , l , m
q , s »4

.
`
/
`
´

((k1 l2q1m21) !)s

((k1l) !)s (k1l21) R (k1l2q1m22)

((m2q) !)s

(m2q21) !

(m! )s

(m22) !

if k1 lF2 ,

if k1l41 , then q40 or q41 ,

if k4 l40 .

Then

sup
k�Z1

max
0 GqG lGm

R k , l , m
q , s »4R s

m EQ iff sGm/(m21) .(9.36)

PROOF. – It is enough to consider the case k1 lF3, when we can write

(9.37) R k , l , m
q , s 4

((k1 l11) R (k1 l2q1m21))s

(k1 l2211) R (k1 l2q1m22)
G

(k1 l11)(m2q21)s ((m2q21) !)s

(k1 l22)m2q
4O(k (m2q21)s2 (m2q) )

for kKQ .
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Easy calculations show that for an integer mF2

max
q40, 1 , R , m21

sup
kF1

k (m212q)s2 (m2q) EQ iff sGm/(m21)(9.38)

and hence we get the desired conclusion of the lemma.
Now, coming back to the proof of the theorem, we note that Lemma 9.3,

Lemma 9.4 and the summation of (9.30) imply (9.24) and (9.25).
If not all of the operators Lj , j41, R , m are hyperbolic, we deduce the

corresponding H s 4H s
2 estimates using the Parceval identity and the repre-

sentation (9.16) for the operator K ; details are left to the reader. The proof is
complete.

Evidently Theorem 9.2 leads to local solvability for (1.20) and in the weakly
hyperbolic case to local well-posedness of the Cauchy problem (1.20), (1.21).
Theorem 1.3 is therefore proved.
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[1] S. ALINHAC - P. GÉRARD, Opérateurs pseudo-différentiels et théorème de Nash-
Moser, Inter Edition, Editions du CNRS, Meudon, Paris (1991).

[2] J.-M. BONY, Calcul symbolique et propagation des singularités pour les équations
aux dérivées partielles non linéaires, Ann. Sc. École Norm. Sup., 14 (1981),
161-205.

[3] F. CARDOSO, A necessary condition of Gevrey solvability for differential operators
with double characteristics, Comm. Partial Diff. Eqs., 14 (1989), 981-1009.

[4] W. CRAIG, Nonstrictly hyperbolic nonlinear systems, Math. Ann., 277 (1987),
213-232.

[5] L. CATTABRIGA - L. RODINO - L. ZANGHIRATI, Analytic-Gevrey hypoellipticity for a
class of pseudodifferential operators with multiple characteristics, Comm. Partial
Diff. Eqs., 15 (1989), 81-96.

[6] CHEN-HUA - L. RODINO, Micro-elliptic Gevrey regularity for nonlinear partial dif-
ferential equations, Boll. Un. Mat. Ital., 10-B (1996), 199-232.

[7] M. CICOGNANI - L. ZANGHIRATI, On a class of unsolvable operators, Ann. Scuola
Norm. Sup. Pisa, 20 (1993), 357-369.

[8] M. CICOGNANI - L. ZANGHIRATI, Analytic regularity for solutions to semi-linear
weakly hyperbolic equations, Rend. Sem. Mat. Univ. Politec. Torino, 51 (1993),
387-396.



GEVREY SOLVABILITY FOR SEMILINEAR PARTIAL ETC. 119

[9] A. CORLI, On local solvability in Gevrey classes of linear partial differential oper-
ators with multiple characteristics, Comm. Partial Diff. Eqs., 14 (1988), 1-25.

[10] A. CORLI, On local solvability of linear partial differential operators with multiple
characteristics, J. Diff. Eqs., 81 (1989), 275-293.

[11] A. CORLI - L. RODINO, Gevrey solvability for hyperbolic operators with costant
multiplicity, in Recent Developments in Hyperbolic Equations, Pitman Res.
Notes in Math., 183, 290-304, Longman, Harlow (1988).

[12] P. D’ANCONA - S. SPAGNOLO, On the life span of the analytic solutions to quasilin-
ear weakly hyperbolic equations, Indiana Univ. Math. J., 40, 1 (1991), 71-99.

[13] P. D’ANCONA - M. REISSIG, New trends in the theory of nonlinear weakly hyperbol-
ic equations of second order, Proc. 2-nd WCNA, Athens, Greece, 10-17 July 1996,
Nonl. Anal. TMA, 30, 4 (1997), 2507-2515.

[14] B. DEHMAN, Resolubilité local pour des équations semi-linéaires complexes, Can.
J. Math., 42 (1990), 126-140.

[15] Y. EGOROV, Linear Differential Equations of Principal Type, Nauka, Moscow
(1994); Plenum Press, New York (1985).

[16] A. FERRARI - E. TITI, Gevrey regularity for nonlinear analytic parabolic equa-
tions, Comm. Partial Diff. Eqs., to appear.

[17] C. FOIAS - R. TEMAM, Gevrey class regularity for the solutions of the Navier-Stokes
equations, J. Funct. Anal., 87 (1989), 359-369.

[18] G. GARELLO, Local solvability for semilinear equations with multiple characteris-
tics, Ann. Univ. Ferrara, Sez VII, Sc. Mat. Suppl. Vol. 41, 1995 (1997), 199-
209.

[19] R. GOLDMAN, A necessary condition for local solvability of a pseudo-differential
equation having multiple characteristics, J. Diff. Eqs., 19 (1975), 176-200.

[20] J. GOODMAN - D. YANG, Local solvability of nonlinear partial differential equa-
tions of real principal type, preprint.

[21] D. GOURDIN - M. MECHAB, Problème de Goursat nonlinéaire dans les espaces de
Gevrey pour les équations de Kirchhoff généralisées, J. Math. Pures Appl., 75
(1996), 569-593.

[22] T. GRAMCHEV, Powers of Mizohata type operators in Gevrey classes, Boll. Un. Mat.
Ital., (7) 5-B (1991), 135-156.

[23] T. GRAMCHEV, Nonsolvability for differential operators with multiple complex
characteristics, J. Math. Kyoto Univ., 33, 4 (1993), 989-1002.

[24] T. GRAMCHEV - P. POPIVANOV, Local solvability of semi-linear partial differential
equations, Ann. Univ. Ferrara Sez. VII (N.S.), 25 (1989), 147-154.

[25] T. GRAMCHEV - M. YOSHINO, Rapidly convergent iteration method for simultane-
ous normal forms of commuting maps, preprint, 1997.

[26] V. GRUSHIN, On a class of elliptic pseudodifferential operators degenerate on a
submanifold, Mat. Sb., 84 (1971), 163-195 (in russian); Math. USSR Sb., 13 (1971),
155-185.

[27] J. HOUNIE, Local solvability of partial differential equations, Rev. Un. Mat. Ar-
gentina, 37 (1991), 77-86.

[28] J. HOUNIE - P. SANTIAGO, On the local solvability of semilinear equations, Comm.
Partial Diff. Eqs., 20 (1995), 1777-1789.
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