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Bollettino U. M. 1.
(8) 2-B (1999), 65-120

Gevrey Solvability for Semilinear Partial
Differential Equations with Multiple Characteristics.

TopOR GRAMCHEV (*) - Lulcl RopiNo (¥¥)

Sunto. — Vengono considerate equazioni alle derivate parziali semilineari con caratte-
ristiche multiple. St studia in particolare la loro risolubilita locale e la buona posi-
tura del problema di Cauchy nell’ambito delle classi di Gevrey.

1. — Introduction and statement of the main results.

The present paper studies semilinear PDE of the form
(1.1) P(x, D) v+ F(x, 3“0) ) <m-1=1(x)
with linear part

1.2) P(x,D)= 2 c¢,(x)D"

lalsm
having analytic or Gevrey coefficients, and multiple characteristics. The vecto-
rial notations in (1.1), (1.2) are standard, in particular in (1.2) we write D for
(—1)!*1 3%, As it concerns the nonlinear term F, it is a smooth complex-valued
C*(R"x CN: C) function, where N = > 1.

aeZ, laj<sm—1

Our general results will be for two cases: in the first one we assume that ¥
in (1.1) is an entire function in v, ..., 3*v, ..., |a| <m — 1, analytic with re-
spect to « = («, ..., x,) say in an open neighborhood & of the origin in R",
while in the second one, much more involved from the technical point of view,
we only require that F is G Gevrey in all variables, with F(x, 0) =0 in any
case.

In fact, one of the main problems under investigation of the present paper
is the solvability of (1.1) for a right-hand side f(x) in the Gevrey class G°,
1 <0< » (in the second case 1 <O<o< x), i.e. we assume for a suitable

(*) Partially supported by funds 40 %, MURST, Italy, by research grant MM-
410/94 with MES, Bulgaria and by a Coordinated Research Project of the University of
Cagliari.

(**) Supported by funds 40 %, MURST, Italy.
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constant C >0

(1.3) sup |8“f(x) | <C1* "X (al)”, aeZh.
re

Note that the setting fe G’ represents an intermediate choice between the
choice of fin the analytic class, for which solvability is granted by the Cauchy-
Kowalewsky theorem, and fe C *, for which solvability heavily depends on the
lower order terms in (1.1), (1.2). We address to L. Rodino [44], M. Mascarello,
L. Rodino [34] for a general introduction to the study of linear PDE in Gevrey
class. Furthermore, if the operator P(x, D) is weakly hyperbolic, we will study
the local well-posedness of the corresponding Cauchy problem for (1.1).

The results in both directions will be based on a kind of a nonlinear calcu-
lus in the framework of suitable Banach spaces of Gevrey functions. We show a
priori estimates for nonlinear superpositions, generalize Moser type estimates
and as a consequence we are able to apply fixed point theorems in Gevrey-Ba-
nach spaces. Let us recall that in the C* category and more generally, in the
framework of the classical Sobolev spaces, the main tools are a priori energy
estimates for strictly hyperbolic systems with or without the use of the theory
of the paradifferential operators. We cite for example M. Taylor [45]. A typical
problem is the following one: given a smooth function F', with F(0) =0, and
given two Banach spaces of regular functions X c Y (say, Sobolev type), can we
find a positive continuous function g defined on [0, + o[, depending only on F’
and X, such that the following estimate holds

(E) [F(w)|lx < llullxg(lully), — for all ueX .

We stress that (E) has been proved in such a general form for FeC*, X =
H;(R"), s>n/p, Y=L~(R") by means of paradifferential operators tech-
niques by J.-M. Bony[2] and Y. Meyer[36] (see also J. Rauch and M.
Reed [42] for an alternative proof when p =2). The estimate (E) has been
proved by H. Chen and L. Rodino [6] for F' being analytic and

X=Hy (R") = {ueSR"): [le?1" ul

s < OO}’
n
Y=Hp (R, = <u<s,

for t>0, 0>1, as an application of the paradifferential calculus in Gevrey
classes developed by the authors. We stress that, in the limit case o =1, simi-
lar type of spaces of analytic functions and estimates as (E) have been employ-
eed in the study of the analytic regularity in the «x variables for ¢ > 0 of the sol-
utions of the Navier-Stokes type equations and more generally, semilinear
parabolic equations with the nonlinear term being an entire function, cf. C.
Foias and R. Temam [17], K. Promislow [41], A. Ferrari and E. Titi[16]. See
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also C. D. Levermore and M. Oliver [33], where analyticity for a generalized
Euler equation is investigated.

At present we are not aware of any results on the estimate (E) in the
framework of the Banach G’ Gevrey spaces assuming that F is G with 1 <
6 < 0. We mention that M. Cicognani and L. Zanghirati [8] study the G’ regu-
larity of the solutions to some weakly hyperbolic equations provided 6 < g,
while M. Reissig and K. Yagdjian [43] investigate the Gevrey well-posedness
for second order weakly hyperbolic equations in one space dimension but
without estimates of the type (E).

Before presenting our results, we would like to give three model examples
of equations of the type (1.1), which will serve both as an illustration of the
main novelties of our paper and as a comparison with the previous results on
nonlinear PDE with multiple characteristics.

a) Let P be weakly hyperbolic with respect to «, of multiplicity #2. Then
in case F' is analytic, as a corollary from results on the local well-posedness of
the Cauchy problem for general fully nonlinear weakly hyperbolic systems
due to J. Leray and Y. Ohya [32] and K. Kajitani [30], the local solvability in G°
for 1 <o<m/(m—1) is valid.

If o =m/(m — 1) or F is G Gevrey, 1 < 6 < o, we are not aware of general
results of G? local well-posedness and even G local solvability.

We are able to show such results. We stress that in the case o0 = 0 we im-
pose a kind of small norm requirement of the nonlinearity in order to have
solvability and local well-posedness. Actually the smallness requirement for
the critical index o = 6 comes from the nonlinear superposition estimates.

b) Let n=2 and P = (D,, +ic,xf" D,) o... o(D,, + ic, x" D, ), where
c;eR\0, hjelN, j=1,...,m. If all ¢;, h; are equal and F is linear in I u,
|a| <m —1, it is well known that if 0 > m/(m — 1) the operators could be not
solvable under suitable assumptions on the lower order term, see for example
T. Okaji[38], while for 1 <o<m/(m —1) positive results are proved by
T. Gramchev [23]. If not all ¢; are equal, there are the classical results of
V. Grushin [26] on nonsolvability in C* provided suitable discrete conditions
on the lower order terms are imposed, see A. Corli and L. Rodino [11] for the
Gevrey case. We will show that if all ¢; have the same sign, the semilinear
equation (1.1) is G solvable for any 1 < o < m/(m — 1) with smallness require-
ments if o =m/(m —1).

¢) If n =2, we can consider P as a product of Mizohata type operators as
in b) and first order hyperbolic operators. For such operators we do not know
any results concerning the equation (1.1). We will prove results on local solv-
ability in G, 1 < o <m/(m — 1), with smallness requirements if o=m/(m —1).

We hope that our nonlinear calculus in the Gevrey-Banach spaces will lead
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in the future to applications for fully nonlinear PDE with multiple characteris-
tics via Nash-Moser type theorem (see T. Gramchev and M. Yoshino [25] for
rapidly convergent method in Gevrey classes on the torus for normal forms of
Gevrey orientation preserving mappings of the unit circle). As it concerns the
Cauchy problem for second order nonlinear weakly hyperbolic equations and
the use of Nash-Moser theorem in the C ” category we refer to the recent sur-
vey paper of P. D’Ancona and M. Reissig[13] and the references therein.

Let us begin by presenting the results in the case of the analytic nonlinear-
ity. We shall also assume here that the coefficients of the linear part P(x, D)
are analytic in Q. In the following we shall only argue on the principal symbol
of the linear part

(14) pm(xa‘s): 2 Ca(x)gay

la|=m

assuming it has multiple characteristics and satisfies suitable hypotheses
which guarantee solvability of the linear equation

(1.5) P(x, Dyv=feG°.

Before specifying such hypotheses, we recall that a local solution v (not
subjected to any initial or boundary condition) of the semilinear equation (1.1)
exists for any fe C *(2) when p,,(x, &) is elliptic, see for example S. Alinhac
and P. Gérard [1] §3.2.4, and also when p,,(x, &) is of real principal type, as
shown by J. Goodman and D. Yang [20] in the fully nonlinear case by means of
the Nash-Moser method, see K. Payne [37] for a systematic presentation. The
local solvability result keeps valid for (1.1) with fe C*(f2) when p,,(x, &) is
complex-valued of principal type, provided it satisfies somewhat stronger con-
ditions than the Nirenberg-Treves linear solvability (P) condition, as it was
proved by B. Dehman [14], T. Gramchev and P. Popivanov [24], J. Hounie [27];
precisely, it was assumed

(1.6) d:Rep,(x,5)=0 and Imp,(x,&) does not change sign for (x, &)
in a neighborhood of the characteristic manifold .

Observe that (1.6) is satisfied by all the sub-elliptic symbols p,,(x, &), cf. F.
Treéves [46], Vol. I1, §11.3 and L. Hormander [29], Vol. IV, § 27.3. More recent-
ly, J. Hounie and P. Santiago [28] obtained local solvability for (1.1) under (P)
condition in full generality.

Coming now to symbols with multiple characteristics, we shall assume
P (2, &) has a smooth decomposition into factors satisfying (1.6). Precisely,
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let us write X for the characteristic manifold:
1.7 2= {(x, & e2x R"\0), p,(x, 5 =0}.

Let k=1 be a fixed integer.
We suppose for every o = (2, &) € 2 there exists a conic neighborhood I,
of o such that

(18) pm(x, E) = em—}c(x5 5) al(x’ S)“-ak(m) E) fOI‘ (90, S) erg’

where e,,_;(x, &) is an analytic elliptic symbol homogeneous of order m — k,
and the first order homogeneous symbols a,(x, &), j =1, ..., k, are analytic of
nondegenerate principal type, i.e. d:a;(x, §) # 0 when a,;(x, §) =0in I',. After
a re-setting of the elliptic factor e,, _,(x, &) and possibly after a linear change
of variables and a shrinking of I',, there is then no loss of generality in
assuming

1.9 O:, Rea;(x, ) >0 for all j=1,...,k and (x, &) el,.
Modelling on (1.6) we add

(1.10) Ima;(x, &) =20 for all j=1, ...,k and (x, &) el,.
One can obviously replace (1.10) with

1.11) Ima;(x,§) <0 for all j=1, ...,k and (x, &) el,,

since in this case the change of variable x, = —x, allows a new factorization
satisfying (1.9), (1.10).

Looking first to the linear equation (1.5), we observe that the assumption
in (1.10), (1.11), that all the Im a,(x, &) have the same sign, is essential. In fact
it is known from the above mentioned works of V. Grushin [26] , A. Corli and
L. Rodino [11] and also A. Menikoff [35] that sub-elliptic factors with conflict-
ing signs may give rise to non-hypoellipticity and non-solvability results for fe
C” and also feG?, 1 <0< o,

It is also well known that, under the assumptions (1.8), (1.9), (1.10), the lo-
cal solvability of the linear equation (1.5) with fe G, k/(k—1) <o < o, as
well as with fe C”, depends on the lower order terms; see A. Corli [9], [10], T.
Gramchev [22], P. Popivanov [39], [40]. What we may expect, without any as-
sumption on lower order terms, is G ’-solvability for 1 <o <k/(k —1).

This is in fact our preliminary result concerning the linear equation, which
we express in a microlocal form using the Gevrey-Sobolev spaces H,' ), by
short Hj, of all the functions f such that

1 llzg = lle ™ =2 £

where o represents the Gevrey order, s the Sobolev index, 7 is a positive par-

Hs<00,
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ameter, y(x, &) a suitable symbol, homogeneous of degree 1/o for large ||,
so that ZUS H}Y>G? locally; see the next § 2.

THEOREM 1.1. — Under the assumptions (1.8), (1.9), (1.10) for the principal
symbol p,(x, &) in the neighborhood I, of o, the linear equation

P(x,D)yv=feH;, 1<o<k/(k—-1), seR,

admits a solution ve H™™ 1= “microlocally at o.

A more precise statement will be given in §3, where we shall obtain the
theorem following closely the arguments of K. Kajitani and S. Waka-
bayashi [31] concerning micro-hyperbolic operators. Note that for the sol-
ution v we get a loss of k(1 — 1/0) < 1 derivatives in the Gevrey-Sobolev spaces
Hj, whereas in the standard Sobolev spaces the loss for multiple characteris-
tics would be at least £/2 in any case.

Aiming now at the local solvability of the semilinear equation (1.1), we shall
have first to patch together the microlocal results from Theorem 1.1; this re-
quires a global choice of the weight i which in the definition of H; and in The-
orem 1.1 may depend on ¢ € ¥. Besides, to face the nonlinearity, we shall need
H; to be an algebra, that is granted, as shown in § 2, if we shall assume further
1y is sub-additive. In turn, this will lead us to strengthen the assumptions (1.8),
(1.9), (1.10). Precisely, we are able to treat (1.1) in two particular cases. The
first case is when

(1.12) for all peX we may choose the neighborhood I', and the factors
a;(x, &), j=1, ..., k, in (1.8) so that a;(x, &) is real-valued and
O, a;(x, §) >0 in I,.
Observe that the local coordinates x are now assumed to be fixed indepen-
dent of peX, and we cannot change the role of the dual variable &, when
changing ¢ and I',. Since a;(x, &) is real-valued in (1.12), the assumption (1.10)
is trivially satisfied.
In the second case we shall allow Ima;(x, &) to be not identically zero. We
assume for x = (x;, 23) in a neighborhood € of the origin in R? and &=
(&1, £5) e R2\0 we have a global factorization of type (1.8):

(113) pm(x5 5) = emfk(xa 5)(52 + ;Ll(x) 51)(52 +/‘Lk(x) 51)
with e, _,(x, &) elliptic and A,(x), ..., A,(x) analytic in 2 satisfying
(1.14) ImA;(x) =0 for all j=1,...,k and xe Q.

Therefore (1.9), (1.10) are valid for £; >0, and (1.9), (1.11) for &; <0.



GEVREY SOLVABILITY FOR SEMILINEAR PARTIAL ETC. 71

THEOREM 1.2. — Let p,,(x, &) satisfy (1.12), or else (1.13), (1.14). Then the
semilinear equation

P(x, D) v+ F(x, 3“0)|4j<m-1=&f(2),

where e >0, feG?, 1 <o <k/(k—1), compactly supported in a neighborhood
of the origin Q = {|x| <0}, admits a solution v in L, if ¢ and O are suffi-
ciently small.

We recall that here F' is assumed to be entire function with respect to 9“v,
analytic with respect to « with F(x, 0) = 0, and the coefficients of P(x, D) are
analytic in . The solution v is classical, i.e. ve C™(£).

It will be not actually necessary that both ¢ and é are small; for a precise
bound involving ¢ and 6 see §4. In our proof in §4 we shall avoid the use of
Nash-Moser method, but rely on the classical iterative procedure.

A model equation satisfying (1.13), (1,14) is a nonlinear perturbation of the
m-th power of the Mizohata operator

(D,, + 03" D))" v+ F(@, 30) oy <1 = f(@0).

Observe that, if we replace 24 by an odd exponent, the corresponding linear
equation is not solvable in C' *, neither in G°, 1 <0 < «; see F. Cardoso [3],
M. Cicognani and L. Zanghirati[7], R. Goldman [19], T. Gramchev [23].

Concerning (1.12), we observe that in this case we are very near to the clas-
sical results of Leray and Ohya. Precisely, if we assume further (1.8) is valid
globally for & e R"\0 with ¢,,_;, = 1, our equation is hyperbolic, having smooth
characteristics of multiplicity <k, and the Cauchy problem with G °-data, 1 <
o <k/(k—1),is well posed (J. Leray and Y. Ohya [32]; see K. Kajitani [30] for
non-smooth characteristics). Local solvability is then obvious.

Let us come now to the case of the Gevrey nonlinearity. Changing nota-
tions, we shall write ¢ for the «time» variable, and denote by « the «space»
variables in R”. We shall limit here attention to linear parts satisfying (1.12) or
(1.13), (1.14) of a particular form, with coefficients depending only on . Pre-
cisely we are assuming that

(1.15) P(t, o, 9,) =L,0... 08
where
1.16) £j:8t+<a<7(t), hi=1,...m.

We may assume the vectors a’(t) are C* in a neighborhood I of ¢ =0.
The nonlinear term is supposed to be a G’ function depending on d%u, a e
7" for some Oe[1, m/(m —1)], namely FeG%(CN: C), F(0) =0. According
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to (1.12), (1.13), (1.14), we assume:

(1.17)  all @’ are real-valued, or else n=1 and Ima’/(#)=0 (or<0)
for all j=1, ..., m.

We consider the equation

(1.18) P(t, &, O ) u+F(u, ..., Gu, ..) || <m-1=[, ®),

where zx is in an open neighborhood £ of the origin in R”, and if all a’ are real-
valued, we consider initial data

(1.19) AHuli—g=u@), j=0,1,...,m—1.
Now we state the main result for a Gevrey nonlinearity.

THEOREM 1.3. — Let FeG%(CYN: C), F(0) =0, 1<6<o<m/(m—1). As-
sume (1.17) is satisfied for P as in (1.15), (1.16). Let f(t, x)eC°([ -
To, To): G§(82)), Ty >0 and ujo(x) eGy(2),7=0,1,...,m—1.Ifo =60 we re-
quire that

(1.20) sup [9%u’(@) | < k! H (al)?, j=0,1,...,m—-1, aeZ',

re

(1.21) sup |94 ft, x| skl (al)’,  aeZl,

[t|<Ty, xeQ
where k>0 is a constant depending on the nonlinear term F. Then we can
find Ty €10, Tyl such that there exists u(t, x) e C"(1— Ty, Ty[: G°(R)) sol-
ution to (1.18) (respectively to the Cauchy problem (1.18), (1.19) provided all
a’ are real-valued).

More precise statements will be given in §9. A natural question is whether
Theorem 1.2 is valid in the case of a Gevrey nonlinearity; at this moment we
are not able to extend in this direction the proof of Theorem 1.3, which takes
advantage of the particular form (1.15), (1.16), (1.18).

Finally, concerning the solvability of (1.1) in the case when fe C” or fe G’
with o > m/(m — 1) we expect that, to obtain positive results, we shall have to
impose conditions of Levi type on the nonlinear perturbation (for second order
nonlinear hyperbolic equations see [43] and the discussion and the references
in [13]). We purpose to discuss the problem in the future. Preliminary results
in this direction are for example in G. Garello [18] concerning local solvability.
About Sobolev-C * well-posedness of the Cauchy problem for weakly hyper-
bolic nonlinear equations there exist other results, with applications to diffe-
rent models in Mathematical Physics, see for example W. Craig [4].
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PART I: THE CASE OF ANALYTIC NONLINEARITY

2. — Gevrey-Sobolev spaces and non-linear operators.

We write
.’)€=(96',90n)=(901,...,Qﬁn,l,%n), and §=(§'5‘§71)=(‘§17"'9 gnflagn)
for the dual variables. In this section 6 >0 is fixed, and we argue for

x=(x', x?z)ERn_lx]_éy ol.

DEFINITION 2.1. — We say that y(x,, E')eC* (-0, S[ xR" 1) is a weight
Sfunction of order o, 0 <o <1, if y(x,, E') =0 and for some positive con-
stants C and r:

2.1) |D} DEy(x,, E)|< CIHIPIHLA B + | &7 | )e 1A
for all BeZ! ' jeZ,, x,el—0,0[ EeR" L |E|>r.
DEFINITION 2.2. — Let o be a weight function of order o =1/0,1 <0< o;

fixs>0,7>0. Wewrite H> Y (R" ! x1= 0, O for the space of all functions f
in LE2(R""'x1-96, o)) such that

2.2) 17 y = lle™ @ PO fl@) |1 x - 0, op <
where
(23) enp(w,,,D’)f(x) — (zﬂ)—n+1feiw’§’erw(xn,§')f~(§r, xn) dsr .

We have denoted by f the Fourier transform of f with respect to x', and by H*
the standard Sobolev spaces.

Gevrey-Sobolev spaces of similar, and even more general type, were stud-
ied by several authors; see in particular Kajitani[30] and Kajitani-Wak-
abayashi [31] for a systematic presentation.

As for infinite order pseudo-differential operators of the type (2.3), see also
Rodino [44]. Since v is assumed here (x’, &,)-independent, an inverse of
e™ @D i5 given in the present case by the operator

(24) e 71’1/)(90,1,D’)f(x) — (zﬂ)—nJrlfeiac’E’e —1 (2, E’)f'(g/, xn) dg/ .
So we have the isometry between Hilbert spaces:

(2.5) e @ D g V(R X] =0, ) = H(R" "1 x]1-9, d])
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with inverse
(2.6) e W DD HY R Ix] =6, 0D = HI Y (R" "1 x]-0, d].

For the benefit of the non-specialists, we give a self-contained proof of the
following basic proposition, showing in particular that local solvability for
Hj ¥-data implies solvability for G°-data as considered in (1.3).

PROPOSITION 2.1. — Let f be in G§(R" 1 x]1—40, Ol), space of all the func-
tions satisfying (1.3) for xeR" 1 x]1-0, o[, with compact support there.
Then for every weight function y of order o =1/o and for all s> 0, we can
find ©>0 such that fe H> Y (R~ x] -6, o).

The proof is a consequence of the following elementary lemmas.

LEMMA 2.2. — For every multi-order f = (81, ..., Bpn_1)€Z" Land jeZ,,
we have

2.7 Df e @n D) = g @ DIDF
(28) D[{”eﬂ/’(x”’ D) _ . % _q(j*h)g('%‘ny D) erw(mn,D’)Dwi;
shsy
where q,,(x,, D), m=0, 0, ...,jo0 are pseudo-differential operators with

symbol satisfying for suitable constants c;, the estimates

(2.9) | Dy, DZ G (2, E) | < € (14 |E7 )7 171

forall yeZ' ', leZ,,x,€]—0, 0l & eR" L. In particular we have
(2.10) qw,, §") =1,  q,(x,, §") =ju(D,, ¥)x,, §').

Proor. — A direct proof of (2.7) is obvious, granted the standard properties
of the oscillatory integrals (2.3). As for (2.8), (2.9), we may obtain it by induc-
tion on j, since from (2.3)

Dxneﬂ/)(me’) — T(Dxnw)(an D) e @n, D) 4 gy (e, D)

L,

and

j Zy, D) — w D) Dh+1
Dirten D)= 8 qg oy, D) e PO
shs<j

,[(Dx,lq(jfh)g)(xm D,) + rq(j*h)g(xn’ D ,)(Dxnl/))(xn’ D ,)] em’(me’)Dog; .
J

0<h<

The same argument gives (2.10).
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LEMMA 2.3. - Let q,,(x,, §') satisfy the estimates (2.9), m =0, and let s be
an integer with m <s. Then

2.11) g (2, D) fll<C | ; D2

where norms are taken in L2(R"~1x]1-4, o).
The proof is obvious by Fourier transform.

LEMMA 24. — When s = 0 is an integer, the following can be taken as equi-
valent norms in HP Y (R"~1x1—6, oD:
@ > [IDeemmPUf],

lal<s

s wp(x,, D) na
(ii) |a|2ss”e Defl,

(i) > [[Dee™“PODI .
la+p]<s
PrOOF. — The norm (i) corresponds to our very definition in (2.2). On the
other hand, considering norm in L2(R" ! x]— 0, d[), we may estimate using
Lemma 2.2 and splitting a = (a', a,,)
S Drev < S S g e DY) eV

lal<s la"|+a,<s 0sh<a,
Then we apply Lemma 2.3 to estimate
o, -a(is DY eV DD SC S DR D
say,—h

Using (2.7), observing that |(a’ + 8, k)| < |(a’, @,)| <s and combining
with the preceding inequality, we have proved that the norm (i) can be esti-
mated by (ii). In the same way we obtain the converse. Similar arguments ap-
ply to (iii).

PrOOF OF PROPOSITION 2.1. — Referring to the norm (ii) in Lemma 2.4, we
have

74
On the other hand, it follows from the assumption (1.3):
|IDEDf()| < CHAIHIB7,  weR"Tx]-6, 0,

where we limit consideration to |a|<s, and fe 7" '. Fourier transforming
with respect to x’, we have

Hrs,y://) = ‘ |§:< ||eT1/)(-70n’ E’)(D(lf)"(é’, xn)||L2(Rg'71X]76’ oD -
alss E

(EV(DFYE, 2| = ‘ [e-ie DpDfiay d | < cJp11(prye
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for a new constant C, depending on supp f. This implies as standard (cf. for
example §1.6 in Rodino [44]):

|(DfY(E, @) | S CY(C /A +|E DM (MY
for any positive integer M, and hence

[(DFYE ) | S inf G (G AL+ (& DM < Ce 0+ 11!

where ¢ =1/0, and ¢ is a suitable positive constant. For 7 sufficiently small
p(x,, §') <e(l1+|E'|)°/2 and we conclude

|erz/)(xn,§’)(Daf)~(§/ , xn) | < C;@ —e(1+|&" )02

for x,e]—0, o[, &' eR"~!. Therefore |f]
Proposition 2.1.

u»v is bounded, and we obtain

It is evident from the proof of Proposition 2.1 that the assumption of G °-
regularity could be relaxed with respect to the «x,-variable. We now turn atten-
tion to the main theme of this paragraph; precisely, we want to study when
HyY(R*"1x]—4,d[) is an algebra.

To this end we first produce the following definitions and examples.

DEFINITION 2.3. — The non-negative function ® on RY is said to be sub-ad-
ditive if

D(s+t) < D(s)+ D(t)  for all s, teRY.

EXAMPLE 2.1. — &(t) = |t|? is sub-additive in RY for 0 < ¢ < 1. The follow-
ing functions are sub-additive for te R, 0 <p <1:

D(t) =t¢, ie. (t)=0 for t<0,=t° fort>0;
D(t)=t?, ie. d(t)=(—-t)¢ fort<0,=0 fort>0.

Let us observe that if @(¢) is a sub-additive function in RY, and ¢ = 0, then
also c¢®(t) is sub-additive. Moreover, if @,(t) and @ ,(t) are sub-additive, also
D ((t) + D, () is sub-additive. It follows in particular that, for ¢, de R, U {0}
with ¢ # d and 0 < ¢ <1, the function @(t) =ct? + dt¢ is sub-additive in R. In
terms of the function sign ¢=1/|t|, setting c=A—-B, d=A+ B, we can
rewrite @(t) = (A + B signt) |t|?, with A> |B].

Other examples can be obtained by observing that if t = (;, t,) e RN =
R x Rp?, and @(t,) is sub-additive in R}, then @(t;) in RY, i.e. @(t;) x 1, is
also sub-additive.
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DEFINITION 2.4. — The non-negative function ® on RY is said to be essen-
tially sub-additive if for some C >0

D(s+t) < D)+ D)+ C  for all s,teRY.

EXAMPLE 2.2. — Let @ be continuous sub-additive in R"; let @ be continu-
ous non-negative with &(t) = d(t) when |t| =r, for some » > 0; then @ is es-
sentially sub-additive in RY, as it is easy to prove. Therefore, using Examples
2.1 and letting ¢(t) e C*(RY), 0< @ <1, @(t) =1 for t =1, @(t) =0 for |¢|<
1/2, we obtain that the C'* functions

&(t) =Co(t) [t]°, CeR,, 0<p<1l, teRY,
®(t) = (A +Bsignt) (1) |t|]0, A>|B|, 0<p<l, teR,

are essentially sub-additive.

THEOREM 2.5. — Let the weight function y(x,, E')eC*(Q—05, [ xR"~1)
be essentially sub-additive with respect to &', 1.e.

(2.12) Y, & +n') sy, &) +y, n)+C

for some constant C independent of &', n' e R"~ and x,e]— 0, J[.
Then for s =mn + 8 the space H3 ¥ (R" ™' x1—10, o) is an algebra, and for
a suitable constant C, we have

(2.13) v

o < C |l

Z'(I

Wl -
ProOF. — We limit ourselves to consider integers s = n + 3, applying then
interpolation for arbitrary s > n + 3. Referring to the norm (i) in Lemma 2.4

we have

py= 3 o@D, S S feen P Dtun =

|la|<s la|<s f+y=a

Cs, ’ E|< ||eﬂ/)(acn,D’>(efrw(wn,D’)uﬁ/efﬂ/f(me’)vyr)“
+y|ss

were we take LZnorms in R% "1 x]—4, o[ and
uﬁf(x):ew(wn,D’)D/fu, vyf(x):erw(xn,D’)Dyv

Applying Fourier transform with respect to ', we obtain

hedlg <C; 3 HfH(xn,E ) E — ', @) B 'y ) dy’

LERE I x1-6, 6D

where H(xn7 g,v 77’) = eXp[‘“/)(xn, g/) - Tw(xnr g’ - 77,) - 771/)(9%, 77,)]
Since H is bounded in ] -6, 6[ xR~ x Ri~ !, in view of the assumption
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(2.12), we conclude

bl <c; 3 || [1ase —nn, w0l 15,0, e dy
' |B+7]
Yl <s

LERE I x1-0, 0D '
If sZn+3, |y| +|B|<s, then one at least of the inequalities |f|<s—

(n—1)/2-2, |y|ss—(n—1)/2—-2 must be satisfied, and we may write
using Young estimates and setting t=s—(n—1)/2 -2

v

P 1/2
H Y <Cy \/3|2<t ( f”ﬁﬁ'@', 9071)||%1(Rg,*1)||77y'(§', xn)”%zaagfl) d%n,) +
st \-p

[y[<s

P 1/2
Cs" |‘5‘2< ( f”?zﬁ’(S’? xn)H%z(R’g,_l)”ﬁyl(S” xn)H%l(Rg'_l) dxn) =
=S \_ b

<t °
C; 2 sup g (&' )l nlloy 1 +67 X sup (16, (8", @)l rwe-n g -

IBI<t |a,| <0 ' [Bl<s |ay|<o '

lylss Iyl <t

Since u,veH; ) and |B|<s, |y|<s, we have from Lemma 24, (ii)
ug, v, eL?2(R! "1 x]-0, 0] and ||uﬂ’ | <l e ||vy' <l i:y- On the other
hand, we may estimate as standard

sup ”ﬁﬁ’ (5,5 xn)”Ll(R’gv'l) S Cs sup E HD'S’ ?/L/;’ (90 ,’ xn)HLz(th’r'l) =
|| <0 ’ le, | <o lo]s(n-1)/2+1

<C; > |D"uill<C
[v] < (n—l)/2+2

H Y

if ||+ ((n—1)/2+2<s, in view of Lemma 2.4 (iii). Estimating in the same
way sup [[v) (&', acn)HLl(Rg,—x) we conclude |juv ey S C; H:';;/’HU v for a

|y | <0

new constant C;.

ExAMPLE 2.3. — In the proof of Theorem 1.2 we shall apply Theorem 2.5 for
the following two weight functions, with @eC*(R""1), 0<gq(&') <1,
p&")=1for |[§'|=1, @(&')=0 for |§"|<1/2:

(2.14) Y, &) = (1+ z—) P& &%,
0

(2.15) 1/)(902,51)=(1+%Sign§1) &) E1]9,
0

which are essentially sub-additive in view of Examples 2.2 if 6 ,> ¢. Theorem
2.5 for the weight (2.14) was already in Kajitani [30].
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We now consider functions E(x, 2): R%" 1 x] -0, o[ x CY —C, compactly
supported with respect to the variables x. More precisely we assume for
l1<o'<o

(2.16) E(x,z)=%:]’[3(x)zﬁ, f3€G7 (R x]1-6,08D, =zeCV,

where supp fypc Kcc R}~ x] -0, o[ and
2.17) sup |9% fz(w) | < AgAll(al)”
with positive constants A and A, the function
(2.18) E(z) =2 Az2"

B
being entire.

THEOREM 2.6. — Let E(x, z) be of the form (2.16), (2.17), (2.18). Let
/UjEH‘f,)(;/)(RnilX]_ay 6[)7 j=17"-5N5

with s =n + 3 and ¢ satisfying (2.12); set V= (vy, ..., vy). Then E(x, V) is in
H} V(R x]-8, oD.

LEMMA 2.7. — Let f be in G¢ (R" "1 x] -0, o)), with 1 <o'<o. Then
feHH (R 'x]-4, 0D,

for every weight function v of order o =1/o, for all t>0 and s=0. More-
over, if

2.19) sup [3%f(x) | < AA 1 (al)”,

then ||f | ey S AAg, where A, depends only on A from the right-hand side of
(2.19) and supp f.

Proor orF LEMMA 2.7. — Arguing as in the proof of Proposition 2.1, we ob-
tain for |a|<s:

|(DUfY(E, @) | < AC e~ FIEDT

where o’ =1/0’, and C, ¢ depend on A and supp f. Referring to the norm (ii)
in Lemma 2.4 and observing that o' > o, we get the the conclusion.

ProOOF OF THEOREM 2.6. — We write with obvious vectorial notation

Bz, V)|lgey < % 175V gy < % CP|7 s

Y
H'r,a

v

s, P
H'r, o
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where we have applied Theorem 2.5 with C; as in (2.13). Using then Lem-
ma 2.7, we conclude

|E(z, V) ooV = A B(C|V|gep) .

7,0

s v sAs%‘,iﬁ(CSHV
Let Q' be a bounded open set, say a neighborhood of the origin, in R !.
We define 2 =0’ x]—9, J[ and
H Y oomp(R) = {feH(R"" ' x]-9, D), supp f is a compact subset of 2} ;
H) Y0 (2)={fen' (Q), (pfeH,'":’gj comp(£2) for every g e G (Q),1<0'< o};
H} Y (Q) = {f is the restriction to 2 from Hf;;”(R”fl x]1—0,0D}.

We understand from now on s =n + 3, as assumed in Theorem 2.5. Then
H} Y (Q), endowed by the standard quotient norm, is an algebra and (2.13) is
valid with the same constant C. To prepare the applications in the next sec-
tions, le us consider as in §1

(2.20) J() = F(x, 3*v(®))|4)<m-1

where F is entire function with respect to z = (8*v) e C¥, and we allow now
G 7' -regularity with respect to x in a neighborhood 2 = Q' x]—9, o[ of the
origin, according to (2.17), (2.18). Let us assume further for some integer
k=0:

2.21) S Fx,0)=0 if |y|<k, xeQ.

PROPOSITION 2.8. — Under the preceding assumptions for F, there exist two
entire functions Fy(w), Fo(w) in C,

(2.22) FI(U))z E ﬂ.lhwh, Fg(?/l))z z Aghwh With ).1;,/20, AZ;LBO,
h=k

h=zk+1
such that for all v, vy, voe HE "1 V(Q)

(2.23) 7 (v)

H:’:;V < Fl(”?] H?,Z'”’l"/’)

2.24) ||J(v))—J(v,)

o) S [[or =, pyn-1v Fy (max {Ilor| H b, o v })

where norms are in H Y () and the hypotheses of Theorem 2.5 on v and s
are assumed to be satisfied.

Proor. — From (iii) in Lemma 2.4 we have

Ha“v

H:'Y.;/)S ”’[) H;J{,m_l’v' fOI' |C(| <m-1.
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Applying the proof of Theorem 2.6 to V= (9“v)4j<m -1, We then get (2.23)
with

Fiw) =4, 3 i4(Cow)¥ .

|B] >k

As for Fy(w), we use Taylor formula to write:

F(x,2')— F(x, 2%) = (2! — 2%, G(z, 21, 2%)),

1
G(oc,zl,z2)=sz(9c,zl+t(zz—z1))dt, 2!, 22eCN,
0

and then we apply Theorem 2.6 to G(x, 3%v,;, 3° V2)|a|, 18| <m -1 10 order to de-
fine Fy(w).

3. — Proof of Theorem 1.1 and local solvability of the linear equation.

Since we are looking for local, or microlocal, solvability at the origin, it will be
not restrictive to multiply the coefficients c,(x) of P(x, D) in (1.1), (1.2) by a
function y € G§'(R), with 1 < ¢’ < o, y(x) = 1 in a smaller neighborhood of the
origin. From now we shall then assume c,(x) € G§ () for |la|sm, 2=0Q"X
1— 0, o[, with Q' bounded neighborhood of the origin in R”~! and § > 0.

Following the notations and the definitions of the preceding § 2, we consid-
er here a weight function v (x,, £') of order ¢ = 1/0 satisfying (2.12), and the
corresponding Gevrey-Sobolev spaces H Y (R" ™' x1-0, 0D, HP Y comp(2),
Hp Y1, (2), H> Y (£2), where >0 and s =n + 3.

From Lemma 2.4, Theorem 2.5, Lemma 2.7 we have that for s=m+mn+3

Pz, D) H3 Y (R 1= 0, 0D —H ™ V(R" 1 x 1=, 0D);
we may also regard P(x, D) as continuous map:
P(x, D): Hy $10e(2) > H; yleomp (2),
P(x, D): H? Y (2)—>H; ;" V(Q).
Consider

3.1 P =@ D')P(ac, D)e —7yp (2, D) :
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in view of (2.5), (2.6) we have

P:H (R 'x]1-0,0D)—H*""(R""'x]-9, 3]
and

(8.2) P=¢ @D Pptyw, D)

We can now give the following more precise statement of Theorem 1.1. Let us
fix attention on a weight function of type (2.14):

33) (@, E) = (1+ g—g)wswm@,

where o =1/ and g e C;"(R" 1), 0<@<1, @&')=1for |E'|=1, @(&) =0
for |&"|<1/2.

THEOREM 3.1. — Let the principal symbol p,,(x, &) of P(x, D) satisfy (1.8),
(1.9), (1.10) in a conic neighborhood I of the point (xy, &), with xy=0 say,
£0=0. Let >0 be fixed and let y(x,, ') be chosen as in (3.3) with 1/o =
o<k/(k—1). Let Q="' x]—-0, d[ be sufficiently small. Define )z according
to (3.1). Then there exists a linear map

E'v: HS(Rn—l X] _ 5, 6[)_)Hs+m—k(1—1/a)(Rn—1 X] _ (3, (3[)
such that
(3.4) PE = y(2)AD) + R,

where y(x) is fixed arbitrary in Cy* (22) with support in a neighborhood of x
and A(§) in C”(R") homogeneous of degree 0 for large |&|, arbitrary with
support in a conic neighborhood of &,. Moreover R is a linear reqularizing
map, i.e.

R:HR"'x]-0,0)—>H'(R""'x]-9, 9
Sfor all t=0.
Coming back to the equation
P(z, Dyv=feH}J(R""'x]-9, 09D,
we may rewrite it in the form

Fien/)(xn,D’)v — en/}(m",,D’)feHS(Rnfl X] _ (3, (SD
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Setting
- " D) 13 anD’ — - '17,;D’ D Ly D’
E=¢ @ ) Ee™ (@ ), R=¢ W ) Re ™ (@ ),
we then obtain Theorem 1.1 with
V= Eferj,m*’““*”")’ YR Ix]-0, 9.

In fact, in view of (3.4), the function v is a microlocal solution in the sense
that

(3.5) Px,D)yv=e —ﬁ/f(mn,D’)X(x) (D) e“”“"’D')erRf,

where we take y(x) =1 in a neighborhood of x,, A(§) =1 in a conic neighbor-
hood of &, and

R:HYY(R"™'x]1-0, 0D —>H ) (R"™' x]-9, 3]

for all t=0.

Aiming to applications to semilinear equations, we shall content here with
(3.5); we observe however that a more explicit meaning to (3.5) could be given
in terms of the Gevrey-Sobolev wave front sets of Chen Hua-Rodino [6].

The proof of Theorem 3.1 will be based on the following preliminary
results.

DEFINITION 3.1. — We say that q(x, &) e C* (2 x R") is in the class eomM,
m =0 integer, M e R, if q(x, &) is a polynomial with respect to &,,:

36 0@, = 5y £ 8,

where the symbols q.(x, &), r=M—j, j=0,1, ..., m, are compactly sup-
ported with respect to x and satisfy the estimates

(37) |D;D£qr(9€7§,)|s a/3(1+|§’|)r7|ﬁ|

for aeZ", BeZ" 1, with switable constants Cop tndependent of xe Q2, &' e
R"~1. When m =0 we understand q(x, £) is &,-independent satisfying esti-
mates (3.7) with r=M.

The corresponding pseudo-differential operators g(x, D) map H{.(R" ! x
1-06, 6D into Hanl  (R" ™1 x1 =4, 8[), N = max (m, M), since @™ " is includ-
ed in the class SOZY 0, cf. Hormander [29]. It is known that the rules of the sym-
bolic calculus do not apply in full force to operators with symbol in SOIY 0. How-
ever we may note that if ¢ (x, £) e @M j=1, 2, then we get q(x, D) =
qV(x, D) ¢ (x, D) with q(x, &) € @™ " "2 M1+ M2 Moreover in any conic sub-
set I' of @ X R" where |E'|=¢|&, | for some ¢ >0, we have @™ Y c S, ie.
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(3.6), (3.7) imply
|D£ DY q(w, &) < Cp,y 1+ [EPMI1 for (x, &) el .

At a symbolic level, this will allow applications in I of the standard S," s theory
for construction of parametrices, see again Hormander [29].

ProrosITION 3.2. — Let P(x, D) be a linear partial differential operator
with coefficients in G¢ (Q), 2=02' x]1-0,0[, 1 <o’ <o, and let y(x,, E")
be a weight function of order ¢ = 1/0 satisfying (2.12). Fix © > 0. Then the op-
erator P defined by (3.1) can be written as a pseudo-differential operator with
symbol

plx, §e@™ ™.
Precisely we have
P, &) =P (@, &) + G- 1- (@, &) + G- - (®, &)
where:

i) pu(a, &) is the principal symbol of P(x, D),

ii) %nf(lfg)(x, &) e@m™ (170 jg given by
n—1
(38) iTag,me(x, S) axnw(mn5 E’) - iT ‘El ax/.pm(%, E) 85/1/)(907,,, E'),
J= ’ ’

i) Gy o0 - (x, §) e @™ M THI7O,

We point out that this proposition is, essentially, a particular case of Propo-
sition 2.13 in Kajitani-Wakabayashi [31], see also Proposition 2.5 in Kaji-
tani [30]. Aiming to a self contained proof, for benefit of non-specialists, we ob-
serve first that Lemma 2.2 gives for a = (a', a,)e”Z, a,=1:

(3.9) e™W@nDIpag -, D) =
: X
=D = o, ®(Dy, )2,, D) DE D™+ qaf - 21 - )@y D)

where qo|-21 - €@ 1*172179 This corresponds to Proposition 3.2 in the
case P=D“. Moreover we have the following:
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LEMMA 3.3. - Let a e G§' (R),1 < o' < . Then, for y(x,, ') as in Proposi-
tion 3.2:

(8.10) e”/’(”’“D')a(ac)e -y, D)

n—1
a(x) + 1 '21 D, () 8, (w,, D') + q_g1 — p(w, D),
i=

where q_sq—p(x, E') e @ 2170,

Proor. - We may write
e"p(x”’D’)a(ac) e W@ D) — q(x’ D)
where the symbol of the pseudo differential operator q(x, D ') is given by the
oscillatory integral
(3.11) q(oc, &N = (2ﬂ)—n+1feix’n'erw(xn,E’H/’)—rw(xn,&')d(nr’ xn) d77' .

As before @ denotes the Fourier transform of a(x’, x,) with respect to x’.
Using Taylor formula, we may write for every N =2

e @, & ") (g, £7) —

n—1
1+ _21 Tagﬂ/’(xn,fl)ﬂj‘l‘Q |/§| N(ﬂ!)il/’{ﬁ(wwn gl)ﬂ/ﬂ‘l"'"N(xn,f’,’?’)
)= < <

where

3.12) TN(%, 5 n N = z 77 flﬁ(xn’ 5 +t7] )erwm §ttn') —wyplen, §) ¢
with
(3.13) Ag(w,, &) = W)l gl )
Inserting in (3.11) we obtain (3.10) with
(I—Q(l—g)(xv 5’): Z (ﬂ!)ilD:ﬁa(x)j-ﬁ(:mug’)"'RN(x’ El)v

2< Bl <N

where

Ry(e, &)= @a) " eV ry(a,, & n") aGy', w,) dn'

To prove q_s; 4 € @ "2179 we observe first that 4 4(x,, §') € ©@% ~1FI0 -0,
as it is easy to deduce by induction. Therefore it will be sufficient to estimate
Ry. From (2.12) and (2.1) we have

(3.14) Y, &' +tn') sy, §)+C(A+|n"|)
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for a suitable constant C; applying in (3.12) we obtain

|y (@, E, ) [ SC (A +|E) VIO + |5 | PN+
On the other hand, from the proof of Lemma 2.7 we have
3.15) |(D7a)y(n', x,) | <Cje " LA

where ¢ >0 and ¢o'=1/0'> . Inserting in the expression of Ry(x, &') we
conclude

|Ry(x, E)|<C"(1+ &) N9,

In general, for a = (a', a,)eZ", BeZ" ", we have
DiDERy(x, §') =

(2n)"”j+h§;an;—’;i fe“""”'n“'D:i,lDé’rTN(xn, &,n)Dra(y', x,)dn .

Now from (3.12) and (3.14) we obtain easily for a suitable M >0
DI, DEry(,, &, ") | S Clp(L+ &) VAN %ie (] 4| | WM 0+ g
hence using (3.15) we get the rough estimates
|DEDERy(x, ') | S Cop(1+ &7 ) NI F el
By taking N large enough, these are sufficient to conclude
|D£D5(I—2(1—g)(90, )| S Cup(1+ & |)*2<1*9)*|ﬁ\ .

Lemma 3.3 is therefore proved.

ProoF oF ProPOSITION 3.2. — Using (3.9), Lemma 3.3 and the remarks after
Definition 3.1, we have for a = (a’, a,), |a|<=m, a,=1:

eV D¢ (1) D*e ™ DD = ¢, (x) D + ita, ¢, (€)(8,, Y) (@, D) D& Dt —

Ln

n—1
it _21 ax,'ca(x) 357-1/)(9%, D’) D*+ q|a|72(179)(x’ D)a
J= ’ ’

With q|q) 21— o€ @ 1°1 14172179 This proves Proposition 3.2 for an operator
with symbol c,(x)5”. Summing for |a|<m, we obtain the conclusion in
general.

We may now return to Theorem 3.1. Also for this proof we note similarity
with the arguments of Kajitani-Wakabayashi [31], concerning micro-hyperbol-
ic operators. We shall deduce Theorem 3.1 from the following:
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LeEmMMA 3.4. — Let the principal symbol p,,(x, &) of P(x, D) satisfy (1.8),
(1.9), (1.10) w1 a conic neighborhood I of the point (xy, &), €y=0, £ = 0. Let
Y(x,, &) be chosen as in (3.3) with 1/o0 = 0 <k/(k — 1) and T > 0 be fixed. De-
fine P according to (3.1) and let p(x, &) € @™ ™ be the corresponding symbol.
Then, possibly after a shrinking of I' and for large |&|, we have

k
(3.16) ﬁ(.%', &) =g, &) ‘Hl l(j)(x’ &) +ﬁmfl(xy &, (v, &) el
j=

where:

D gm-r@, &) =ep_r(x, ) + G- 1- 10, &), with

M e,,_p(x, &) e @™ 5™k homogeneous of order m — k with respect
to & and elliptic in T;

(D) gt 110, E) € @M=k (1-1/0),

@) Forj=1, ..., k we have
l(j)(xr g) = g’n + U(lj)(x5 f;:/) + U(l%(xy g,) + U(ljZZ(lfl/o)(x’ gl) /M}@th

@M v (x, &') homogeneous of order 1 with respect to &', satisfy-
ng

Imv{?(x, )20 for all j=1, ...,k and (x, &) eT;

(D o), &) =i(7/20) &' "+ (14, /20) 0}, &), where o), (x, &)e
O% 1V s independent of v, 5 (as well as e, _(x, ), v\ (x, E")
are);

(D) 025 — 1y (2, £) € @ 172710,

(111) ﬁm—l(m) E) € @m,mfl.

ProOF. — In view of the assumption (1.9), we may rewrite (1.8):

k
(3.17) P, &) = e (@, &) 11 (€, —v¥(x, £),
iz
where e,, (2, &) is a new elliptic factor in I" and v{/(x, €'),j =1, ..., k, are

homogeneous of order 1 with respect to &’. Since (1.10) is invariant under the
multiplication by elliptic factors preserving (1.9), we have Imv{/(x, &) = 0 for
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allj=1, ..., kand (x, &) e I'. Applying Proposition 3.2 we then obtain with the
present choice of y(x,, &'):

k

B, &) = ey (a0, &) Hl (&, — v, E")) +i% & [V %

j=

k k
{aénemk(x5 g) ]1 (‘Sn_v(1]>(x5 5’)) +em7k(x) 5) Z H (‘gn_vl(h)(x’ g/)} +
j=

j=1h=j

Ly,
‘1,'(1 =+ %) qm_(l_l/g)(x, g) +Q7n—2(1—1/0)(x’ g)’

where Qu—(1-1)0) € @M m= (1- 1/0), Q- 201 - 1/0) € @mm -2(1- 1/0)’ and T — (1 1/
does not depend on 7 and 6. We may then impose (3.16), and determine
k- 1-1/0 VY201 -1/0)y Dm-1 Dy a straightforward algebraic computa-
tion.

Before proving Theorem 3.1, we recall some basic facts concerning S, s-
classes. We argue on a symbol g(x, &) € S{"((I), that is we assume estimates as
those in the remark after Definition 3.1 are satisfied. We say that q(x, &) is of
type (m, m', 0,0) in I', m’'<m, 0 <0 <p <1, if for suitable positive con-
stants ¢, C, c,; we have in I’

3.18) lq(x, &) | =c|E|™ for |&|=C,
(3.19) | D Df qlae, £) | < cop g, £) [(1+ |E)7el2lel,

If q(x, &) is of type (m, m', g, 0) then it admits an inverse q'(x, &) e
SQ’,Z"(F), ie.

|DEDEq @, £ S efp(L+ |5y el =0l

and q#q' =2 (a)) ' o¢q(x, &) Diq’ (x, E) ~1, cf. Hormander [29]. We ob-
serve the following:

3.20) If g(x, &) is of type (m, m’', 0, 6) and Alx, &) eS{’f{)‘S(I“) for some
e >0, then q(x, &) + A(x, &) is also of type (m, m', g, 0).

(3.21)  Assume g;(x, &) is of type (m;, m;, 0, 0), j=1, 2. Then q(x, &) =
q1(x, &) go(x, &) is of type (m; + mg, m{ +ms, 0, 0).

Assume q(x, &) is of type (m, m', 0,1 —p) with 1/2<o <1, in I'. Let x =
x(y,n), E=Ey, n) be a C* diffeomorphism, with components homogeneous in
7 of degree 0, 1 respectively, defined from a cone A to the cone I'. Then

(3.22) r(y, n) = q(ax(y, n), &y, n)) is of type (m, m', 0,1—-9) in 4.
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PROOF OF THEOREM 3.1. — As in Lemma 3.4, consider p(x, §) e ®™ ™, sym-
bol of 13, which we regard as element of S;"((I'), according to the remark after
Definition 3.1. Let us prove that p(x, &) is of type (m, m — k(1 — 1/0), 1/0, 1 —
1/0) in I'. Expressing p(x, &) as in (3.16), we first observe that we may ignore
D —1(x, &) in view of (3.20). Moreover, in view of (3.21), it will be sufficient to
check that every 1Y (x, &) is of type (1, 1/0, 1/0, 1 — 1/0), since g,, _ (¢, &) is
of type (m —k, m —k, 1, 0) because of the ellipticity of its principal symbol
(2, ). As for 1V (x, &), we may apply again (3.20) and limit ourselves to
study the factors

T X
I (x, &) =&, + JEN T —|ET|VO+ (1+ 1
(x, &) =&, +v(x, &) zzélél T 23

) 51/{;(905 g’)’

where we omit the index j for simplicity of notations.
Let us write

T Ly, ~ ’
/’tl/a(x’ g/) = % |§’ |1/0+T(1 + 25 )Imvl/o(x’ é: )
and observe that
T
3.23 S, EN = — |&" |
(3.23) ni(x, &) 46|§|

g ’ 2 3 g ’ ’
1 1/ 5 T 1 1/

vi(e, &) = vy, &) +uq(x, £).

It will be now useful to perform a change of variables y(x, &), n(x, &) with
C *-inverse x = x(y, 1), £ =&y, n) as in (3.22), by imposing

Np= gn_ Vl(x; &)

(cf. Héormander [29], Egorov [15], where the map y = y(x, &), n = n(x, &) was
constructed to be symplectic, that is not necessary here). In view of (3.22), we
are therefore reduced to consider in the corresponding cone

(324) Z(?/a 77) =M + 2;&1(?/) 77) + 7’ﬁ 1/0(?/9 77) + 171/0(?/7 77),

where from Lemma 3.4 we have

(3.25) w1y, n) =u;(Cy, n), E'(y, ) =0,
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and moreover for some C >0

(3~26) /11/0(?/, ’7) =ﬂ1/a(90(?/7 77)9 Zf’(?/v 7])) = C|],]|1/0

in view of (3.23). As for v, (y, ) = v, (@(y, 1), &' (y, n)), we simply observe
that it is real valued, homogeneous with respect to # of order 1/o.
We have to prove that i(y, n) in (3.24) is of type (1, 1/0, 1/0, 1 —1/0).
To this end, we first observe that for positive constants ¢, C and large |7|
we have in A

B27) (|, |+ |0 Y+ iy, D) <|ly, )| <C(n, |+ |0 |" + iy, 1)
in view of (3.25), (3.26). Therefore obviously

liCy, )| =c|n|.

On the other hand for =0

|DEDL Iy, n) | < cs(L+ | nDP 1< el | Uy, ) [(1+ gt Yo Pl <

s | iy, m) [(L+ )7 1EVe

whereas in the case =0, a =0

1Dy iy, m) | S e [n]) <eq [ iy, m) [T+ [n ) o< el |y, m) | (L[ )Vl

We have then proved that i(y, ») is of type (1, 1/0, 1/0,1—1/0) in A and
therefore p(x, &) is of type (m, m — k(1 —1/0), 1/o,1—1/0) in I'. We may
then construct in I

qla, &) e Sy i =i~
such that p#qg~ 1. Consider in the same class the symbol
e(x, &) = q# (y(@)AE))

which, because of the assumptions on y(a) and (&), is well defined in 2 x R".
Let finally & be a properly supported pseudo-differential operator with sym-
bol e(x, &). If A(§) =0 in a conic neighborhood of the manifold £’ = 0, the sym-
bol of PE can be computed as standard and (3.4) is satisfied for a suitable reg-
ularizing map R. Since E has the required continuity property, Theorem 3.1 is
proved.

REMARK 3.1. — If in the hypotheses of Theorem 3.1 we replace (1.10) with
(1.11), then the conclusions keep valid provided in the statement we refer to
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the weight function

P £ = (1 25 )o@ e

20

In fact, it is sufficient to observe that this choice of ¢ (x,, &') gives in the pre-
ceding proof
(3.28) Bioly, m < =Cln|"
and from (1.11) we have
(3.29) p1y, n) <0.
The basic estimate (3.27) reads then

3.30) c(|n7, |+ |7 |V =y, )< |y, )| < CUnn |+ |0 |V =iy, 7))

and we may conclude as before.
We begin now to prove Theorem 1.2 in the linear case.

THEOREM 3.5. — Let the principal symbol p,,(x, &) of P(x, D) satisfy (1.12),
or else (1.13), (1.14). Let © > 0 be fixed and let vy (x,, £') be chosen as in (3.3)
with 1/o =0 <k/(k—1), in the case when (1.12) is satisfied; when (1.13),
(1.14) are satisfied, define instead

W 0 = (14 22 sy ) g6 4 |
¢f. Example 2.3. Let Q = Q' xX]— 0, J[ be sufficiently small. Then there exists
a linear map
E:HyY (R I1x]=0, o) —=H L H-VoRr-1x] -9, o)
such that
P(x, D) Eu =y(x)u+ Ru ,

where we may fix y(x) arbitrary in G§' (), 1 <o'<o, with x@) =11 a
smaller neighborhood of the origin. Moreover R is a linear reqularizing map,
n the sense that for all t=0

R:HYY(R"™'x]1-0, 0D —>HJ(R" ™' x]=9, dD.

Shrinking further Q, we obtain E: H Y .oy (2) — HE L™~ FI1V00(Q) such
that P(x, D) E =1d + R, with R regularizing as before.



92 TODOR GRAMCHEV - LUIGI RODINO

Proor. — Using the notations in the first part of this section, we begin by
constructing £ such that

(3.31) PE = y(x) + R,

where £ and R have the continuity properties in Theorem 3.1. The proof of
Theorem 3.1 and the Remark 3.1 give actually £, such that

PE, = y(x) D) + R, ,

where, in view of (1.12), or (1.13), (1.14), we may take any A(§) € C * (R") homo-
geneous of degree zero with A(£) =0 in a conic neighborhood of the manifold
£' =0, and R, is regularizing (on the standard Sobolev spaces). On the other
hand we have

B, & = ﬁo G, E) EL
J=

with ¢, _;(x, &) e ©"% ™7 Tt is not restrictive to assume q,(x, £') = 1; there-
fore from Proposition 3.2

ﬁ(x) E) :pm(xv &) + qm—(l—g)(xv E)

where ¢, (1-,€@" 1"~ 179 hence eSy’; "% in view of the remarks
after Definition 3.1. Assume supp (1 — A(§)) is included in a sufficiently small
neighborhood I of the manifold £’ =0, so that p,,(x, &) is elliptic in I',. We
can then construct £, such that

PE, = y(x)(1 = A(D)) + R, ,

where R, is regularizing. The symbol é,(x, &) of £, will be computed in So. ¢ by
taking p,,!(x, &) as principal part in I'y. Observing that

ﬁ(:)c5 ‘E) #p’rrzl(xr g) =1 +7‘7(17@)(9€’ g)

with »__,eSe ' "¢ in I'y, we can find by standard iteration s_;_, e
Sy §' 9 such that

1+ r_(1-o(, E)#A + S_(1-o (2, &)~1
and define
a2, &) = py, (@, E) # (L +s_1_ g (a, ) #Fy(@)A - AE)).

Taking £ = E, + E, we get (3.31). Returning to the operator P(x, D) we find
then £ and R as required, with

P(x,D)Eu=e ™D y(x) e Py + Ry .
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As final step, we rewrite the preceding formula with y(x) replaced by y,(x) e
G¢' (), xo(x) =1 for x € supp . Replacing further here E by Ey, it remains to
compute

e @Dy () T @ D) (i) = (i) — ¢ V@ DD Ry o @ D)

where

Ry=(1—yo(@)e™ P y(w) e~ DY

maps H*(R""1x]—0, 8)) into H'(R" "1 x] -9, o[ for all ¢, as it follows easily
from the proof of Lemma 3.3. This concludes the proof of Theorem 3.5.

REMARK 3.2. — The two weight functions v (x,, £’) considered in Theorem
3.5 are essentially sub-additive; that is necessary in our paper for the applica-
tion to the semilinear case. Looking only for local solvability of linear equa-
tions, Theorem 3.5 could be extended to more general P(x, D) by using non-
sub-additive weight functions.

4. — Local solvability for semilinear equations.

The purpose of this section is to prove Theorem 1.2. In fact, a more precise
assertion will be given.

First we state an abstract theorem on solvability in the framework of the
Gevrey-Sobolev spaces H;> /. Let >0, 0 > 1 be fixed, and let s and v satisfy
the hypotheses of Theorem 2.5. We impose on the nonlinearity F' the same as-
sumption as in Theorem 2.6, Proposition 2.8, namely

4.1) F(x,)eG (Q:9(CY)), N= > 1, lso'<o,

aeZl, laj<m—-1

where 9((CV) is the space of the entire functions in C¥. We require further
that

4.2) F(x,0)=0, ref.

We may then apply Proposition 2.8 with £ =0 and obtain (2.23), (2.24) for
suitable functions F;, Fs.

Our main assumption is the existence of an operator £ right parametrix of
the linear operator P in the following sense P o £ =Id + R, where E and the
remainder R satisfy the following properties: for every v >0, s =n + 3 there
exists a positive nondecreasing continuous function ¢€:[0, 6,]—[0, + =,
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(0) =0 such that

43)  |Rw

ey < COwllyyy, weHHP(Q,), 0<06<9,,

44) |Ew

ot < CO)wllgsy,  weHHY(Qs), 0<0<0,,

where Q= {|x|<0}.
In view of (4.3) and (4.4) we can define

|Rw

H Y
a4, (8) i= sup < @9),
0#1,05ny’;//(96) H?/U H Y
120l m 1.0
by(8) := sup < (9),
0=weH, ) (2,) ”w H;) o

for every 6 €]0, ,]. Now we can state our main abstract theorem.

THEOREM 4.1. — Under the hypothesis (4.1)-(4.4) we claim that for every
feH)» Y (Q,)N8(Rs), s=n+3,71>0,0<0<0,
there exists a solution ve HE %™~V (Q ) of the semilinear PDE
(4.5) P(ac,D)v-l—F(ac,v,...,@gv,...)||a|5m_1=f(ac), re,;
of the form v =FEw with we G§ (2 s) satysfying
(4.6) o = £1
provided o and ||f

H;,(yl s 1

sy satisfy the relations

{as(é)( [ lisy + 1)+ Fy (0, 0)(If
a,(8) + b, () F5 (b, (8)(|f |

ey + 1) <1,
4.7) ’

e+ 1)) <1,

Proor. — We shall reduce the problem to the application of the fixed point
theorem in a suitable Banach space. We look for a solution v(x) to (4.5) in the
following form w(x) = Ew(x). Then the equation (4.5) is reduced to

48 {W(x) = Xw(x) + f(x),

Xw(x) = —Rw— F(x, Ew, ..., 5 Ew, ...)||a|sm_1.
We write for simplicity B*= B*(£) instead of H Y (2,). Set

X, :={weGf(Q,)NB*(Q,): |w-f

ps<1}.



GEVREY SOLVABILITY FOR SEMILINEAR PARTIAL ETC. 95

We will show that under the hypotheses of Theorem 4.1 the operator
Ow := Aw + f is contraction in X provided the restrictions (4.7) hold.

a) First we prove that @ preserves X;. Indeed, taking into account
(2.23), the definition of a,, b, and the first inequality in (4.7) we have for
weXa

49 [Ow—fllz: = [[xw

Bss

BSS ||Rw||BS+ HF(7 E’M}, (RR] azEW, ) | la|<m—1

ey) +F(0,(0)(1+ If

a,(0)w

pe + F1 (b,(0) [[wllp) < a(0)(1+[|f

) < 1.

Hence O(X;)cX;.

b) Now we deduce the contraction property. Using again the definition
of ag, by, (2.24) and the second inequality in (4.7) we obtain the following
estimate

ey +1))) = gllw; —wy

7,0

B* (as(a) + bg(é) FZ (bs(é)(”f

for every all w;, wyeX, with ¢q=a,(5)+ by,(d) Fy (b, ()| f
Theorem 4.1 is proved.

9% (wy) — K(wy) g+ < [owy — w5 B

sy +1))<1.

7,0

Proor oF THEOREM 1.2. - We want to apply Theorem 4.1. Observe first that
the assumptions on the nonlinearity /' in Theorem 1.2 can be relaxed as in
(4.1). Secondly, using Proposition 2.1, we have that fe G§ (L) implies fe H,> /',
for v defined as in Theorem 3.5, 1 < o < k/(k — 1), a suitable 7 > 0 and any s =
n + 3. Then, applying Theorem 3.5 to the linear part, we check that (4.3), (4.4)
are satisfied, if 0 is fixed sufficiently small, cf. the proof of Theorem 3.1 and
the arguments used in [24]. At this moment, we fix 6 and ¢ in Theorem 1.2 in
such a way that (4.7) is satisfied. We then obtain from Theorem 4.1 a solution
ve " 1¥(Q,). Since Hi H" 1V (Q,)cH* "™ 1(Q4)cC™(2 ) under our
assumption on s, Theorem 1.2 is proved.

PART II: THE CASE OF GEVREY NONLINEARITY

5. — Banach spaces of Gevrey functions.

Our aim in the present second part of the paper is to prove Theorem 1.3.
We begin by a new analysis of Gevrey-Sobolev spaces; more precisely, in the
following definitions the exponential weight of Part I is replaced by infinite
sums of LP-norms, cf. J. Leray and Y. Ohya [32]. We also mention that infinite
sums of L%norms have been used by P. D’Ancona and S. Spagnolo [12] in or-
der to study the lifespan for second order nonlinear hyperbolic equations with
analytic data while C. Wagschal [47] and D. Gourdin et M. Mechab [21] relied
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upon formal norms of Gevrey type for the study of the Goursat problems in
Gevrey classes. This frame will allow to treat Gevrey nonlinearity, cf. Sections
6, 7, 8, limiting however applications to linear principal parts depending on ¢
only, see Section 9 where the proof of Theorem 1.3 is concluded by direct
estimates.

First we introduce certain Banach spaces of Gevrey functions. Let us fix
o=1 and let 2cR" be an open set. For each 1 <p< o, T>0 we set

(6.1 E,(L?; T) =E,(LP(2); T) = {f(®) e G*(Q2): | [z, r < > }

where
<] T]C 5
52 op = 8 Py
(5.2) 1f120 ¢ 1;::0 G [l
with
max |3gf() |L7’(Q) if 1 Sp < o,
k aeZ, |a| =k
(5.3) 16 £ ll.» =

aez{g%‘:kmgﬂ-)hx(m if p =
and if p= o we will write | flr := | flp= r and E,(T) :=E,(L”; T).
Furthermore, for any given nonnegative integer s we define in Kcc
R”:

(5.4) E,(Hy; T) = {f(x) e G7(K): | f gz, r < = }
where

o N Tk k
(55) IfIH,,“, T— ws,p,nkgo (k')o ”a f”H,j )
with

(5.6) lgllez; == j;’ 167 g1lL.»

and wg , , is a positive constant, which usually will be assumed to be equal
one, unless specified for s >n/p as

ey
(5.7 Ws=Wg p = SUP — .
u, veHj\0 e J2 vl H;

In our application for equations of the type (1.18) we have a special variable
t. For that reason we introduce another type of Banach spaces which could be
viewed as analogues of the weighted spaces in part I.
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For any given ueZ, and T €]0, Ty[ we denote
(6.8) E,(C“(H); T)={feC'((-T/2, T21: G*(K)): | f uiapyr < = }

where

t)
(59) Ifl(/“(Hg) T=Wg, P, nZ 2 (— ”at kf(t)HH)

v=0 k=0 |t|<T/2 (k+wv)!°
Finally, if in addition m e Z, , we define

(5.10)  E,(m, C*(H}); T) = { feC* ([~ T/2, T)2): G*(B)): | f K, ooy v < 0}

where
(T_t)lc+v+7n )
5.11 m, u s == 5 n —_— av k s|.
G1D L crap. 1= s, p, VEMZO |t|<T/2((lC+V+7}’L)!0|| f H;
Clearly

E,(C*(H)); T)cE,(m, C*(H}); T) and
(5.12) " 3mrm

Iflm,C“(H,‘;');T 2 ( ,)g /12 “HR); T

for all T>0, me”Z,, ue”,.
We have

THEOREM 5.1. - Let 0=1, T >0, ueZ and either 1 <p < o, s>n/p or
p=1,s=Znorp=»,s=0.Then E,(H;; T) and E,(C*(H,); T) are Banach
algebms provided wy , , s given by (5. 7)

PrOOF. — Let f, ge E,(H,; T). We write

U EL ok T*(|87 £3% 1 gl
> 18" Cfo) | <03 E(k) 167 £3* gl -
j

k=0 (k!)? k=0 j=0 (kl)*

6.13)  1fy |H5, T=Ws

i

@ (j!)(r—l((k_j)!)u—l T7||a7f|
wig 2 ngIH,‘;',Tlng;;‘,T-

0j=0 (ke =1 he (k=Y

In a similar way we show that E,(C*(H,); T) is Banach algebra. The proof
is complete.
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To prepare the results of the next sections, we start by improving well-
known results for the action of smooth functions in the classical Sobolev
spaces as well some Moser type estimates.

LEMMA 5.2. — Given two integers s =1 and v > n/p + [s/2] we cand find a
positive constant C >0 depending on s, p, r and n only such that

u”Hp)9 D)

for all ge C*(RY: R), g(0) =0 and ue(H}(2))V, t = max{s, r}. Here ||g||c-
stands for

(5.14) llgoul

JZES ||u||Hp (Nlgller + CligllesC

Proor. — First we note that the Taylor formula yields
(5.15) lg@)ll» < Nligller laellz» -

Let now aeZ’, 1 <k = |a|<s. We have from Faa di Bruno formula

AN -Djll g7 "
16%(g e wll.r < % E 1., gl = 185 2, [I» + E %

llna 10|,

Byt thi=k kl
k=1, . k>1

where the second term is further estimated by

k
(5.16) Cillgller > 2 1T a%
ji=2 k k;

1+ .. 7:
k=1, ., 0k=1

with the convention that E equals 0
j=2
Given 2 <j <k let us consider a fixed j-uple (ki, ..., k;) with k; + ... + k; =
k, k,=z1for v=1,...,j. Choose and fix k, to satisfy

(5.17) k,u = max{kl, ceey ]{7]} .
Since k; + ... + k;=k < s the definition of k, implies
(5.18) k,<[s2] forv=u, v=1,..,J.

Now we get, using the embedding theorems for the Sobolev spaces, the follow-
ing chain of inequalities with 6 =»— [s/2] —n/p >0

619 [118%0, [l <l[%v, s _ T l6%0, .- <

SVSJ,vEuU

H . ||UVHH)£S/Z +n/p+6\C‘7 1||uHHp )‘] 1

sSvsj,v
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Observing that

N
(5.20) max 2 10,9, - |9z w, llr < Nllgler |0 w]l.»

|
we conclude the proof by substituting (5.19) in (5.16) and summing from 0 to s.
LEMMA 5.3. — Let Kcc R, fe GY(K: R) and f(0) = 0. Then for every R >0,

1, se N such that Br(0)cc K, s >n/p and v >n/p + [s/2] one can find C >0
satisfying

(5.21) 82 ) @z < €11+ (| D? flan gy (1 + [l )~
provided
(5.22) we(H;RD), ul,-<R.

Proor. — We apply Lemma 5.2 to g(z) = 97f(z) and use that fact one can
find C;> 0 such that

(5.23) 182 f)lles < CI*1 1 (|| 1)°

for all aeZ% . The proof of is complete.

REMARK 5.1. — The interesting case in (5.21) is of course r < s. It seems that
one can extend the polynomial estimates for s positive real numbers (see the
results of J. Rauch and M. Reed [42] in the framework of the L2 Sobolev
spaces H?®, s >n/2). In fact, one could prove more precise results than (5.14),
namely by using the results for the multiplication in the Sobolev spaces H,,.

Next we present a generalization of the Moser type estimates for the prod-
uct of two functions (e.g. see (A.5.3) Lemma, p. A.12, J. Goodman and D.
Yang [20])

LEMMA 5.9. — Given j smooth functions hy, ..., h; on KccR" and two real
numbers s =0 and r>n/p one can find a positive constant C depening on
s, r, p and n only such that

J
(5.24) [y by .. by gy < € 21 17|
P

Hy (1sl_vlsj||hy|H'§)

vVEU

Jor all je N and all smooth functions hy, ..., hj on K.
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Proor. — Let A=A, , ,> 0 be the positive constant verifying the Moser
estimate

(5.25) ||@w| u, veC*(K).

We proceed by induction, observing that
(5.26) ||y hiy ... By 1|

iy < Al 1 g P gy + Alley - g |

Next we use the supposed validity of (5.24) for j and the Schauder lemma

[T A
(5.27) sup| ——— =< ®
H’}

ji=1 H';H/M/]‘ ;

for all smooth %, #0, ©=1, 2, ... and conclude that

= A ||hL¢||H Aa)j A
(5.28) ||h1hz~~hj+1|Hb\C]+1H||h|Hp2 (W_I_E)

and the induction holds provided C>0 is chosen to satisfy C=
2 max {4, o}.

6. — Nonlinear maps in Gevrey Banach spaces.

The main aim of this section is to study nonlinear superpositions in Gevrey
Banach spaces.

Let us begin with a more precise analysis of the Faa di Bruno formula. We
recall the if aeZ" \0 and k:= |a| the Taylor formula implies

FP(glx))
B!

For fixed BeZ%, j=|B| we use the lexicographical order and write

(6.1) 8“(f(g(ac)))— f E 3y ((g(y) — 9@) V)|, -

(6.2) gP=gfr. gli=hy...h.

Using standard combinatorial arguments we get

(6.3) 9o, (@) = 35 (g(y) —g@) V) |y =0 = ZM"(kl,-.. 5 9)s

(6.4) > = ,
k, ) ky+ .. +k =k
k=1, 1«_721
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where M (k,, ..., k;; g) is a sum of k!/(k;!...k;!) terms of the type
& hy(x) ... 3" ()

with y“ = (y4, ..., y5) € Z5\0, |v*| =k,, y* <afor 1 su<j. We will write
for brevity in the following symbolic way

k!
' M hy(x) ... 3% hy(x).

6.5 My, oy k3 g) = —
65 s b 0 =

If g(¢) = g(t, ) e(C7I: C*(2)))?, I=[—T, T] for some T>0 we will
write analogously for k= |a|, k+q¢=1, |f|=7=1

6.6) g4 s(x) =322 (g(r, y) — g, ©))P) |zt you=

E MjkYII(kl’ iy - kj, q;; 9)

(k, q,7)

where

(6.7) > = ’
kh,q,5) kitaqt..+k+qg=k+q
ki+q=1, .., k+g¢=1

k+ag)! ]
kra) [T o385 h,t, o).

(6~8)Mkyq(k7q,7k7q;g)=
g o ey +q)! ... (k; + ) v=1

We have

PROPOSITION 6.1. — Let 1<p< o, r,selN satisfying s>n/p and r>
n/p+[s2]iflsp<wands=0,r=[s/2]ifp= . Then we can find a posi-
tive constant C, depending on s, p,r and n only, having the following
properties:

i) for given ge(C* (), aeZ", k=|a|=1, feZ%,1<j=|p|<k
the following inequality holds

. o<
ps<C XY = (||3’“"9| H;)?
##v

6.9 |g. o
6.9) ”g ’ﬂ| fitotki=k Kyl kgl v=l leHfH /

Sus<
k1=1, ..., k=1

ii) for given g(t)eC1(I: C*(2)), tel=[-T, T] for some T>0, qe
Zy aeZl k=|a|,k+q=1,BeZ’,1<j=|B| <k the following estimate
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s true

(k+q)!

ki+q+... +ki+qg=k+gq (kl +q1)! (k]‘l‘q])'
k1+q121,“”k]-+q_7'21

(6.10)

J
21 (”8?3“9(?5)\}1,9 [IREEE )
v= lsusj

HEV

Proor. — We note that (6.2), (6.4) and (6.5) yield

Z;k_k kl k!

klz k>1

(6.11)

H CRd)
v=1

p

Next we apply Lemma 5.4 from the previous section and take into account that
the definition of /; implies that for all y =0

185l < 3% g

|HI'¢/, V:1,...,‘7.

In similar way we deal with part ii). The proof is complete.

We need another auxiliary assertion, where again the interesting case is
r<s.

PopPOSITION 6.2. — Let 1 <p < oo, 7, se N satisfying s > n/p and r > n/p +
[s2]iflsp< o ands=0,r=[s2]if p= . Let C> 0 be the corresponding
constant from Proposition 6.1. Then we claim:

i) for given ge (C*(Q))?, feC*(K: R), K:=g(Q)cR?, k=1, the fol-
lowing inequality holds

(6.12) 8"

1S (ol 00+l S 550

A(1+]|g
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where
(6.13) 8= 2 S | 18" gl 5
G Kyl k) 1spsg Y
k!
(6.14) Sti=1%glly; 2 ——— 11 ||a%g

forv=1,...,7;

ii) for given g(t) e C?(I:

"o key kgl i<usg

HEV

C*(2), tel=[-T, T] for some T>0, qe

Z.,keZ,, k+q=1, the following estimate is true

6.15)  ||873%(fog)(t)

k+q

Allglloacp)y—? ; E

ERS

o
L(+D!

where

17l

j+l

(k+q)!

(6.16) T]?’j’ 1=

(k, q,7) (k1+q1)!(k]+q])! 1su<j+gq

617 17 = 10" glleway ),

forv=1,...,7+q.

Proor. — Let us limit ourselves to i). In view of (6.1), (6.3) we can

write

(6.18) |85(fog)

Hy S

Applying the Moser estimate

619 C > 2 Z,%(Ilf“”(g)l
~ 7

la] =k j=1

| ak“‘g”cW(H,;') )

(k+q)!
2 [T llatg
ka.p (ki+q)!.. (k —i—q7)Y 1<us<j

HEV

Cln(Hy)

L 1
22 2

(5.25), we further estimate by

Jif3 gaﬁ”H; + ||f(ﬁ)(9)||H,g”9aﬁ||H5) .

By the Schauder lemma, (6.2) and (6.5)

(6.20) Gapllizy <

Moreover [[F9(@) sz, 1/ (0)

o3 T ol
(k,

7 k k] u=1

4y are estimated by Lemma 5.2, while for [|g, |

103

||9||C‘1(Hp Ty () + ||9||cq(Hp>E Ty ;.1(9)

|
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we apply Proposition 6.1, i). Plugging in, we conclude the proof by means of the
Stirling formula.

We fix now a closed set KcR? with smooth boundary and we take f(z) e
GY(K:R).Let1 <p< x and se N, with s > n/p if 1 <p < ~ while in the case
p = o we require s =0. We assume that

©621) i " fllr \™ _ o _
. Tlsup W =k;,=k(f, K,s,p,n, 0) <.

We note that if K is compact, the restriction (6.13) is superfluous.

Let ge C*(R: RY) = (C*(R2)) and g belongs to some Banach space X. If
KcR? is a neighborhood of the origin we will denote

(6.22) XX :={geX:g(x)eK, for xeQ}.

REMARK 6.4. — In particular, if the hypercube By (0; d) in R? centered at
the origin with a side R >0 is contained in K, then

(6.23) {geX:|lgl,-<R}cX~.

Furthermore, if ge E°(H;; T, RY), (respectively ge E°(m, C"(Hp); T, R?),
m,ue”,)ands>n/pif 1 <p< o and s =0 when p = « then g € X¥ provid-
ed | g lu;, r (vespectively T "] g |, cuquy), r) is small enough. This is a conse-
quence from the Sobolev embedding theorems and the definition of the
Gevrey Banach spaces.

Now we state the first result on nonlinear maps in the scale of the Gevrey
Banach spaces.

THEOREM 6.3. — Let Qc R" and let f(z) e G*(K: R) for some =1, Kc R?.
Let1<p< o and s, relN, with s >r>n/p+ [s/2] if 1 <p < o while in the
case p= o we require that s=r=s/2=20. Let us fix x>k Then we
have:

i) if 0 = 6 we can find a constant C' > 0, depending on k, s, r, n and p
only, such that

1+ gl

(6.24) Vegliy, r<C'lgliyr ——————
! ’ 1_CK|9|?I;,T

provided T >0, ge E,(Hy; T; R and Vgl r<C 14" k7
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i) if 0 > 6 there exists a constant C' > 0, depending on k, s, v, n and p
only, such that for oll T>0 and geE,(H;; T; RH)X

6.25) N foglis r<C'lgliy r(1+ gl exp A g 1Ey, V")

where y > 0 depends only on o, 6, C and k. Here C >0 is the constant from
Proposition 6.1.

Proor. - First we show a combinatorial inequality. Let j=2 and
ki, ..., k;je N be fixed. We claim that

VAR A k! k!
(6.26) = : _<1.
kit oo+ k)! GH1) Gkt ... +k—j)

Indeed, without loss of generality we may assume k; =k, = ... 2k;. If k; =1
clearly k; + ... + k; = j and (6.16) holds. Let now k; = 2 and let r be the largest
index s such that k,=2. Hence we can write
kol k! k!l k!
G+ .. G+k+..+k—5 G+ ...tk +...+k—1

and since
kil kil = [Tex...xk)<2x3x.14+k+...+k —7)
v=1

we obtain (6.16) in view of the inequality j = 1.
Let us choose and fix X €]k, k{. We observe that the choice of kx implies
that there exists C; > 0 satisfying

(6.27) ||f||C}+s\ClK](]Y)9 jEZ+

Combining (6.17) with (6.12), cf. Lemma 5.3, we obtain with C > 0 being the
constant in Proposition 6.1 and A >0 being the constant in Proposition 6.2

©

628 > L
k=1 (k!)°

k kg
EPPIE ||f||c7+s(

2 Sk ](g))

A1+ g

SP

AC, (1 +]g]

mle | (ia)
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where

_ el okl \0 Ty T
629 Gi=lgls; > (# [l ————<
]

21,01, (ky+ ...+ k!

||9|Hg(|g |1?1;, Y,

. & T 0% gl eyl kgl N0
(6.30) thzllgllm;'zz1 T eteZ e G Tt
q ql) ko=1,0=1,..j,e=u\ (ky+ ... + k;)!
T |3% gl
" T < [ , o, V- 1lg a. o\
L<vSiven (e, 1) Ing,],T”g”Hp(Ingp,T) |9|H,,,T(|9|H1,,T)

for u=1, ...,7. Hence,

(631) 2 Gu\ IngS T(](Ing’" )7)

Ltf

and plugging (6.27) and (6.21) into (6.18) we get

. - (CR
k -1
(6.32) E T 8 (gl < AC HgHH,;_;l Gy Ao i)'+
s—1 ]( ) o j
ACI(1+H9|H“) g lz;, TZ - ———Ugly, o) <

= &gl )
ZC”ACI(I + ||g||H};)9—1|g I}flﬁ, T 21 —(j‘)aj”(a
J= .

where C”"=sup ((1+/)(k/k)’) < + . Taking into account the estimate of
oD

J=
If o gl in Lemma 5.2 (or Lemma 5.3 for a = 0) we observe that evidently if
o = 0 (6.22) leads to the proof of the assertion in part i) while in the case ¢ > 6
ii) follows from the fact that for any ¢ > 0 there exist ¢ >0 and b > 0 such
that

(6.33) E

<aexp(bz/?), z=0.

D

The validity of (6.33) for z =1 follows readily from the Stirling formula.
The proof is complete.
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7. — Estimates with loss of derivatives.

LetnowmeN,m=2,I x QcR, x R". Setd := > landlet Kc
R? be a neighborhood of the origin. We claim aeZi, Jal<m=1

PropoSITION 7.1. — Let n, s and m be positive integers, 1 Sp < o, m =2,
s>2n/p+2m—2. Let feC*(R%: R). For given u(t,x)eC™ 1(I: C*(Q)),
we set

(7.1) Ut, x) = (U,(t, ), ..., Uy(t, x)) = {35 u(t, ) o) <m-1
and
(72) f;n—l(U) :f(u5"~)a$u)~--)||a|$m—1'

We will suppose that
(7.3) Ut,x)eK, fortel,xzeQ.

Then we can find a positive constant C, depending on s, p, n, m and K such
that for every je N and all

h,(t,2) =Upyu(t,©), owe{l,..,d}, u=1,...,7
the following a priori estimate holds

74 | f-1(U) 8"k ... ak’h;’”c%H,ﬁ S

crtIf

J
C*(HMHCO(H;“”U(l + (HMHCO(H;))871) H1 ||‘9k“ uHC“(H,‘?) +
=

J
||u||C“<H,~§)(1 + (”u”c"(H,g))SJ) 21 ||3k"u||c°<H,g+m*1) ) Il . 6%
u= u

sv<j,v

Cmfl(Hij) )

for all positive integers ky, ..., k;.
ProoF. — In view of the choice of s, m and p we can find reZ,
satisfying

(T5)s—m+1=r>n/p+[s/2] ie. s=zr+m—-1>n/p+[s2]+m—1.
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Applying Lemma 5.4 we get

(7.6)  |fo 1) 3 By 3]

Cm*l(H]‘;) $

J
CT ) fon (O] cm-1(Hg) ﬂll |6, ety

||fmfl(U)

J
cm-L(Hp) 2 ||3k"‘hu||c”“1(H,§) H ||3k”’?u||cm*1(H,;‘)-
u=1 lsvsj,v=u

Now, the definition of %, and (7.5) imply that

T.7) [|6%h,|

Cmfl(Hg') = ”ak" Uw(/,{) ||C'm*1(H£) < ||ak‘“u”cmfl(H;erfl) < ||8k/‘ ’Z/L”Cmfl(Hg)

for all =1, ..., j. On the other hand, Lemma 5.2 and (7.5) yield

U

18 | fruer (@ len-1a1py < CNUlcn-10a1y @ f e + O f oo N Ul em-10a17)* 1) <

Cllu

cn=1qazg+n =1 (@l f llor + Ol F lles (lellon-1a) 1) -

Applying Lemma 5.2 with »=s > n/p we get also

19 1D llen-1cap) < Cllellor 1) (@l f llor + O Nl el 1z)* 1)

Combining (7.5), (7.6), (7.7), (7.8) and (7.9), we conclude the proof.

If s and p are fixed we will write for brevity Bul),-, r:=
lwl -1, en-1arp, rfor me N, T> 0,1 =[—1/2, T/2], where lul, -1, o1, T
is defined in (5.11).

The next theorem will play a crucial role for the solvability of (1.1) when
the nonlinear term is Gevrey.

THEOREM 7.2. — Let s > 2n/p + 2m — 2 be an integer. Assume further that
feGP(RY: R) and f(0) =0. Let R >0 and K = B (0) be the ball with center 0
and radius R. Set k>0 to be the constant defined in (6.18). Then for each
K> Ky there exists Cy >0 such that for every

(7.10) weBFA(C™ YH), T), ie. ueE,(C™" Y(H}), T), |u|H;,T<R/2

the following properties hold (we use the notation (7.2), writing for short u in-
stead of U):
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i) if 06 =0 then
1

1 - CKI u Icm—l(H;), T

(7.11) Lf -1 (u) I(riz—l,TgCllul%—l,T

provided Cx | ulen-1q), 7 <1;
i) if 0> 6 then

112) 1fu @ B -1 r < Cillu s, -1 p exp A bon-1ap, ) 7) .

Here C>0 (respectively y > 0) is the constant in Proposition 6.1 (respect-
wely Theorem 6.3).

PROOF. — First, we introduce some notations. For given 5 e Z% we use the
lexicographical order and write

{ag,wu}hﬂsm—l = ('1)1, ey ”UN)

and then for given 8 = (B4, ...fx) € ZX we put j = || and write in the lexico-
graphical order

vigln.vﬁl\’:hlh2'“hj

namely
by, =y, for u=1,...,8,
(713) h[flJr,u:vZ’ forﬂzl""’ﬂ2’
h/51+.A.+ﬂN,1+,u:vN) fOI"Lt:].,...,ﬁN

with the evident convention to skip %, if f;=0 ete.

Now the proof follows from Proposition 7.1 and evident modifications of the
arguments used in the proof of Theorem 6.3 with » satisfying s —m +1=r>
n/p + [s/2] and taking into account the inequality

(7.14) 167 8% u(2)]|

iy <1107 8" u(t) [lgy+m-1 .

8. — The fundamental estimate.

Here is the main result of the paper on estimates on superpositions in the
Banach Gevrey spaces, which generalizes Theorem 7.2 and allows to use the
contraction principle.
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THEOREM 8.1. — Let ge GO(RY: C%), N, deN and let n, se N, m, ue7,,
1<ps< o, s>2n/p. Then we can find two polynomials

8D P =pi+pl;z*7, pi;>0, p{=0, j=0,1

with pj and p{_; depending on s, n,p and g only, having the following
properties:

i) if 6 =0 then for every R >0 one can find x>0 such that

Py VIem -1y, ) N

= k| VIeear, r

®2)  VUgV) I, cranp, v < VU by, cranp, v

VU, o PxAV Nenay), )
1-x| Vlg‘*‘(H,;'), T

1. CH(H}), T

for all Ue(E,(C*(H}), 1)), VeBEC“H), D), o the notation
(7.11);

i) if 0> 6 then
@3 VUMW) I, crap, v <
VUV, coapy, 1 Po VNG -1, 1) exp (CAV |Guas), V) +
VI, cocap, od U Ny, r PoAV ey, 1) exp (CAV Wuqay, V)
Sfor all UE(EU(C”(H;), ™), Ve (E'U(C'“(H;), HN.

ProoF. — Fix »=[n/p] + [s/2] +1. The choice of s implies s>1r. We
have

w (T — tF+m+ 1| ol ok (Ut) g(V()))|

8.4 U, m, CH(HS), T =
B TG b, crang. v = 2 20 S ((k + L+ m))°

S
H;

On the other hand, there exists C = C(», s, n, p) >0 such that

=075=0

@85 |[laa* (U@ g(Vit))u £ s f(])(q)m

is) -

11847984 Ut)

(g(V(t)))|

H7
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Therefore, plugging (8.3) into (8.2), we get

©

“ Pk (k\[] ]
(86) IUg(V) Im, C“‘(Hj;),TS C E E E E (])(q)mzjk u, m

=0 k=0 q=0j=0

||aqaf

“ (T_t)k—j+l—(1+m ||al qak 7U(t)|| su (T—t)
oy ((k—j+1—q+m))° i 10(( Q)

(T_t)k*]"*’l*q ( _t)j+0+m
T e+ i—q) e Gt g +m)ly

where 91}, is the maximum between

G+l —j+1-gtmb  (Grgrmlk=j+l-gV’

®7 (et 1+ m))y° an (et 1+m))y

We claim that for all k=j=1, u=q=0, me”Z,

gk
88) oM = M7 ( ,)(p) <1.
il\q

Indeed, the subsequent inequalities and (8.7) yield (8.8)

1AV k+1
)=o)
J/\q t4q
8.10) CHZ) ((j+q)!(k—j+l—q+m)!)"<
i +q (E+1+m)))P°

m

G+l k—jri—gyt LE=j+i—gtvy

<1,
CRD [Tk +1+ vy
v=1
] ! — 1 — 1o
®.11) (k+p) ((G+qg+m)!k—j+p—q@h <
j+gq ((E+p+m))°

m

Grlk—j+p—get LLU+a+’
v=1

<1

<

for all integers 0<j<k,0<qg<l<u, m=0.
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Combining (8.6) and (8.7) we get

M 0 k
(812) I Ug(V) Im, C’/‘(HI{;‘)7 T s C 2 Z 2 2 X

=0 k=0 q=0j=0

-ty
sup ||8q &

( (T_t)lcfjJrlqurm

sup - = || o
tel (k—j+1—q+m)!)) (( D)
T_tk_j+p_q _tj+q+m )
sup o 9 o100 U g sup =t
el (k—j+1—q))° ((j+q+m))

CAUL., crarp, V9 berap, v + VU lewayy, ol 9OV B, cnca, ) -

Now we apply the arguments in the proofs of Theorem 6.3 and Theorem 7.2
in order to estimate

L) 5, e, v and 19V leovqy),

and conclude the proof of Theorem 8.1.

9. — Proof of Theorem 1.3.

Let us now consider the equation (1.18) with P defined by (1.15) and (1.16).
We will require less regularity, namely

9.1 a(t)=({®), ..., aj(®))eC" ' (R: C"), j=1,...,m

We set
0
9.2) A-f(t):faf(r)dr, i=1,...,m;
t
(9.3) ARy, ooy 2y) =AYz + ... +A™(2,,).

In view of (1.17) if £ is not hyperbolic we have n» =1 and

(9.4) Im(A7(r) —Ai(t))E=0 provided (t—7)E>0.
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Therefore, we define right inverse operators of £; in the following way:

t
©5) ot ) = [flo, 2+ A0 - AI)dr it all @) eC™ 1T RY),
0

t
9.6) T (L f(t, )= f e WO-AEfr gYdr,  +E>0 otherwise,

*c

where c is a positive constant, [ —c, c]lcl, feCy*(J—c, c[ XR") and |t]| <c.
More precisely, one checks easily that £; o ¢ 1f= f (respectively Lok, =
for all feCy"(R"*1) (respectively feCy*(R"*1), f=0 for |t|=¢) if a’e
C™ 1(R: R") (respectively n =1 and Im(a’(t))#0). We set

90 e ti=gto et if all @;(f), 1<j<m are real-valued,

9.8) L ti=p7ho. 2,1, otherwise,

Now we can reduce the solution of (1.20) (respectively (1.20) and (1.21) if
the equation is hyperbolic) to the integral equation

9.9) w(t, ©) = Rult, ©) + U, x)

where

(9.10) Xu:=L 1oF, (u) if £ is hyperbolic,
(9.11) Ru:=L,'oF, _1(u) otherwise,

while

-1 70 if ©is h li
9.12) U, x) = L7f(t, x)+ U"(t, ») if £ is hyperbolic,
Lt ) if £ is not hyperbolic ,

where U’ stands for the unique solution of the Cauchy problem

9.13) Lpodly_10...0LU=0 fortel, xe,
' o1 U0, x) = u(x) for reQ, j=0,1,...,m—1.

in the hyperbolic case.
In particular, in the hyperbolic case we have with the notation (7.2)

Zm -1

t 2
(9.14) Xu(t, x) = f f f Fplu;t,z,x)dz,
0 0

0

(9.15) Fp(u;z,7,2)=F, (U, x +A(t, z') —Az))
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with 2= (2, ..., 2y), 2'= (21, -.., 2y, _1); While in the nonhyperbolic case we
have

t 2 Zm—1

016  sut,o= [ [ [ e9tmwiz, pd,  Ex0,

sign(§) ¢ sign(§)c  sign(§)c
9.17) Fp(u; 7, E) = fe “wEp(w(r, x))de,
R

(9.18) o, 2)=At)— A1)+ ...+ A,Zn_1) — A, (2,).

We claim that

THEOREM 9.1. — Let FeG/(RY: C), F(0)=0,1<0<o<m/(m—1). Let
1<p<o,seN, s=2n/p+2m—2. Choose R >0 and consider By(R)cRN.

Then there exist two positive constants C and C,, depending on s, n, p, m and
Ky only such that, with the notations of Theorem T.2:

i) if 6 = o then
919 VF,-1(uw)—F,_1(u) b5 -1 7 <

s—1
1 + (]n;llaxz {I @legwn—l(}[;)7 T})

Cilwy — ual@m -1y, 7
' 1= C max {]w|en-zy, 7}
i=1 '

for all uje BE(C™'(H;), T) with R<x™',j=1, 2;
ii) if 0> 0 then

920)  NF, () = Fp 1 (u2) B -1, 7S Crlug — ualem-1qz), 7 %

s—1 1/(o—6)
(]. + (m.‘ilxz {I ’I,LiIgvm,—l(Hﬁ)Y T})9 ) exp (C m?llxz{lujlgwn*l(Hﬁ), T}) v
J=1, ’ J=1 ’

for all w;e BE(C" " Y(H?):T),j=1,2.
7 P

Proor. — Using the Taylor formula we obtain

(921) Fm—l(ul)_Fm—l(/MQ)=<U1_U2’G>’
1
(9.22) G= fVUF(Ul) di,
0
where
(9.23) Ur=U,+ (U, - Uy, 1el0,1].

Then we apply Theorem 8.1 and conclude the proof.
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THEOREM 9.2. — Let Fe G'(RY: C), F(0) =0, 1<0<o<m/(m—1). Let
1<p<o,seN, s=2n/p+2m—2. Choose R >0 and consider By(R)cRY.
Furthermore, if P 1s not weakly hyperbolic, we assume that p =2. Then there
exist two positive constants C and C,, depending on s, n, p, m and kp only
such that, with the preceding notation

i) if 6 =0 then
(924) I f){ul - 3{%2 IUC’“’I(HI{}'), T <

s—1
1+ (7111?)(2 {02 -1a), T})

ClTlul _uzlacmfl(HS)‘T
’ 1-C max {luiler ), r}
J=4

for all T>0, uye BE(C™ "(H;), T) with R<x™',j=1,2;
i) if 0> 6 then

(9.25) I 3{%1 - D{/I/LZ Ig‘mfl(H[f), T < Cl T I ul - uzl%'"*(H;‘), T X

s—1 1/(c - 0)
(1 + (max {11, 1) ) exp (€ max {11 1ap, 7}

for all T>0, uje BE(C™ Y(H), T),j=1, 2.

ProoF. — We consider first the hyperbolic case. Straightforward calcula-
tions yield that for each integer 0 </<m — 1 one can find [+ 1 continuous
functions C; ,(t), ¢=0, 1, ..., [ such that

l
(9.26) 3L ok Ru(t, x) = 20 Cp () 9 (¢, »),
.

szlfq

t
(9.27) :)cz’l=f... f QI IOEFI(us ty 21y 2y gy @) d2y ... 2y,
0 0
where
(928)  Fp(ust, 21..., 2y—g, @) =
FUQ®, ©+ QU 21y vy Zm—g-1) — QU1 ooey Zrm g1 Zm—g))) 5

m—q

(929) aq(zh teey szqfl:szq): ZlAv(zv)~
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On the other hand

(9.30) (T_t)k+l||gc 't
' ((k+ DY) iy
+l-qim-Dly [ [ e
((k+ DY f of (T =2 q)kwﬂnfldzl--'dszqx

(T_T)k+lfq+m71

su
TE? (k+l—qg+m—1)1)°

16790 (F o U)(¥) | -
We need two technical lemmas.

LEMMA 9.3. — One can find a positive constant C such that

Em—-1-¢q

_ p\k+1
9.31) f f ) 2, ... dz, < cr
(T )k+l—q+m—1 q m
0 0 -q [Ikk+l-qg-—1+v)
v=1

for all nonnegative integers 0 <qg<l<sm-1, k=0.

PROOF. — One checks by induction that for all integers 2 <v <u + 1 and all
real numbers 0 <t < T the following estimate holds

(T—t)y~+v .
if uzv+1,
=) u=v+1)...(u—1)
LooE . —In(1-¢T) ”
— 1 ‘uzv,
(9.32) ff ——dzy...dz, <!  (v—1)!
0 0 (T—-2,) :
J-In(1-vT)dr
0 .
if u=v—-1.
(v —2)! :
Hence, we obtain
Zm-1-¢q
_ )k+l
(9.33) f f dzl...dzm_qu;"l'm(t, T,

h (T—Zm q)kJrl qg+m—1
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where

( (r-t it k=2

k+1-1)...(k+l—qg+m—2) -

—(T—t)In(1—-YT) b1

1 =1,

9.34) CEL™t, T)i=1  (m—q-1)!

t

J-ma-vD)dr

0 if k=l=qg=0,

L (m—2)!

for 0 <t < T/2. The proof is complete since (9.34) implies that there is a positi-
ve constant verifying

max C;"l’m(t, T)
|t <T/2
sup <

T>0 T

C

m

[Ikk+l-qg—1+v)
v=1

for all nonnegative integers 0 <g<lsm -1, k=0.
Next we need a combinatorial estimate.

LEMMA 9.4. — Set
(9.35) R[Hm =

( ((k+l—-qg+m—-1))° )
ifk+1=2,

(E+DD)(k+1-1)...(k+l—qg+m—2)

— N
| m=gt” i h+1=1, thenq=0 orq=1,
(m—q—1)!

1\0
(m—.) ifk=1=0.
Then
(9.36) sup _max RELm:=RS< o jff osm/(m—1).

keZ. O0sgsls

Proor. — It is enough to consider the case k+ (=3, when we can write
((kE+1+1)...(k+l—g+m—1)) _

987 REL™= <
' k+l1-2+1)...(k+l-qg+m—2)

(k+1+1)" 99 ((m — g — 1))’

(k+1—-2)""1 :O(k(m*‘lfl)of(m—q))

for k— oo



118 TODOR GRAMCHEV - LUIGI RODINO

Easy calculations show that for an integer m = 2

(9.38) max sup k17000 < oo iff g <m/(m —1)
qg=0,1,...,m—-1 >
and hence we get the desired conclusion of the lemma.

Now, coming back to the proof of the theorem, we note that Lemma 9.3,
Lemma 9.4 and the summation of (9.30) imply (9.24) and (9.25).

If not all of the operators ;, j=1, ..., m are hyperbolic, we deduce the
corresponding H?® = H; estimates using the Parceval identity and the repre-
sentation (9.16) for the operator X ; details are left to the reader. The proof is
complete.

Evidently Theorem 9.2 leads to local solvability for (1.20) and in the weakly
hyperbolic case to local well-posedness of the Cauchy problem (1.20), (1.21).
Theorem 1.3 is therefore proved.
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