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Bollettino U. M. 1.
(8) 2-B (1999), 33-63

Ingham Type Theorems and Applications to Control Theory.

CrAuDIO BAIOCCHI - VILMOS KOMORNIK (*) - PAOLA LORETI

Sunto. — Ingham [6] ha migliorato un risultato precedente di Wiener [23] sulle serie di
Fourier non armoniche. Modificando la sua funzione di peso noi otteniamo risul-
tati ottimali, migliorando precedenti teoremi di Kahane [9], Castro e Zuazua [3],
Jaffard, Tucsnak e Zuazua [7] e di Ullrich [21]. Applichiamo poi questi risultati a
problemi di osservabilita, simultaneaq.

1. - Introduction.

Let A be a countable subset of R such that, with respect to a suitable y >0,
(1.1) [A—u|zy forall 1, ued with A=u.
We will be concerned with series like

[ =2 aqze™!
Kes
with a; € C and t € R. They generalize the Fourier series, so it makes sense to
ask if, for a sufficiently large interval Ic R, the L2(I) norm of fis equivalent to
the % norm of the sequence @ = {a;} (Bessel type inequality). In 1936 Ing-
ham [6] proved that, under the assumption (1.1)

for every T'>0 there exists ¢, such that
. {”f”LZ(I) <cllall: if |[I|<2T
and

for every T > m/y there exists ¢, such that
0 {H allz< erllflleqy if |I| =27

the restriction 7'> z/y in (1.3) being optimal.
Let us briefly recall the key idea in Ingham’s proofs: if k: t—k(?) is an

(*) Part of this work was accomplished during the visit of the second author at the
Istituto per le Applicazioni del Calcolo «Mauro Picone» and at the Universita di Roma
«Tor Vergata» in 1997 and 1998. He thanks these institutions for their hospitality.
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L'N L~ function from R to R, then we have the identity
(1.4) fk(t) | () |2al15=2ﬂ/1 ZA a, 0, K(u— 1),
R e

where K denotes the Fourier transform of k. If we denote by K the matrix
whose entries are K(1 — u), under suitable assumptions on k,

(i) bounded from [? into itself,

(1.5) the map ¢ —»K-a is { .
(i) coercive on 12,

so that the right hand side of (1.4) is equivalent to || @ |[%. Concerning (1.2) it
will be sufficient to have

k(t) =0 for all teR,
1.6)

Gn§ k(t) >0 for some interval I,

and the size of [ is irrelevant (larger intervals will be divided into smaller
ones, where the estimate holds true); while concerning (1.3) we need

1.7 k(t)<0 for te[-T,T].

Of course one can realize both (1.6) and (1.7) by choosing k¥ =0 and com-
pactly supported; it is one of the choices suggested by Ingham and followed by
many authors. However, with such a choice, property (1.5) is very difficult to
realize: the function K cannot have a compact support, and the matrix K will
be «full»; in order to establish (1.5) we can only hope that, because of (1.1), the
non-diagonal terms in K are small compared to the diagonal one
K(0) ....

In order to impose (1.5) it is more convenient to impose K (instead of k) to
be compactly supported, e.g., by remarking that

(1.8) if K(0)>0 and K(u)=0 for |u|=y, then (1.5) holds true,

because of K = K(0) I. In fact, Ingham himself suggested (and used for a sec-
ond proof of (1.3)) a choice of k satisfying (1.8): with the notation y =1 and
T =n+ ¢, he defined

1—cos(?)
k.(t) = = (T +e)P—t?) =2(

cos (t/2)

w2 —¢?

2
) (m+eP—1t2).

In the following three sections of this paper we adapt this proof in three
different directions. First we improve some earlier extensions of Castro, Jaf-
fard, Tucsnak and Zuazua [3], [7] who weakened the gap condition (1.1). Then
we extend Ingham’s theorem for exponential functions of several variables,
improving thereby a former theorem of Kahane [9]. Finally, we give an opti-
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mal variant of our generalization of Kahane’s theorem, using /.. norm in RY in-
stead of the Euclidean one, and also allowing more general sums where the co-
efficients a,, can be algebraic polynomials of the variable ¢t € RY. In the one-di-
mensional case this reduces to an earlier theorem of Ullrich [21].

In the last two sections we apply our results to solve some simultaneous ob-
servability problems.

Let us note that Ingham’s theorem has already been generalized in many
different directions before; see, e.g., [1], [4], [11], [12], [15], [16], [17], [19], [20],
[24].

Throughout this paper every interval I is supposed to have a finite positive
length 0 < |I| < o and all constants are assumed to be positive.

2. — A weakening of the gap condition.
Let
<A <Ag<Ai<...

be a strictly increasing sequence of real numbers, and consider all sums of the
form

2.1) f(t)=§7 a,e?’  (a,eC).

Instead of (1.1) here we only assume the existence of a number y >0 such
that

2.2) Anioa—A, =2y for all n.
Introducing the sets

A={neZ:A,;1— A, <y}
and
2.19) B={neZ:n¢A and n—1¢A},

we have the

THEOREM 2.1. — (a) For every interval I there exists a constant c; such
that all finite sums (2.1) satisfy the direct inequality

2.3) f|f(t)|2dtsC1 3 Ja, |*+
I ne

C1 EA |an+a/n+1 |2+ |/1n+1_ln |2(|an |2+ |an+1 |2) .
ne

(b) For every interval I of length |I| > 2m/y there exists a constant cs
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such that all finite sums (2.1) satisfy the inverse inequality

(24) ZA |an+an+1 |2+ |/1n+1_/1n |2(|an |2+ |an+1 |2)+
ne

S Ja,P< e |ty |2t
ne I

(¢) The estimate (2.4) can fail if |I| =2m/y.

REMARK 2.2. — Under the stronger hypothesis
Apns1— A, =y for all n

instead of (2.2) this result reduces to Ingham’s theorem. Hence part (c) follows
at once.

REMARK 2.3. — Theorem 2.1 improves a former result of Castro and
Zuazua [3] by weakening their assumption on the sequence (4,), and a subse-
quent theorem of Jaffard, Tucsnak and Zuazua [7] by improving their assump-
tion |I|> 31/6 /v for the inverse inequality. They also applied Ingham’s sec-
ond method with a different weight function. Our weight function below is
closer to the Ingham’s original one.

REMARK 2.4. — By a finite sequence we mean a sequence having only a finite
number of nonzero elements. The estimates (2.3) and (2.4) extend easily to in-
finite sums for which the series on the right-hand side of (2.3) converges. In-
deed, given such a complex sequence (a,), set

fu® = Zm a,e®t,  m=1,2, ...
Applying (2.3) to the finite sums f, — f,, with p >m, we obtain that (f,,) is a
Cauchy sequence and hence converges in L2(I) to some function f.
Next, applying (2.3) and (2.4) for every f,, and letting m — o we conclude
that (2.3) and (2.4) hold true for f too, with the same constants ¢; and c,.
An analogous remark holds for theorems 3.1 and 4.1 later.

The following four remarks will allow us to simplify the proof.

REMARK 2.5. — If we replace y by some 0 < 0 < y in the definition of the sets
A and B, then the resulting inequalities (2.3) and (2.4) are equivalent to the
original ones. Indeed, if

6</’Ln+1_lns}y
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for some 7, then
|ay + iy [P+ A1 = A P |2+ a1 [P < @+ 9D (o, [P+ a1 |*)
and
la >+ o1 <O (o + it [P+ A = A0 2@y |+ a1 |2)

Hence (2.3) remains valid with (2 + y?) ¢; instead of ¢; and (2.4) remains valid
with max {c,, ¢;0 2} instead of c,.

REMARK 2.6. — If the estimate (2.3) is satisfied for some interval I, then it is
also satisfied for every translate ¢’ + I of I, with another constant ¢; . To show
this, we shall need the inequality

(2.5) |21+ 2,62 |2<2 |2y + 20 |2+ 2|0y —us |? |2 |2

for all complex numbers z;, 2, and real numbers u, u,. Indeed, using the tri-
angle inequality and then the Lagrange mean value theorem we have

|21+ 2pe™2| < [ (2 +25) €M1 | + (|z0(e™2 — 1) | < |2y + 25| + |01 — o] |22
and we conclude by applying Young’s inequality. Now, given
fy= 2 a,e™ (a,e0)

arbitrarily, setting

o] 0
g(t) — 2 anezln(t'*—t) — E (anemnt') ezlnt — z a/n/ ezlnt
0

n=— n=—o n=—o

we have

f | &) | dt = f lg(t) |2 dt <
1

t'+1

Clz |an,|2+C12 |CL,,Z+(L7;+1|2+012 M’?z-%—l_llez(law,,|2+|a7l+1|2)=
neB neA ned

G E |a’7l |2+ Cq E |a/nei/1nt, +an+lei}*n+1t/ |2+
neB ned

9] E M*n-%—l_ln |2(|a’n |2+ |an+1 |2) .
neA

Applying (2.5) for each n e A we obtain that

la,e™ ' +a, et |22 a, + @y g P2 P A — An || |?-
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Substituting into the preceding inequality we obtain

f IO )Pdt<c 2 |a, |*+2¢ 2 |ay,+ a1 P+
neB neA

t'+1
Cl(l +2 |t, |2) ZA |An+1 _An |2(|an |2+ |a17+1 |2) .
Hence (2.3) is satisfied for ¢’ + I with ¢/ = max{2¢;, ¢; +2|t"|*}.

REMARK 2.7. - If the estimate (2.4) is satisfied for some interval I, then it is
also satisfied for every translate ¢’ + I of I, with another constant ¢, . Indeed,
introducing g¢(¢) as in the preceding remark, we have

2a P+ 2 et a i P 2 s —An (e |PH |1 |P) =
neB ned ned
z |an’ |2+ z |a7£e_ilnt,+a7£+le_ii7l+lt’ |2+
neB neA
D A T D E LA
neA eh =y

2|t’|2 E |A‘%+1_A‘%|2|a7{ |2+ E |in+1_in|2(|an’ |2+ |a’77,+1 |2)S
neA neA

max{2,1+2|t’|2}02f|g(t)|2dt$max{2,1+2|t’|2}02f |f@)|*dt,
1

Y
so that (2.4) is satisfied for ¢’ + I with ¢; = comax {2, 1+2]t'|*}.

REMARK 2.8. — If the theorem holds true for some y > 0, then it also holds
for all vy > 0. To prove this, fix an arbitrary positive number p and set

An=pA, for all n.

The sequence (1)) satisfies a condition analogous to (2.2) with y' = py instead
of y. If the estimates (2.3) or (2.4) hold for some interval I, then on the interval
I':=p~'I we have

]

so that analogous estimates hold for the new sequence with c,, ¢, replaced by
¢1/p and ¢, p, respectively.

In view of the last three remarks it suffices to prove the theorem for inter-
vals of the type (—R, R), and for one particular value of y > 0.

oo 2
> a,et| dt,
fee]

n=—

had .
Z a,e Ayt
oo

n=—

2
dt'=p?
1
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Now we turn to the proofs. The formula

cosxy if —al2<x<m/2,
(2.6) H(x) := ] (xeR)

0 otherwise
defines an even real function H in the Sobolev space Hi (—m/2, /2), whose in-
verse Fourier transform

©

h(t) = f e™ H(x) de =

—

2 cos mtt/2
Zeosm2 gy
_ t2

is an even real function in C *(R). (Moreover, i extends to an entire analytic
function by the Paley-Wiener theorem because H has a compact support.)

PROOF OF PART (a) OF THEOREM 2.1. — Set K := H = H and denote its inverse
Fourier transform by k. They are are even real functions having the following
properties:

2.7 KeH}(-n, 7,

(2.8) keC”([R),

2.9) k=0 on R,

(2.10) k=1 on some interval [ .

Indeed, the first relation follows from the properties of the support of a convo-
lution. The next two follow from the equality k = 22. The last one holds for a
sufficiently small interval around 0 because k(0) = (0)* = 4 by the above ex-
plicit formula.

Assume that y = 7. A direct computation yields for 0 < <z the explicit
formulae

2K(x) =sinx + (o — ) cosx,
2K’ (x) = (x —m) sinx,
2K"(x) =sinx + (x — ) cosx .
Hence
K0)>0, K'(0)=0, K"(0)<0.
Applying Taylor’s formula we conclude that
(2.11) |K(x) — K(0)| <|K"(0)|x* for all xe[—9, 4]

for some suitable 0 < 0 < y. Let us change y to 6 in the definition of the sets A
and B.
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Observe that ne A implies n +1 ¢ A. Indeed, if ne A, then
Aps1=A, <OSy,
so that
Aurz=Au1Z2y—y =20

by (2.2). Furthermore, (2.2) and (2.7) imply K(A,,—4,) =0 whenever
|m —n| = 2. Furthermore, K(4,, .1 —4,) =0 unless n € A. Therefore we have
the equality

m,n=—

nzgm K(O) |an |2 + ZA K(/I?Hl _lﬂ)(a’ﬂa'ﬂ“’l +a—nan+1) =

2 KO)|a, [P+ 2 KO)|a,+ a1 |+

}EA (K(Ay 1= 4y) — K(0))(@, Ty 51 + @y 1 1).
Using (2.11) hence we deduce the inequality
i K= ) 4,8, < ;EB K(0)|a, |* + K(0) ngA la, + @, 1 |*+

m,n=—
|K”(0)| EA |/ln+1 _/171 |2(|an |2+ |a/n+1 |2) .
ne

We conclude by noting that thanks to (2.9) and (2.10) we have

xS KGn-i)aa - [ kol [P,
— I

m,n=—

In the sequel we shall frequently use the powers of the function H. Let
HY: R—R be the Mth power of the function H introduced in (2.5), and let
hy: R—R denote its inverse Fourier transform given by

©

Ry (t) = feit“"’HM(x) dx .

—

LEMMA 2.9. — (@) HM is not identically zero, even and real-valued.
(b) HM belongs to the Sobolev space W = (— /2, m/2).
(¢) hy extends to an entire function C—C.

(d) hy s not identically zero, even and real-valued.
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(e) We have (HM)Y'+ M2HY =MM —1)HM "2 almost everywhere
if M=2.

PRrROOF. — (a) and (d) are obvious.

(b) First we note that H* belongs to C *(— /2, m/2) and vanishes iden-
tically outside this interval. Therefore it is sufficient to verify that

H"YD(+7/2)=0, j=0,1,...,M—1
and that the one-sided derivatives
(H")M (/2 — 0) and (HY)M(—7/2 +0)

exist and are finite. All these properties follows by applying the Leibniz rule.
Indeed, differentiating j < M times the product cos™, all terms of the result-
ing sum contains at least one factor cos which vanishes at +/2. Furthermore,
applying the same rule we obtain easily that

(H"Y (/2 —0)=(-1)" and (H")M(—7/2+0)=1.

(c) This follows from (b) by the Paley-Wiener theorem.

(e) Outside [ —m/2, /2] both sides vanish, so it is sufficient to verify the
identity in (—m/2, 7/2). We have

(HMY () = (cosM &) = (=M cos™ 1 xsinx) =
MM —1) cos™ 2 xsin®x — M cosM x =
MM —1) cos™ 2 x(1 — cos? &) — McosM ¢ =
MM —1)cos” 26— M?cosM e =MM —1)(HY2)(x) — M2(HM)(x).

PrOOF OF PART (b) OF THEOREM 2.1. — Assume this time that y = 7/2. Fix
R > 2 arbitrarily and set

2
K:=R*H? «H*+ (H?)' x (H*)' = (Rz—i— %)(HZHZ).
x

It follows from the preceding lemma that K and its inverse Fourier transforms
k are even real functions satisfying

(2.12) KeHj(-n, n),

(2.13) keC”(R),

(2.14) k<0 outside [:=(—-R, R).
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Furthermore, for 0 <x <z we have

2 2 2

3R*— _
K(x)ZTsianJr (n—x)cost+T(n—x),

RZ 2
K'(x) = —T (1 —cos2x)+

(x — ) sin2x,

RZ 2 _
K'(x)=— sin2x + (x — ) cos2x .
Hence
(2.15) K0)>0, K'(0)=0, K"(0)<O0
and

Kx)=K'(m)=K"(7)=0.
Applying Taylor’s formula we obtain that

K"(0)]
2

K(x) = K(0) — xZ+o(x?), x—0,

and
Ky =o((x—y»), y—mu.

Since we have also K(y) =0 for y = 7, there exists a constant 0 < <y such
that

(2.16) K(x) > K(0)/2
and

LLOI
2.17) K(0)—K(x) — K(y) = Y x

forall 0 <x <o and y=m —x.

Furthermore, observe that K is nonincreasing in (0, o) because K'(x) <0
in (0, ) by the above formula and K = 0 in (;r, o). Hence for all x, ¥ = 6 such
that x < and x + y = 7, we have

(R*—4)m

K(x) + K(y) < K(x) + K(m — x) = K(0) — — e (1 —cos2x)
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and therefore

2 _
(2.18) K(O)—K(ac)—K(y)Bw(l—c0825)=:n>0.

whenever &, y =0 and « +y = w. Let us change v to J in the definition of A

and B.

As in part (a), (2.1) and (2.12) imply K(4,, — 4,) = 0 whenever |m —n| = 2.
Furthermore, neA implies n+1¢A. Therefore we have the following
identity:

Z K(lm_j'n) ama_nz

m,n=—

n=ZwK(0) |an |2+K(/1n+1 _ln)(anawrl +Ena71+1) =
n=ZwK(O) |an|2+K(ln+1 _;LWL)| a¢z+aiz+1|2_K(;Ln+1_/1n)(|a/n |2+ |an+1|2) =
n=2w(K(0) _K(/‘LnJrl_ln) _K(/‘Ln_lnfl))lan |2+K(/1n+1_/1n) |an+an+1|2::

n=2mS7L: EA(S71+S72+1)+ ZBSn'

Next we use (2.16), (2.17) and 2.18) withx =4, ,; —A,andy =4, — 1, _1.
If neA, then

K"(0)]

K(0
Sn+Sn+12T|)'1z+1_j'n|2(|an|2+|an+1|2)+ ( ) 2'

|CL77 +an,+1

If ne B, then
S, =zn|a, |2.

Using (2.15) and these inequalities we deduce from the above identity the
estimate

2 |an+an+1|2+|;l'7z+1_;l'72|2(|a71|2+|an+1|2)+ z |a/n|2s
ned neB

¢’ 2 K(/lm_/ln) ama_n

m,n=—

with a suitable constant ¢’. We conclude by remarking that by (2.13), (2.14) k
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has a finite maximum, and

i K&, —24y) 0@, = flc(t)|f(t)|2dt$(maxk)f|f(t)|2dt.
* - I

m,n=—

3. — On a theorem of Kahane.

We are going to generalize Ingham’s theorem to several variables. Let
(1,) be a sequence of vectors in RY, satisfying for some y >0 the condi-
tion

3.1) Am—Aule=y whenever m =n,

where || ||, stands for the usual Euclidean norm of RY. Let us denote by u y the
smallest eigenvalue of —A in H}(B;) where B; is the unit ball of RY.

THEOREM 3.1. — (a) For every open ball B in RY there exists a constant ¢,
depending only on y and on the radius of the ball, such that all finite
SUMS

32) f= 3 aett (@,e0)

satisfy the estimate

=)

(3.3) f|f(t)|2dt<c1 S a2
B n=—o

(b) For every open ball B of radius R >2\/uy / y there exists a constant
o, depending only on v and on R, such that all finite sums (3.2) satisfy the
estimate

(3.4) > |an|2$czf|f(t)|2dt.
n=—o B

REMARK 3.2. — This result improves proposition II11.1.2 of Kahane [9] by
weakening his assumptions for the validity of (3.4). We do not know whether
our condition R >2\/,u_N /y in part (b) is optimal. Note that this condition
means that the smallest eigenvalue of —A in H (Bg) is less than y2/4.

Let us recall, e.g., from [22] that the smallest eigenvalue of —A4 in H{(Bg)
is equal to (o y/R)? where o y denotes the smallest positive zero of the Bessel
function Jy - 2)5-

REMARK 3.3. — As mentioned in Remark 2.4, both inequalities, once proved,



INGHAM TYPE THEOREMS AND APPLICATIONS ETC. 45

extend to infinite sums with square summable coefficients. Furthermore, by
an easy generalization of Remarks 2.6-2.8, in the proofs it will suffice to con-
sider balls centered at the origin, and one particular value of y.

Turning to the proof of Theorem 3.1, let us denote by B, the open ball of
radius r centered at the origin of RY. Fix a nonzero eigenfunction H of —A4 in
H{(B,), corresponding to the smallest eigenvalue u y of —4 in H} (B;), and ex-
tend it by zero outside B;. We may assume that H is strictly positive in B;.
Then H is a real radial function in H{(B;), therefore its inverse Fourier
transform

h(t) := fei”H(ac) dx
RN

is a real radial function in C * (RY). (And % extends again to an entire analytic
function.)

PROOF OF PART (@) OF THEOREM 3.1. — Assume that v = 2. The function K :=
H  H and its inverse Fourier transform k = k2 are real radial functions having
the following properties:

KeH{}(B,),
k=0 on RV,
k=/f on some ball B,

where 3 is some positive number. (The last property follows from the fact that
keC~*(RY) by the Paley-Wiener theorem and that k cannot be identically
Zero.)

Using (3.1) and these properties, (3.3) follows:

sl s zae< [ w1 f2ae=
B RN

Qx)N i KAy = A) 0@, = (21)N K(0) :i la, |*.

m,n=—

PRrROOF OF PART (b) OF THEOREM 3.1. — Assume y =2 again. Choose R >
Vu y arbitrarily. The function

N
K=R*+A)H«+H)=R*H«H+ >, 0;HO;H
j=1
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and its inverse Fourier transform
k(t) = (R — |£]?) It)?
are even radial functions satisfying the following conditions:
KeH;(By),
K(0)>0,
keC™(RY),
k<0 outside B:=Bjy.
The second property follows from the relation

k) = [ R? |1 |VH P do = R2 - ) [ ]2 a0

R R
Since ke C *(RY) again by the Paley-Wiener theorem, it follows that k has a

finite maximum a on RY, and (3.4) follows as in section 1:

@aVKWO) 3 o, P=@0Y 3 K, - 4,) 0,6 =

fk(t)|f(t) |? dt < (max k)f|f(t) |2 dt .
RN B

4. — On a theorem of Ullrich.

We are going to obtain an optimal variant of Kahane’s theorem by chang-
ing the ly-norm to the [.-norm in RY. Furthermore, more generally, we con-
sider series with polynomial coefficients.

Let (4,) be a sequence of vectors in RY, satisfying for some y >0 the
condition

4.1) A —A.llo=y whenever m =n.

Fix a positive integer M and consider all finite sums of the form

4.2) =2 X a,tiett  (q,eC).
w <M

n= jle<

We apply here the usual multiindex notations: the components of j=
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(1, ---, Jy) are nonnegative integers and
|.7|oc = maX{jl’ "'7jN}7
=t
il =7+ +ivn,
o =a...0%,
where
C?;C = a/a%k .
We recall that if
k(t) = fK(oc) e dy
-RN
is the inverse Fourier transform of K, then
K(x) = (Zn)‘ka(t) e widt,
RN
and more generally,
iV ol K(x) = (2n)-thfk(t) e =t dt
RN

for all j. We are going to prove the

THEOREM 4.2. — (a) For every open ball B in RY there exists a constant ¢,
depending on y, M and on the radius of the ball B, such that all finite sums
(4.2) satisfy the estimate

(43) f|f(t)|2dt$61 E E |ajn|2'
B n=-2 jle <M

(b) For every open ball B of radius R > M\/Nna/y in RY there exists a
constant ¢y, depending on vy, M and on the radius of the ball B, such that all
finite sums (4.2) satisfy the estimate

4.4) D IafHIZSszlf(t)lzdt-
B

n=—2 |jl,<M

(c) The estimate (4.4) can fail if R<M \/ﬁn/y.

REMARK 4.2. — For N=1 the theorem reduces to an earlier result
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of Ullrich[21], proved by him in a different way. For N=M =1 we get

the original theorem of Ingham.

REMARK 4.3. — By an easy modification of Remarks 2.4 and 2.6-2.8, the esti-
mates remain valid for infinite sums with square summable coefficients, and in
the proof it is sufficient to consider balls centered at the origin and to consider

the case y =x.

PROOF OF PART (@) OF THEOREM 4.1. — By Remark 4.3 it suffices to consider
balls centered at the origin and we may assume that y = x. Set

Br = {ieRY: | <x}.

The function
N
K(x):= [l HYHY)(x,), w®= (21, ..., 25)eRY
p=1
and its inverse Fourier transform

N
k(t) == J e 1T (HY « HY)(x,) do =
RN p=1

=)

N .
=p1;[1 fe“p'”p(HM*HM)(xp)dmpz

— o

satisfy the conditions
KeHy(By),
k=0 on RV,
k=p on some ball B,

where f§ is some positive number. Therefore

s [ 1 £ 2 dt < 20 [ ko) 1oy 2 dt =
B RN

S S @ Vayan 0k

= il fHl <M e

—|j+k| Qi+ k
. Qg A T ekl g7 K(4 m A
m,n= — o |‘7|x, |k\,o<M

[

—— i tk| Qi tk
' W T8 T GT TR K(0) .
N==% |j| e, |kl <M

N
[T [7uas (1) |?
p=1

(A= An)-t dt =

n):
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Hence

p(2m)” Nf|f(t>| dt<c E 2] |, | <

© j|o K] <M
c kel S
S22 e frlef=c 3
2 nSTw i, H.<M " °°"“'

with
¢c:=max{|8'K(0)|: |I| <2M —1}.
For the proof of part (b) we need the crucial

LEMMA 4.4. — If R > M"\/N and
N N
K(x) = R*? HI(HM « HM)(x,) + 21 (HM) s« HM) ), [T HM
p= p= q=p

then the quadratic form

@yl 2 PTHITEEK)0) a;a
o [7loos 1Rl <M '

18 positive definite.
Proor. — We have

> g 1tk aj”K(O)qchk:
[ilees [kl <M

S a@il Y [ REE e Y () +

lo, [¥] 2 <M p=1g

49

| kn |2

« HY)(x,),

(HM)%*D (e, )(HM) D (~1,) daey, T1 f(HM)(’q)(x WHM)* (= 1,) daey =

9#=P R

N
> a@il -1 k] 3 J Rz o,y @,) -
p=1g

[l (ko <M

(HM)%*D (0, )(HM) D () dax, [1 f(HM)W(wq)(HM)(k")(ﬂcq) da, .

9#P R

Setting

H@) = X R iVl H (HM)09 (x,),

7] <
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a simple computation shows that

/2
N
f |H|2 da = > ;0 =TT f (H M) (M k) dz,
[—x2, w2V [7]ws ke <M g=1_%%
and
~ N A
f |VH|2dOC= E E aja_ki |]|(_i)|k| «
[—a/2, a2V P=1 |jlw, |[k|low<M ~
w2 /2
f(HM)(ierl)(HM)(karl)dxp H f(HM)(jq)(HM)(kq) d%q.
— /2 =P _ap

Substituting them into the first identity we obtain that
2 i|j|+|k\aj+kK(0)aia/—k: f R2|ﬁ|2_|VH|2d.’)C
ey 1kl <M ' [—/2, a2l

We shall prove that the last integral is positive unless all coefficients a;
vanish.
Equivalently, setting G(x) = sin” x and

N
Ho(ﬂc) = 2 aﬂ:m H G(jq)(xq),
q=1

lilo <M
we have to prove that the integral
f R2 |H0 |2_ |VHO |2d9(}
[o, ¥

is positive unless all a;’s vanish.
Observe that the function G G™ is odd with respect to /2 if m —n is
odd, and hence

fG(’”)(x) G™(x)dr=0.
0
Hence, putting

N
Hi@:= 3 il [ 6%,
o

[7]w <M, |j]odd ~

N
HQ(-%) = E a[]@l]l H G(jq)(xq)y
q=1

[7] e <M, |j| even
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we have Hy=H,+ H, and
f HIE d.’)C =0.
[0, x1¥
Therefore

f R2|H, |2~ |VH, |* do =

to, =1V
f R2|H1|2—|VH1|2dx+ f R2|Hz|2—|VH2|2dac.
(o, 1V (o, z1v

Furthermore, |H;| and |H,| are even in each of their N variables, and
therefore

2V f R2|Hy|?— |VH, |* da = f R2|H,|?— |VH, | da +

[0, mv [, mV
+ f R2|H2|2_|VH2|2CZ%': f R2|H0|2_|VH0|2d.’)C.
[—a, al¥ [—a, al¥

Now observe that H, is a linear combination of the functions e ¥ for l7]x<
M and therefore

fR2|H0|2—|VH0|2de(R2—NM2) f |Hy |2 da .
[—a, 71V [—a, aV

Since R% — NM? > 0 by assumption and since the last integral is a positive def-
inite quadratic form of the coefficients a; by the linear independence of the
functions G, G', ..., G~V the lemma follows.

PROOF OF PART (b) OF THEOREM 4.1. — As in part (a), we consider balls cen-
tered at the origin, we assume that y =& and we introduce the set B,” as

before.
Choose R > M\/N arbitrarily and set

N N

K(x) = R* H1 (HM + HM)(%) + 21 ((HM) s (HMY )(%p) [T (HY % HM)(-?C,,)-
p= p= q=p

Then K and its inverse Fourier transform

N
k() = (R*— [t|®) H1 P (t,)?
oo
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are even real functions, satisfying the conditions
KeWs" b =*(By)
and
k<0 outside B:= {AeRY: A, <R}.

In particular, k has a finite maximum a on RY.
We have

a(Zn)’Nf |f@t) |2 dt = (Zn)’ka(t) |ft) |2 dt =
B RNV

=)

— i+ k| Qi +k _
. afimakn,l b | o’ K(;L n Am) -
o= (], (k<M

©

— itk i+ k
. z afinaknl i | o’ K(O) ’
== fle, ko <M

and we conclude by recalling that the quadratic form

(aj)|j\<M'_> ) > ik IR K(0) a;
[les [k <M

is positive definite by Lemma 4.4.
PROOF OF PART (¢) OF THEOREM 4.1. — According to Remark 2.4, if (4.4)
holds for all finite sums, then it also holds for all sums with square summable

coefficients.
Fix a small positive number ¢ <1 and consider the function

1 if dist (¢, 2M7N) < e,
@ :{ (teR).

0 otherwise,

For every te [0, 2)", the linear system

2 @EH2RW) =£8), |k <M

[l <M

has a unique solution (f;(¢)) ||, <. Extending fy, ..., fyr—1 to RY 2-periodically
in each variable, we have

tj]?:fg

i) <M

on the set

Q:= U @k+1[0,2)").
[k|w<M
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Developing the functions f; into N-fold trigonometric Fourier series, we obtain
in 2 a development

f;‘(t) — E 2 7ajntjeizm-t

lile <M nezV

with square summable coefficients a;,. Since f, does not vanish identically,
there are nonzero coefficients, so that (4.4) cannot hold on the ball of center
(M, ..., M) and radius (M —¢) \/N , contained in £, where f, vanishes
identically.

5. — Simultaneous observability of vibrating strings.

Fix a number 0 <a <1 arbitrarily and consider the following prob-
lem:
Uy — U, =0 in (0, a) X R,
Uy — Uy, =0 in (a, 1) X R,
(0, ) =ula, ) =u(l,-)=0 1in R,
u(-, 0) =u, and u, (-, 0) =%, in (0, 1).

(5.1)

We recall from Lions [14] that if
uye H3(0,1), wueL?0,1) and uy(a) =0,
then (5.1) has a unique solution
ueC(R; Hi(0,1))NC'(R; L2(0, 1)),
and that this solution has the «hidden» regularity property
(@ —0, ), u,(a+0,)eLZ(R).

We are going to study the following question. Assume we may observe the
sum of the outward normal derivatives of the solutions of (5.1) at the common
endpoint ¢ during some time interval 1. Does this observation allow us to iden-
tify the unknown initial data? Mathematically, we ask whether the linear
map

Hi(0,1)x L2(0,1)—L*1)
defined by the formula
(o, uy) = u(a—0, ) —u,(a+0,-)|,

is injective or not.
The answer depends on the position of @ and on the length of I:
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THEOREM 5.1. — (@) For almost every 0 < a <1, the solutions of (5.1) satis-
fy the inequality

(5.2) ol o, 1) + lota [Fr-1-20, 1) < Cf |u,(a—0,1) —u,(a+0,t)|*dt
!

for every bounded interval I of length >4 max{a, 1 —a} and for every € > 0.
The constant C depends on e and on |I| but not on the particular choice of u,
and ;.

(b) The estimate (5.2) camnot hold for any 0<a<1l o |I|<
2 max{a,1-a}.

(¢) The estimate (5.2) cannot hold for any nterval I if a s a rational
number.

REMARK 5.2. — This problem was first studied by Jaffard, Tucsnak and
Zuazua [8]. They proved the estimate (5.2) under a stronger condition on the
length of 7. We follow their method but we apply Theorem 2.1 instead of their
original result.

REMARK 5.3. — We hope to return to this problem in the near future and to
determine the optimal condition on |I| for the validity of the estimate
(5.2).

PRrROOF OF PART (a). — By a density argument it suffices to consider initial
data uy, #; which are finite linear combinations of the eigenfunctions of —A4 in
H{(0, ) and in H{ (@, 1). Then all sums in the sequel are finite, hence all con-
vergence problems are avoided. Furthermore, assume that a is irrational; this
excludes only a set of measure zero.

Applying the Fourier method, the solution of (5.1) is given by the
formula
> b, sin (nwa L) e ifo<x<a,
wx,t)=4"

%‘, ¢, sin(na(l —a) Y (1—x))e™ -0 if g<p<1,

where 7 runs over the nonzero (positive or negative) integers, with suitable
complex coefficients b, and c,, depending on the initial data. A simple computa-
tion shows that

b, . _ C . _
u,(a—0,1) —u,(a+0, t)=2(—1)”nn(le7””“ et e 1t).
n a —a
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Setting
A= {nn’ail, no(l—a) 't neZ - {O}}

and

a;

{(—1)”m@bna‘1 if 1=mnma !,

(=1)"mnc,(1—a)t if Ai=na(l—a) !,
we may rewrite it in the simpler form

u (@ —0,8) —u(a+0,t)= > ae”.
Aed

Note that no 1 € A has two different representations by the irrationality of a.
Next we obtain by another direct computation that

[0 (o, 1) + lleea [fir-1-+0, 1)
is equivalent to
S Il 21 2+ e |2),
which is in its turn equivalent to the sum
2 AR e ]
ey
Indeed, for A = nma ~! we have
217272 g 2= [mera ™ | 7272 nb,a ™ |2 = a1 |2 [b, |2~ ] b, |2,
while for A =na(1 —a)~! we have similarly
|4 72 7% |y | = |na(1 —a) ™t | 7272 |ance, (1 —a) 7t |2 =
|na(1—a)™ | 7% |c, |*~|n| % |c, |®-

Hence the estimate (5.2) is equivalent to the following inequality:

2
(5.3) > |/1|‘2‘2*"|a1|2$cf‘ > we™| dt.
AeAa I reA

To prove (5.3) first we observe that, since a is assumed to be irrational,
the numbers nza !, na(1 —a) ', where n runs over the nonzero integers,
are pairwise distinct. Furthermore, no interval of length < min{ma !,

(1 —a)"'} contains more than two elements of the set /. Therefore, apply-
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1

ing theorem 2 with y =1 /2 min {7a ~*, 2(1 - a)"'} we obtain the inequality

2
(5.4) > —ulPaPte )+ 2 |%|2$Cf‘ S aeit| at
|A—ul<y ded’ 7| Aea

for every bounded interval I of length
|I| >2xy '=4 max{a, 1—a},

where A" denotes the set of those 4 € A for which |1 —u| = y for every other
ue.

Next we recall from [2] a classical result from the theory of diophantine ap-
proximation: almost every real number a satisfies for all ¢ >0 the inequali-
ties

dist(qa, Z)=c.q 7%, q¢q=1,2,....

If |2 —u| <y in (5.4), then we have (changing, if necessary, the order of A and
w) A=nm(1—a) ! and u = mma ! with suitable integers. Apart from a finite
number of such pairs, the integers m and » have the same sign and have a suf-
ficiently large absolute value. Hence

7 T
A—ul=——|m+m)a-m|= ——c, |[n+m| 1 °.
A== = =T lnem

Since the condition |4 —u| <y implies that
n+m~n~m~A~u,
it follows that
|4 —ul=c/max {|A], |u]} 7"

with a suitable positive constant c¢.. (The right-hand side is well defined be-
cause 0 ¢ /1.) Hence the first sum on the left-hand side of (5.4) is minorized
by

Cs’ E |A|—2729|(h|2+|M|72729|aﬂ|2.
[2—ul<y

Choosing, if necessary, a smaller ¢., the second sum on the left-hand side of
(5.4) can also be minorized as follows:

Ce, 2 |/‘L|_2_2£|6L/1|2$ Z |a/1|2-
AeA’ AeA’

This completes the proof of (5.3).
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PROOF OF PART (b). — Assume that a =1 /2 (the other case is analogous) and
fix 0 < T < a arbitrarily. We are going to show that the estimate (5.2) cannot
hold for I = (-7, T).

Choose nonzero initial data uye Hy(0, 1) and u, € L2(0, 1) satisfying

uy=u;=0 in(a—T,1).
Then the solution of (5.1) satisfies
wx,t)=0 for a—T+|t|<x<1
for all ¢ by the finite propagation property of the wave equation. Hence
(@ —0,t) =u,(a+0,t)=0 for —T<t<T,

so that the right-hand side of (5.2) vanishes for I =(—T, T). On the other
hand, the left-hand side of (5.2) is strictly positive because the initial data are
not identically zero.

PROOF OF PART (c). — If @ is a rational number, then there exist positive in-
tegers m and n such that

mait nw

a 1-a
Denoting this common value by 4, the formula

sin Az e # fo<x<a,

—sinAd(l—x)e™ fa<wx<l

ulx, t) := {

defines a nonzero solution of (5.1), so that the left-hand side of (5.1) is strictly
positive. On the other hand, we have

u,(a—0,t)=u,(a+0,t) =0

for all real t, so that the right-hand side of (5.2) vanishes for every bounded in-
terval /. Hence (5.2) cannot hold.

6. — Simultaneous observability of beams.

As in the preceding section, fix 0 < a <1 arbitrarily. Now consider the fol-
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lowing problem:

(Ugp + Upre =0 In (0, @) X R,

Uy + Uy =0 10 (@, 1) X R,

(6.1) Ju(0, ) =u(a, )=u(l,)=0 in R,

Uy (0, *) = Uy (@, ) =u,(1,)=0 in R,
(-, 0) =u, and u,(-, 0) =u; in (0, 1).

This system models two vibrating beams with simply supported endpoints, one
of which is common to both beams. We recall from [14] that if

uye H(0,1), w,eH 1(0,1) and uy(a) =0,
then (6.1) has a unique solution
ueC(R; H{(0,1))NC'(R; H (0, 1)),
and this solution has the «hidden» regularity property
uy(a—0,), u,(a+0,)eLiR).

Assume we may observe the sum of the outward normal derivatives of the sol-
utions of (6.1) at the common endpoint a during some time interval /. Does it
allow us to distinguish different sets of initial data? We are going to prove that
the answer is affirmative for almost every point a, even if the observation time
is arbitrarily small.

THEOREM 6.1. — (a) For almost every 0 < a <1, the solutions of (6.1) satis-
fy the estimate

6.2) Nuolfr -+, 1y + llwalffr1-20, 1) < cf |u.(@ =0, ) —u,(a+0,t)|*dt
I

for every (arbitrarily short) bounded interval I, and for every ¢ >0, with a
constant ¢ = c(|I|, €), independent of the choice of uy and u;.

(b) The estimate (6.2) cannot hold if a is a rational number.

PRrROOF OF PART (a). — Applying the Fourier method as in the preceding
section, the solution of (6.1) is given by the formula

. _ ; 2,2 .
> b, sin (nmwa ~'a) e ™InlTa ifo<x<a,
n

w(x, t) = L,
> ¢, sin(na(l —a) H(1—x))emHTA-0t if g<p <1,
n

where 7 runs over the nonzero (positive or negative) integers, with suitable
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complex coefficients depending on the initial data. By a density argument
it suffices to consider only finite sums.
It follows that

U (a—0, 1) —u,(a+0, ) = S (~1)" n { Ou gininiaaey o emlnlﬂzuw'%} .
n a l1—a

Assume that a is irrational, and assume by symmetry that 0 <a <1/2.
Setting
A:=A{n|n|7x*a "% nn|x*(1—-a) *:neZ—-{0}}
and
(—1)"7nb,a ! it A=n|n|7%a "2,
a {(—1)”Jmcn(1 —a)' if A=n|n|x*(1-a)7?,
the right-hand side of (6.2) takes the form

)

1

2
dt .

E a%eut
red

Next we obtain by a straightforward computation that the left-hand side of
(6.2) is equal to

2 n 2 (b, P+ e |*)
and that this sum is equivalent to
DTS
Indeed, for 2 =mn|n|7*a "* we have
417" @y |* = [nawa = | 72 [amb, @ 7|2~ | |*7* [by |7,
while for 2 =mn|n|7*(1—a)"* we have
[A]7¢ g |? = |na(1 — )™ | 7% |anb, (1 —a) ' |2~ |n|* % |c, |®.

Hence the estimate (6.2) is equivalent to the following inequality:

2
> a e | dt.
reA

(6.3) > Iil*floulzscf
leA Vi

For the proof of (6.3) fix a bounded interval I and then fix a (sufficiently
large) real number y satisying

|[1|>2n/y .
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Choose a sufficiently large positive integer N such that, setting

Ay i={n|n|x*a "2 n|n|7a*(1 —a) *: ne?Z and |n| =N},
no interval of length <2y contains more than two elements of A 5. Then, ap-
plying Theorem 2.1 we obtain the estimate

2
> e dt

AedAn

64) 3 |A-ulP(aP+]a))+ 2 |6u|2$0f
[A—u|<y Aedy I

where the first sum is taken for all pairs of numbers in A ; whose distance is
strictly between 0 and vy, while the second sum is taken for the remaining
numbers in A y.

We are going to deduce from (6.4) the inequality

2

6.5) > |/‘L|_E|al|2$cf| S ae| dt.
ledy I AedAn

(Compare to (6.3).) Since A y has no finite accumulation points, for this it suf-
fices to prove the estimate

(6.6) 14| *<c|d—ul?

for all pairs in the first sum of (6.4). Moreover, it suffices to consider pairs with
sufficiently large |A| and |u|. Now, for such a pair we have (exchanging 4 and
u if needed)

2

A=m|m|x*a™? and u=mn|n|7x*(1—a)"®

with suitable nonzero integers 7, 7 of the same sign. Since 0 <a <1 /2 by our
choice at the beginning of the proof, we have

nNt+m~n—m-~n-~m
for |A|— . Now let a be such that
dist (qa, Z) =c,q 1 ¢

for all e >0 and for all positive integers q. (We recall again from [2] that al-
most every a has this property.) Then we have

67 |A-u|=xfaE(1-a)?|n*a*-m*(1—-a)|=
7fa2(1-a) 2 |(n+m)a—m|-|(n+m)a+m|.
Thanks to the choice of a we have

|m+m)a—m|=c, |n+m| " =¢ |n| ¢



INGHAM TYPE THEOREMS AND APPLICATIONS ETC. 61

and
|(n+m)a+m| e [n—m| 1" =c/|n| 7170,
Furthermore,
|| +m)a—m|—|(n+m)a+m||=2|m|=2c|n|

for a suitable positive constant ¢, independent of 7, #, and hence at least one
of the numbers

m+m)a—m and (n+m)a +m
has an absolute value =c|n|. Therefore we have
6.8) |(m+m)a—m|-|(m+m)a+m|=cc |n| ¢ n|=cc |n| .
Using (6.8) we deduce from (6.7) the estimate
[A—u|=ce/ n%a2(1—a) % |n| ¢,
Since
]~ m|~[A]"%,

the desired estimate (6.6) follows.

We have thus proved (6.5). In other words, we have proved (6.3) for all (fi-
nite) sequences of complex numbers (a;) which satisfy the additional condi-
tion

a,=0 for all ledA —Ay.

The proof of (a) is then completed by applying the

LEMMA 6.2. — We are given a countable set A of real numbers without fi-
nite accumulation points, and for every A e A two positive numbers o, < ;.
Assume that there exist a bounded interval I, a finite subset Ay of A and two
positive constants c;, ¢y such that

a2 a|a|ts f | X ae®|?dt<e, 2 B, |a;|*
I
for all sequences of complex numbers a; where 1 runs over some finite subset
Of A—A N-

Then for every bounded interval J of length > |I| there exist two positive
constants cs, ¢4 such that

(3320!,1|CL,1|2$f|2aleiit|2dt$042ﬂ,1|(hl2
J
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for all sequences of complex numbers a; where 1 runs over some finite subset
of /.

In the special case where the numbers «; and 3, do not depend on A, this
lemma was proved in [5]. His proof carries over easily to the proof of this gen-
eral case. Alternatively, this lemma is a very particular case of Theorem 5.3
in[10] and of the more general Theorem 3.1 in[13].

PRrROOF OF PART (b). — If a is a rational number, then there exist positive in-
tegers m and n such that

mait nw

a 1-a
Denoting this common value by 4, the formula

sin Az et fo<x<a,
u(x, t) = .
—sinA(1 —x)e*? ifa<wx<l,

defines a nonzero solution of (6.1), so that the left-hand side of (6.1) is strictly
positive. On the other hand, we have

u,(a—0,t)=u,(a+0,t) =0

for all real ¢, so that the right-hand side of (6.2) vanishes for every bounded in-
terval /. Hence (6.2) cannot hold.
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