BOLLETTINO UNIONE MATEMATICA ITALIANA

TULLIO G. CECCHERINI-SILBERSTEIN

C^{\ast} algebras associated with von Neumann algebras

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **2-B** (1999), n.1, p. 231–238.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_1999_8_2B_1_231_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 1999.

C^* Algebras Associated with von Neumann Algebras.

TULLIO G. CECCHERINI-SILBERSTEIN

Sunto. – Ad un'algebra di von Neumann separabile M, in forma standard su di uno spazio di Hilbert H, si associa la C^{*} algebra \mathcal{O}_M definita come la C^{*} algebra $\mathcal{O}_{\mathcal{U}(M)}$ costituita dai punti fissi dell'algebra di Cuntz generalizzata \mathcal{O}_H mediante l'azione canonica del gruppo $\mathcal{U}(M)$ degli unitari di M. Si dà una caratterizzazione di \mathcal{O}_M nel caso in cui M è un fattore iniettivo. In seguito, come applicazione della teoria dei sistemi asintoticamente abeliani, si mostra che, se ω è uno stato vettoriale normale e fedele di M, la restrizione ad \mathcal{O}_M dello stato prodotto tensoriale infinito $\bigoplus_{n=1}^{\infty} \omega$ di \mathcal{O}_H è uno stato puro.

1. - Introduction.

Let *H* be a separable Hilbert space. We set $H^0 = C$; for r > 0 we denote by $H^r = H \otimes H \otimes \ldots \otimes H$ the Hilbert space *r*-fold tensor power of *H* and, for *r*, $s \ge 0$, we denote by (H^r, H^s) the set of all bounded linear mappings from H^r into H^s , so that, in particular, $(H^1, H^0) = (H, C) = H^*$ coincides with the topological dual of *H*.

Thus, denoting by $I: H \rightarrow H$ the identical map, we have, for all $r, s \ge 0$, the inclusions

$$\begin{array}{rcl} (H^r, H^s) & \to & (H^{r+1}, H^{s+1}) = (H^r \otimes H, H^s \otimes H) \,, \\ T & \mapsto & T \otimes I \,. \end{array}$$

We then denote, for all $k \in \mathbb{Z}$, by

$${}^{0}\mathcal{O}_{H}^{k} = \lim_{r \to +\infty} \left(H^{r}, H^{r+k} \right)$$

the direct limit of the (H^r, H^{r+k}) 's and by

$${}^{0}\mathcal{O}_{H} = \bigoplus_{k \in \mathbb{Z}} {}^{0}\mathcal{O}_{H}^{k}$$

the algebraic direct sum of the \mathcal{O}_{H}^{k} 's.

 ${}^{0}\mathcal{O}_{H}$ carries, in a natural way, a structure of \mathbb{Z} -graded *-algebra over \mathbb{C} . Indeed, denoting by $\widetilde{T} \in {}^{0}\mathcal{O}_{H}^{k}$ (respectively by $\widetilde{S} \in {}^{0}\mathcal{O}_{H}^{k}$) the class of an element $T \in (H^{r}, H^{r+k})$ (resp. $S \in (H^{s}, H^{s+h})$), we can find $p, q \in \mathbb{N}$ such that s + h + q = 1

r+p; we then set

$$\widetilde{T}\widetilde{S} = [(T \otimes I^{\otimes^p}) \circ (S \otimes I^{\otimes^q})]^{\sim} \in {}^0\mathcal{O}_H^{k+l}$$

and

$$(\widetilde{T})^* = (T^*)^{\sim} \in {}^0\mathcal{O}_H^{-k}$$

which are well-defined as one checks immediately.

In [CPDR] it is shown that ${}^{0}\mathcal{O}_{H}$ is endowed with a unique C^{*} -norm $\|\cdot\|$, namely the C^{*} -maximal norm, so that its completion

$$\mathcal{O}_H = ({}^0 \mathcal{O}_H)^{\sim \|\cdot\|},$$

called the generalized Cuntz algebra [CPDR], is a simple C^* -algebra.

A concrete realisation of such a C^* -algebra can be given as follows.

Recall ([R]) that a Hilbert space in a (separable) von Neumann algebra \mathfrak{M} is a norm-closed vector space $H \leq \mathfrak{M}$ such that $\forall \phi, \psi \in H$ one has $\phi^* \psi \in CI$; the relation

$$\phi^*\psi = (\phi \,|\, \psi) \,I$$

defines an inner product (|) wich endowes H with a Hilbert space structure (note that H is norm-closed and that the norm arising from the inner product coincides in fact with the norm $\|\cdot\|_{\mathcal{M}}$ of \mathcal{M} ; thus H is (|)-complete). The support of H is the projection in \mathcal{M} defined by

$$p_H = \sum_{i \in J}^s \psi_i \psi_i^*$$

 $\{\psi_i\}_{i \in J}$ being any orthonormal basis of the Hilbert space *H*, and the series being convergent with respect to the strong-operator topology in \mathfrak{M} .

Suppose we are given a family $\{\psi_i\}_{i \in J} \subset \mathcal{B}(\mathcal{H})$ of isometries on a Hilbert space \mathcal{H} satisfying the relation $\sum_{i \in J}^s \psi_i \psi_i^* = I$; this implies in particular that $\psi_i^* \psi_j = \delta_{i,j}I$, $\forall i, j \in I$ so that $H = \overline{\operatorname{span} \{\psi_i : i \in J\}}^{\|\cdot\|_{\mathcal{B}(\mathcal{H})}}$ is a Hilbert space in $\mathcal{B}(\mathcal{H})$ with support the identity: $p_H = I$.

We then pose $H^0 = CI$, for r > 0

$$H^r = \overline{\operatorname{span}\left\{\psi_{i_1}\psi_{i_2}\ldots\psi_{i_r} \mid i_l \in J\right\}}^{\|\cdot\|_{\mathscr{B}(\mathscr{H})}}$$

which is a Hilbert space as well (and can in fact be identified with the *r*-fold tensor power of H) and, for $r, s \ge 0$,

$$(H^{r}, H^{s}) = \overline{\text{span}} \{ \psi_{i_{1}} \psi_{i_{2}} \dots \psi_{i_{s}} \psi_{j_{1}}^{*} \psi_{j_{2}}^{*} \dots \psi_{j_{r}}^{*} | i_{l}, j_{t} \in J \}^{s}.$$

Since $p_H = I$, we have the injection

$$(H^r, H^s) \rightarrow (H^{r+1}, H^{s+1})$$

232

given by

$$\psi_{i_1}\psi_{i_2}\ldots\psi_{i_s}\psi_{i_1}^*\psi_{i_2}^*\ldots\psi_{i_r}^*\mapsto \sum_{l\in J}{}^{s}\psi_{i_1}\psi_{i_2}\ldots\psi_{i_s}\psi_{l}\psi_{l}^*\psi_{l}^*\psi_{j_1}^*\psi_{j_2}^*\ldots\psi_{j_r}^*.$$

The sets

$${}^{\scriptscriptstyle 0}\mathcal{O}_{H}^{k} = \bigcup_{r, r+k>0} (H^{r}, H^{r+k}), \quad k \in \mathbb{Z}$$

are independent subspaces of $\mathscr{B}(\mathscr{H})$ so that if ${}^{0}\mathcal{O}_{H} = \bigcup_{k \in \mathbb{Z}} {}^{0}\mathcal{O}_{H}^{k}$ we have

$${}^0\mathcal{O}_H = \bigoplus_{k \in Z} {}^0\mathcal{O}_H^k \,.$$

 ${}^{0}\mathcal{O}_{H}$, with the product inherited as a subspace of $\mathcal{B}(\mathcal{H})$, becomes a \mathbb{Z} -graded *-algebra. We then have that $\overline{{}^{0}\mathcal{O}_{H}}^{\|\cdot\|_{\mathcal{B}(\mathcal{H})}}$ as a sub C*-algebra of $\mathcal{B}(\mathcal{H})$ is isomorphic to the generalized Cuntz algebra \mathcal{O}_{H} as defined before, which is therefore simple and has the following universality property ([CPDR]):

Suppose that $\{\psi'_i\}_{i \in J} \subset \mathcal{B}(\mathcal{H}')$ is another family of isometries satisfying $\sum_{i \in J} {}^s \psi'_i \psi'_i {}^* = I$; then if H' denotes the Hilbert space they generate and $\mathcal{O}_{H'} \leq \mathcal{B}(\mathcal{H}')$ is the corresponding generalized Cuntz algebra, there exists a unique * -isomorphism $\alpha : \mathcal{O}_H \to \mathcal{O}_{H'}$ of \mathcal{O}_H onto $\mathcal{O}_{H'}$ such that $\alpha(\psi_i) = \psi'_i$, $\forall i \in J$.

We remark that in case H is a finite dimensional Hilbert space, say $\dim(H) = d$, then \mathcal{O}_H is isomorphic to the Cuntz algebra \mathcal{O}_d ([Cu]).

As a consequence of the universality property, if $u \in \mathcal{U}(H)$ is a unitary of the Hilbert space H, there exists a unique automorphism $\alpha_u \in \operatorname{Aut}(\mathcal{O}_H)$ such that $\alpha_u(\psi) = u(\psi)$ for all $\psi \in H$ and the application

$$\begin{array}{rcl} \mathcal{U}(H) & \to & \operatorname{Aut}\left(\mathcal{O}_{H}\right) \\ u & \mapsto & a_{u} \end{array}$$

is a homomorphism.

If $G \leq \mathcal{U}(H)$ is any subgroup of unitaries of H we denote by \mathcal{O}_G the fixed point subalgebra $\mathcal{O}_G = \mathcal{O}_H^G = \{x \in \mathcal{O}_H : \alpha_g(x) = x, \forall g \in G\}$ of \mathcal{O}_H under the automorphisms $\alpha_g, g \in G$ and we call the corresponding action by automorphisms a *canonical action*.

In particular for G = T, the subgroup of the homoteties of H, we denote by \mathcal{O}_{H}^{0} the subalgebra \mathcal{O}_{T} , called the 0-th grade of \mathcal{O}_{H} ; then the map

$$\begin{array}{rcl} m \colon \mathcal{O}_{H} & \to & \mathcal{O}_{H}^{0} \ , \\ & X & \mapsto & \displaystyle \int_{T} \alpha_{\tau}(X) \ d\tau \end{array}$$

is a conditional expectation; observe that in fact one has $\mathcal{O}_{H}^{0} = ({}^{0}\mathcal{O}_{H}^{0})^{\sim \|\cdot\|}$.

Let now *M* be an injective factor [C] acting in standard form [Ha] on a separable Hilbert space *H*. One can consider $H = L^2(M, \theta)$ as the Hilbert space

coming from the GNS-construction relative to the couple (M, θ) , where $\theta \in M_*$ is a faithful normal state on M.

DEFINITION. – We define \mathcal{O}_M to be the subalgebra $\mathcal{O}_{\mathcal{U}(M)}$ of \mathcal{O}_H consisting of the fixed points in \mathcal{O}_H under the canonical action of the unitary group $\mathcal{U}(M)$ of M.

Since for any factor M one has $TI \subset U(M)$, the inclusion $\mathcal{O}_M \subset \mathcal{O}_H^0$ holds. The following theorem characterizes \mathcal{O}_M as a C^* algebra.

THEOREM 1. – The C*-algebra \mathcal{O}_M is isomorphic to the C*-inductive limit of the w*-crossed products of $M' \otimes M' \otimes \ldots \otimes M'$, n factors, with the action of the symmetric group S(n) by permutating the factors:

 $\mathcal{O}_{M} \cong \lim_{n \to \infty} C^{*}(M' \otimes M' \otimes \ldots \otimes M') \times S(n).$

Let now $\omega = \omega_{\psi}$ denote the faithful normal state induced on M by a vector $\psi_{\infty} \in H$ and denote by $\widetilde{\omega}$ the restriction to \mathcal{O}_M of the infinite tensor state [vN] $\bigotimes_{n=1}^{\infty} \omega$ on \mathcal{O}_H^0 .

Theorem 2. – State $\tilde{\omega}$ is pure.

The following two sections are devoted to the proofs of the theorems stated above; in particular in section 3, where the second theorem is proved, some notions relative to the theory of asymptotically abelian systems are recalled from [DKKR] and [DKS]. Some problems that naturally arise in this framework shall follow in the last section.

2. - Proof of Theorem 1.

Let M_n , n = 1, 2, ... be any increasing sequence of finite type I factors with strongly dense union in M.

By Kaplansky's density theorem ([T] Thm 4.8), the unitary group $\mathcal{U}(M)$ is the strong closure of the amenable group $G = \bigcup_{n=1}^{\infty} \mathcal{U}(M_n)$, the union of the unitary groups of the M_n 's. Thus, denoting $\mathcal{O}_G \cap (H^n, H^n)$ by $(H^n, H^n)_G$ we have ([CDPR]):

$$\mathcal{O}_M = \mathcal{O}_G = \lim_{n \to \infty} (H^n, H^n)_G.$$

Now Theorem 1 follows immediately from the next lemma which is of some interest in itself.

LEMMA. – The commutant of $(H^n, H^n)_G$, i.e. the von Neumann algebra generated by the tensor products $u \otimes u \otimes ... \otimes u$ (n times) as u varies in $\mathfrak{U}(M)$, coincides with the fixed point subalgebra of $M \otimes M \otimes ... \otimes M$ under the action of S(n) by permutating the factors in the tensor product.

PROOF. – By the joint continuity of the product with respect to the strong topology on bounded subsets, we have that $(H^n, H^n)'_G$ is the von Neumann algebra generated by the subalgebras

$$R_{n,m} = \{ u \otimes u \otimes \ldots \otimes u \colon n \text{ times, } u \in \mathcal{U}(M_m) \}^{\prime\prime}$$

as m and n range over the positive integers.

By the theorem of Weyl we have that $R_{n,m}$ consists of the fixed points $(M_m \otimes M_m \otimes \ldots \otimes M_m)_{S(n)}$ under the action of S(n).

Denote by μ_n the average over this action on $\mathcal{B}(H) \otimes \mathcal{B}(H) \otimes \ldots \otimes \mathcal{B}(H) \cong \mathcal{B}(H^{\otimes^n})$; we then have

$$R_{n,m} = \mu_n(M_m \otimes M_m \otimes \ldots \otimes M_m).$$

Since μ_n is normal we obtain

$$\overline{\bigcup_{m=1}^{\infty} R_{n,m}} = \mu_n \left(\overline{\bigcup_{m=1}^{\infty} M_m \otimes M_m \otimes \ldots \otimes M_m} \right)$$

i.e.

$$(H^n, H^n)'_G = \mu_n(M \otimes M \otimes \ldots \otimes M),$$

as desired.

END OF THE PROOF OF THEOREM 1. – By the lemma we have $(H^n, H^n)_G = \{(M \otimes M \dots \otimes M) \cap \mathfrak{U}(S(n))'\}' =$

$$(M \otimes M \dots \otimes M)' \vee \mathcal{U}(S(n))'' = (M' \otimes M' \dots \otimes M') \times^{w^*} S(n),$$

where the commutant theorem has been used and the w^* -product refers to the action of S(n).

3. - Proof of Theorem 2.

We begin this section by recalling some definitions and results from [DKKR] and [DKS].

Let \mathfrak{A} be a C^* algebra, G a locally compact non compact group acting by automorphisms on \mathfrak{A} . Then $\{\mathfrak{A}, G, \alpha\}$ is an *asymptotically abelian system* if

 $\forall \varepsilon > 0, \forall A, B \in \Omega$ and any state $\Phi \in S(\Omega)$ of Ω , there exists a compact subset $K \subset G$ such that $g \notin K$ implies

$$|\Phi(A\alpha_{q}(B) - \alpha_{q}(B)A)| < \varepsilon$$
.

If $\phi \in S(\mathfrak{A})$ is a *G*-invariant state, i.e. $\phi(\alpha_g(A)) = \phi(A)$ for all $g \in G$ and $A \in \mathfrak{A}$, then the GNS construction relative to $(\mathfrak{A}, G, \alpha, \phi)$ yields a representation π_{ϕ} of the C^* algebra \mathfrak{A} on a Hilbert space H_{ϕ} with a cyclic vector Ω_{ϕ} and a unitary representation $U_{\phi}: G \ni g \mapsto U_{\phi}(g) \in \mathfrak{U}(H_{\phi})$ such that

$$\begin{aligned} (\Omega_{\phi} | \pi_{\phi}(A) \Omega_{\phi}) &= \phi(A) \,, \\ \pi_{\phi}(\alpha_{g}(A)) &= U_{\phi}(g) \,\pi_{\phi}(A) \, U_{\phi}(g)^{*} \,, \\ U_{\phi}(g) \, \Omega_{\phi} &= \Omega_{\phi} \,, \end{aligned}$$

for all $g \in G$ and $A \in \mathcal{A}$.

Let now \Re denote the von Neumann algebra generated by the set $\pi_{\phi}(\Im) \cup U_{\phi}(G) \subset \mathscr{B}(H_{\phi})$ and let E_0 denote the orthogonal projection in H_{ϕ} onto the subspace $\{x \in H_{\phi} : U_{\phi}(g)x = x, \forall g \in G\}$ of the *G*-invariant vectors.

Then the commutator \mathcal{R}' and the compression $E_0 \mathcal{R} E_0$ are abelian von Neumann algebras and the mapping

$$\mathcal{R}' \ni T \mapsto TE_0 \in E_0 \mathcal{R}E_0$$

is a surjective *-isomorphism. In particular for each $A \in \mathfrak{A}$ there exists a unique $M_{\phi}(A) \in \mathcal{R}'$ such that

$$M_{\phi}(A) E_0 = E_0 \pi_{\phi}(A) E_0$$

because the mapping M_{ϕ} is linear and positive; in particular $\{M_{\phi}(A): A \in \mathcal{A}\}$ is weakly-operator dense in \mathcal{R}' .

If in addition the group G is amenable one has $\mathscr{R}' \subset \pi_{\phi}(\mathfrak{C})''$ and the following conditions are equivalent:

(i) $(\Omega_{\phi} | \pi_{\phi}(A) M_{\phi}(B) \Omega_{\phi}) = \phi(A) \phi(B), \forall A, B \in \mathfrak{A}.$

(ii) Ω_{ϕ} is the only *G*-invariant unit-vector of H_{ϕ} , i.e. $E_0 = E_{\Omega_{\phi}}$, where $E_{\Omega_{\phi}}$ denotes the orthogonal projection of H_{ϕ} onto the subspace $C\Omega_{\phi}$.

(iii)
$$M_{\phi}(A) \in CI, \forall A \in \mathfrak{A}$$
.

- (iv) $\mathcal{R} = \mathcal{B}(H_{\phi})$.
- (v) \mathcal{R} is a factor.

(vi) ϕ is an extremal element of the convex set of all G-invariant states over ${\mathfrak A}.$

In our setting, if \widetilde{M}_{ω} denotes the von Neumann algebra generated by $\pi_{\widetilde{\omega}}(\mathcal{O}_{M})$, where $(\pi_{\widetilde{\omega}}, H_{\widetilde{\omega}}, \xi_{\widetilde{\omega}})$ denotes the GNS construction relative to the couple $(\mathcal{O}_{M}, \widetilde{\omega})$, then the proof of Theorem 1 yields that \widetilde{M}_{ω} is isomorphic to the w^{*} -crossed product of $\bigotimes_{n=1}^{\infty} \psi_{i} = \psi M'$ with the action of the infinite permutation group $S(\infty) = \bigcup_{n=1}^{\infty} S(n)$. But if $\mathfrak{A} = \bigotimes_{n=1}^{\infty} \psi_{n} = \psi M'$, $G = S(\infty)$, and α denotes the action of the

But if $\mathfrak{A} = \bigotimes_{n=1}^{\infty} \psi_n = \psi M'$, $G = S(\infty)$, and α denotes the action of the amenable group G by permutation of the factors, then $(\mathfrak{A}, G, \alpha)$ is an asymptotic abelian system since, given any $\varepsilon > 0$ and $A, B \in \mathfrak{A}$, one can find an integer n_{ε} such that if $g \in S(\infty) \setminus S(n_{\varepsilon})$ then $||A\alpha_g(B) - \alpha_g(B)A|| < \varepsilon$. Moreover the faithful normal state $\omega = \omega_{\psi}$ is $S(\infty)$ -invariant and $\Omega_{\omega} = \bigotimes_{n=1}^{\infty} \psi_n$ is the unique $S(\infty)$ -invariant vector so that $\mathfrak{R} = \widetilde{M}_{\omega}$ equals the whole of $\mathfrak{B}(H_{\omega})$, equivalently $\pi_{\widetilde{\omega}}$ is irreducible, i.e. $\widetilde{\omega}$ is pure.

4. – Problems.

PROBLEM 1.. – Let $N \subset M$ be an inclusion of type II_1 factors with finite Jones' index [J], $[M:N] < \infty$; then we have the controvariant inclusion $\mathcal{O}_M \subset \mathcal{O}_N$. Can we associate with this inclusion of C^* algebras some invariants which are computable? For instance what is the relation between the Watatani [W] index for $\mathcal{O}_M \subset \mathcal{O}_N$ and Jones' index [M:N]?

PROBLEM 2. – With ρ the identity representation of the unitary group $\mathcal{U}(M)$ of a factor $M: \rho(u) = u$, $u \in \mathcal{U}(M)$, investigate the inclusion ([CDPR])

$$\mathcal{O}_{\rho} \subset \mathcal{O}_{M}$$
.

Is it proper if M is not hyperfinite? What about for $M = \mathcal{L}(\mathbf{F}_n)$ the von Neumann algebra of the free group \mathbf{F}_n on n generators?

Acknowledgements. – I would like to thank Professor Sergio Doplicher for many valuable comments, suggestions and continuous encouragement. I also benefited of stimulating conversations with Professor Masamichi Takesaki. This research was completed during my Post-doc at the Section de Mathématiques de l'Université de Genève: I thank Professor Pierre de la Harpe for his kind hospitality.

This research was supported by the CNR.

REFERENCES

- [C] A. CONNES, Classification of injective factors, Ann. Math., 104 (1976), 73-115.
- [Cu] J. CUNTZ, Simple C*-algebras generated by isometries, Commun. Math. Phys., 57 (1977), 173-185.
- [CDPR] T. CECCHERINI S. DOPLICHER C. PINZARI J. E. ROBERTS, A generalisation of the Cuntz algebras and model actions, J. Funct. Analysis, 125 (1994), 416-437.
- [DKKR] S. DOPLICHER D. KASTLER R. V. KADISON D. W. ROBINSON, Asymptotically abelian systems, Commun. Math. Phys., 6 (1967), 101-120.
- [DKS] S. DOPLICHER, D. KASTLER, E. STØRMER, Invariant states and asymptotic abelianess, J. Funct. Analysis, 3 (1969), 419-434.
- [H] U. HAAGERUP, The standar form of von Neumann algebras, Math. Scand., 37 (1975), 271-283.
- [J] V. F. R. JONES, Index for subfactors, Invent. Math., 72 (1983), 1-25.
- [vN] J. VON NEUMANN, On infinite tensor products, Compos. Math., 6 (1938), 1-77, or, Collected Works, vol. III, n. 6, 322-399 (Pergamon Press).
- [R] J. E. ROBERTS, Cross products of von Neumann algebras by group duals, Symposia Mathematica, Vol XX (Convegno sulle Algebre C* e loro Applicazioni in Fisica Teorica, Convegno sulla Teoria degli Operatori, Indice e Teoria K, INDAM, Roma 1974, Academic Press, London (1976), 335-363).
- [T] M. TAKESAKI, Theory of Operator Algebras I, Springer-Verlag, New York, Heidelberg (1979).
- [W] Y. WATATANI, Jones index theory for C*-algebras, Mapping of operator algebras (Philadelphia, Penn., 1988) 239-250, Progr. Math., 84, Birkhäuser Boston, Boston, Mass. (1990).

Dipartimento di Matematica Pura ed Applicata, Università dell'Aquila, Via Vetoio - 67100 L' Aquila

e-mail: tceccher@mat.uniroma1.it

Pervenuta in Redazione il 25 febbraio 1997