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Bollettino U. M. 1.
(8) 2-B (1999), 189-217

When is 7Z[a] Seminormal or t-Closed?

MARTINE PICAVET-L’HERMITTE

Sunto. — Sia a un intero algebrico con il polinomio minimale f(X). Si danno condizio-
ni necessarie e sufficienti affinché Uanello 7Z[a] sia seminormale o t-chiuso per
mezzo di f(X). Come applicazione, in particolare, si ottiene che se f(X)=X3+
aX+b, a,be”, le condizioni sono espresse mediante il discriminante de

JX).

1. — Introduction.

Let a be an algebraic integer. Integral closedness of the ring Z[a] was the
subject of papers by T. Albu [1], G. Maury [5] and K. Uchida [12]. This last au-
thor got the following characterization [12, Theorem]:

THEOREM 1.1. — Let R be a Dedekind domain and a an element of some in-
tegral domain which contains R. If a is integral over R, then Rl[a] is a
Dedekind domain if and only if the minimal polynomial p(X) of a is not con-
tained in M? for any maximal ideal M of the polynomial ring R[X].

Our aim is to obtain a similar characterization for seminormality or t-
closedness of Z[a]. Recall some definitions:

A ring A is called seminormal if, for each (x, i) € A% such that x® = y2,
there exists a € A such that x =a?, y =a® When A is a reduced ring, A is
seminormal if and only if the natural map Pic(A4) — Pic (A[X]) is an isomor-
phism [10].

A ring A is called t-closed if, for each (x, y, r) € A® such that x® + rwy —
y? =0, there exists a € A such that x = a? — ra, y = a® — ra®. When A is a one-
dimensional Noetherian integral domain, A is t-closed if and only if the natu-
ral map Pic(4) — Pic(A[X, X "!]) is an isomorphism [7].

In section 2, we begin to recall some results about seminormality and t-
closedness gotten in [6], [7], [8], and we study properties of maximal ideals in
7Z[al.

In section 3, we give a necessary and sufficient condition for a ring Z[a] to
be seminormal:
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Let f(X) be the minimal polynomial of the algebraic integer a. Then any
maximal ideal M in Z[X] containing f(X) is of the form M = (p, g(X)) where p
is a prime integer and g(X) is a monic polynomial of Z[X] such that its residue
class in IF,[X] is an irreducible polynomial dividing the residue class of f(X) in
[F,[X]. Such a maximal ideal is lying over pZ.

Consider f(X) = q(X) g(X) + ¢(X), the Euclidean division of f(X) by ¢g(X),
and then ¢(X) = a(X) g(X) + b(X), the Euclidean division of q(X) by g(X), so
that

deg b(X), dege(X) <degg(X).
We can thus write
FX) =aX) g*(X) + b(X) g(X) + ¢(X).

Then, according to Proposition 3.1, Z[«a] is seminormal if and only if for each
maximal ideal M = (p, g(X)) of Z[X] such that f(X) e M2, we have

b2(X) — da(X) e(X) ¢ p*M .

Section 4 is devoted to the same problem relating to t-closedness, with a
more complex formulation : indeed, we have to distinguish the cases p =2 and
p#2:

7Z[a] is t-closed if and only if for each maximal ideal M = (p, g(X)) of
7[X] such that f(X) e M2, we have, with the previous notations:

— if p#2, then [b%(X) — 4a(X)c(X)]p 2 is not a quadratic residue mod M.

— if p=2, then b(X) ¢ 47Z[X] and b2(X)[723(X) + M(X)] — a(X) ¢(X) ¢ 4M
for each W(X) e Z[X].

Let R be a Dedekind domain, o be an element of some integral domain
which contains R and let a be integral over E. We end both sections 3 and 4 in
generalizing seminormality and t-closedness criteria to the ring Rla].

In section 5 we give an application of sections 3 and 4 to simple cubic or-
ders: if a is an algebraic integer with minimal polynomial f(X) = X3 + aX + b,
a,be”,let A= —(4a®+27b%) be the discriminant of f(X). We obtain inte-
gral closedness, t-closedness and seminormality criteria for Z[a]; these crite-
ria are related to arithmetical properties of 4, when 4 is divisible by a prime
integer p such that p # 2, 3 and does not divide both @ and b, and to arithmeti-
cal properties of f(a —b) or f'(a —b), for the other prime divisors of 4.
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2. — Some generalities.

We first recall some definitions and properties of seminormality and
t-closedness.

In the introduction we have just given the definitions of seminormal or t-
closed rings. These notions are closely intertwined with seminormal and t-
closed morphisms (see [6], [7], [10]).

DEFINITION 2.1. — An injective ring morphism A— B is said to be semi-
normal (resp. t-closed) if an element b of B is in A whenever b%, b®e A (resp.
whenever there exists some reA such that b*—rb, b3 —rb2eA).

PROPOSITION 2.2. — Let A be an integral domain with integral closure A.
Then, A is seminormal (resp. t-closed) if and only if A— A is seminormal
(resp. t-closure).

PROPOSITION 2.3. — Let A be an integral domain with integral closure A.
There exist two A-subalgebras *A and 'A of A such that * A (resp. 'A) is the
smallest seminormal (resp. t-closed) A-subalgebra of A4; the ring *A (resp. 'A)
1s called the seminormalization (resp. t-closure) of A.

We have the inclusion: "Ac’A; furthermore, A is seminormal (resp. t-
closed) if and only if A = " A (resp. A ='A). The composite A >+ A —'A—A is
called the canonical decomposition of A—A.

D. Ferrand and J. P. Olivier introduced in [4] the notion of minimal mor-
phism and showed there exist three classes of minimal morphisms:

DEFINITION 2.4 [4, Définition 1.1, Proposition 4.1 and Lemme 1.2].
1) A ring morphism f is said to be minimal if
(a) f is injective and non bijective
(b) for every decomposition f= g oh where g and h are injective ring

morphisms, g or h is an isomorphism.

(2) Let f: A—B be a finite minimal morphism between two one-di-
mensional Noetherian domains with the same quotient field. Then the con-
ductor of f is a maximal ideal P of A. Moreover, f satisfies one of the following
conditions:

(a) there exists x e B\A such that 22, x> A and x*< P: we say that f
1s ramified.

(b) there exists x € B\A such that x*—x, x® —x*c A and x> —xeP :
we say that fis decomposed.
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(¢) P is a maximal ideal in B and A/P— B/P is a minimal field ex-
tension: we say that f is inert.

Then, we showed in [8] the following result:

ProposITION 2.5 [8, Theorem 3.4]. — Let A be a one-dimensional Noetheri-
an domain such that A is finite over A. Then: A—"A (resp. TA—'A,'A— A)
18 a composite of finitely many ramified (resp. decomposed, inert) mor-
phisms, and is not factorized by another type of minimal morphism in any
decomposition into minimal morphism.

In particular, we have A = A if and only if there exist some maximal ideal P
in A and an element x e A\A such that xPcP.

For a Dedekind domain R (in particular if R = Z) and an element a of some
integral domain which contains R such that o is integral over R, the ring R[a]
satisfies the assumptions of 2.5.

Next we give some results on maximal ideals in Z[a] needed in the
following.

Let a be an algebraic integer with minimal polynomial f(X). Any element z
of Z[a] can be written a(a), where a(X) is a unique polynomial in Z[X], such
that dega(X) < degf(X).

Let p be a prime integer. For a polynomial a(X) = X a,X'e Z[X], we de-
note by a(X) the polynomial >uX'e IF,[X], where @, is the p-residue of ¢; in
I,.

For a given prime integer p, let f(X) =[] 7;(X)% be the decomposition of
f(X) into irreducible distinct polynomials f;(X), where f;(X) is a monic polyno-
mial and e; e N*. In particular, f;(X) and f;(X) have the same degree.

Now we give a key lemma. As far as we know, this is a new result which
looks like the results of T. Albu, G. Maury and K. Uchida (cf. 1.1). Unlike their
results, we do not need any hypothesis on the ring Z[a].

LEMMA 2.6. — Let p be a prime integer and M = (p, f(X)) be an ideal of
7IX] such that f(X) is a monic polynomial. Then p is not in M?2.

PROOF. — We have M2 = (p2, pf(X), f2(X)). Assume p e M2 Hence, there
exist a(X), b(X), ¢(X) e Z[X] such that p = pZa(X) + pf(X) b(X) + £ 2(X) c(X).
As f(X) is a monic polynomial, there exists a a zero of f(X) in the integral clo-
sure A of some finite algebraic extension of Q. Then we get p = p2a(a); as p #
0, we have pa(a) = 1; thus p is a unit of A, which leads to a contradiction since
there are maximal ideals in A lying over pZ: indeed, A is integral over Z.
Therefore, we get p ¢ M2
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PropoSITION 2.7. — Let a be an algebraic integer with minimal polynomaial
f(X). For a given prime integer p, let f(X) = H fL (X)% be the decomposition of

f(X) into irreducible distinct polynomials, where fi(X) is monic and e; e N*.
The maximal ideals of Z[a] lying over pZ are (p, fi(a)), fori=1, ..., n, and
pZ[a] if f(X) is irreducible in 7, [X].

Proor. — We know that the maximal ideals of Z[a] arise from maximal ide-
als of Z[X] containing f(X), due to the isomorphism Z[a] = Z[X]1/(f(X)). Be-
cause f(X) is a monie polynomial, a maximal ideal M ' of Z[X] containing f(X)
and a prime integer p can be written M’ = (p, g(X)), where g(X) is a monic
polynomial such that g(X) is irreducible in F,[X]. Thus f(X) = pa(X) +
g(X) b(X), where a(X), b(X) e Z[X], implies f(X) = g(X) b(X) in [F,[X]. There-
fore g(X) is a monic irreducible polynomial dividing f(X), so that g(X) = f;(X),
for some i. Hence M’ = (p, f;(X)) shows that P; = (p, f;(a)) is a maximal ideal
in Z[al.

If f(X) is irreducible in F,[X], we get f(X) = f;(X), whence f(X) =f;(X)
and fi(a) =0

DEFINITIONS 2.8. — From now, we denote by M;= (p, f.(X)) (resp. P;=
(p, fi(a))) the maximal ideals in Z[X] containing f(X) (vesp. in Z[a)).

LEMMA 2.9. — Let P;=(p, fi(a)) be a maximal ideal in Z[al, with f;(a) # 0.

(1) For g(a)eZ[a), we get g(a)eP; if and only if g(X) e (f;(X)) in
7, [X].

(2) Any element g(a)eP; can be written: g(a) = ala) f;(a) + pb(a),
where a(X), b(X) e ZI[X], and degb(X) < degf; (X).

3) If gla)eP; and degg(X) <degf;(X), then ala) =0 and g(a)e
pZlal.

Proor. — First we show (1). Let g(a) € Z[a]. Then we have g(a) € P; if and
only if there exist a(a), b(a) € Z[ a] such that g(a) = a(a) f;(a) + pb(a), that is
to say g(X) — a(X) f;(X) — pb(X) = f(X) ¢(X), with ¢(X) € Z[X], from which it
follows that g(X) = @(X)f;(X) + f(X)¢(X) in F,[X]. Since f(X) is divided by
f;(X), so is g(X).

Conversely, if g(X) e (f;(X)), we can write g(X) = a(X)f;(X) in IF,[X]. So,
there is b(X) e Z[X] such that ¢g(X) = a(X) f;(X) + pb(X), whence g(a) =
ala) fi(a) + pb(a) € P;.

(2) For g(a) e Zla], let g(X) = a(X) f;(X) + a' (X) be the Euclidean divi-
sion of g(X) by f;(X), with dega’'(X) < degf; (X). This equality leads to g(a) =
a(a) fi(a) + a'(a). Thus g(a) e Pie=a'(a) e P (X) e (f;(X)) by (1). But,
deg @' (X) < dega'(X) <degf (X) = deg f;(X) implies @’ (X) =0 and o' (X) =
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pb(X) in Z[X], with degb(X)=dega’'(X)<degf;(X). Then, g(a)=
a(a) fi(a) + pb(a), with deg b(X) < degf; (X).

3) If degg(X) < degf;(X), the Euclidean division of g(X) by f;(X) gives
g(X) =0 f:(X) + g(X). With the notations of (2), we get then a(X) =0, g(X) =
pb(X), so that a(a) =0 and g(a) = pb(a) € pZ[al.

Assume that the polynomial f(X) is not irreducible in IF,[X] for a prime p €
7. Let f;(X) be an irreducible monic divisor of f(X) in I, [X]. If f; (X) is a monic
polynomial in Z[X] with residue f;(X) in IF,[X], consider f(X) = ¢(X) f;(X) +
¢(X) the Euclidean division of f(X) by f; (X), and ¢(X) = a(X) f;(X) + b(X) the
Euclidean division of ¢(X) by f,(X). Thus we obtain unique polynomials
a(X), b(X), ¢(X) € Z[ X] such that:

() fX) = a(X) f2(X) + bX) f;(X) + e(X)
where deg b(X), degc(X) < degf; (X).
DEFINITION 2.10. — Under the above conditions, we say that
fX) = aX)fFX) +b(X) f;(X) + (X)), where degb(X), degc(X) < degf;(X)
is the double Euclidean division of f(X) by f;(X).

In F,[X] we get f(X) = a(X) f7(X) + b(X) f;(X) + ¢(X). Since f;(X) divides
f(X), it divides also ¢(X); inequalities between degrees give then

deg ¢(X) < degc(X) < degf;(X) = deg f;(X).

So &X) =0 and ¢(X) e pZ[X].
Relation (=) implies the relation in Z[al:

(%%) a(a) fE(a) + bla) f;(a) +c(a) =0.

In the next two sections, we are looking for seminormality or t-closedness
criteria of Z[a]. The next result will be useful in these two sections:

ProposITION 2.11. - Let P; = (p, f;(a)) be a maximal ideal of Z[al There
exists xe Qlal\Z[a] such that xP;c P; if and only if f2(X) divides f(X) in
F,[X] and p¢P?.

Under these conditions and with notation 2.10, we have b(X) e pZ[X],
c(X) e p?Z[X] and f(X) e (p, f(X))2

PRrOOF. — As we have P; = (p, f;(a)), the condition xP;c P; is equivalent to
px, xf.(a)eP;. Thus we can write x= [ph(a)+f(a)k(a)]lp !, where
X)), ki(X) e Z[X].
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We get f;(a) ki (a) p 1¢Z[a] due to x ¢ Z[al, so that f;(a) k() ¢ pZ[a].
Furthermore, the condition f; (a) x € P; gives h(a) f;(a) + fZ(a) ki(a) p "t e P;,
which is equivalent to fZ(a) k;(a) € pP;. But this last condition is satisfied if
and only if there exist g,(X), k1 (X), k(X) e Z[X] such that

FEX) ki (X) = p? g1 (X) + pfs (X) by (X) + k(X) f(X),

which gives fzz X))k (X) = E(X)f'(X) in F,[X]. Iffi (X) divides %(X), we obtain
FiXD k(X)) = k2 (X)f(X), with k(X) e F,[X] and then we have f;(X) k;(X) =
ko (X) f(X) + pks(X) in Z[X]; so, fi(a) ki (a) = pks(a) e pZ[a]l, a contradiction.
Then, f;(X) and k(X) are coprime and f2(X) divides f(X). By (* ), we get that
fi(X) divides b(X) in IF,[X]; it follows from deg b(X) < deg f;(X) that b(X) = 0,
whence b(X) e pZ[X]. As k(X) f(X) e (p, f,(X))? and k(X) does not belong to
the maximal ideal (p, f;(X)), we obtain in addition that f(X) belongs to the pri-
mary ideal (p, f;(X))2.

But, we can write ¢(X) = pcy(X) =f(X) — a(X) fA(X) — b(X) f;(X) which
implies pe,(X) € (p, f(X))? with p ¢ (p, f;(X))* by 2.6; for the same reason, we
get c;(X) e(p, £.(X)), and cx(X) e pZ[X], c(X) e p2Z[X], since degc,(X) =
degc(X) < degfi(X).

If peP? we get that p=pZa' X)+pf(X)b' X)+fEX)c' (X)+
f(X) d'(X) where o' (X), b'(X), ¢'(X), d'(X) e Z[X]; as f(X) e (p, ﬁ(X))Z, we
should have p e (p, £(X))? in contradiction with 2.6. Thus we get p ¢ P2.

Conversely, assume f;(X)* divides f(X) in F,[X] and p ¢ P7. Then we have
@ =f(a) alw) p ‘e Zlal (if not, we get f;(X)a@(X) e (f(X)) in F,[X]). Obvi-
ously, we have px e P;, as well as f;(a) x, since f.(a) x = a(a) fZ(a)p 1= —
[b(a) fi(a) + c(a)] p " by (= *): indeed, we have just seen that b(X) e pZ[X]
since f2(X) divides f(X) and cy(a) € P; since c(a) = pey(a) = —a(a) fE(a) —
b(a) f,(a) € P2, with p ¢ P2

REMARKS 2.12.
(1) From «P;c P; where P; = (p, f;(a)), we deduce the system:
[[A(a) —2]p+ B(a) fi(a) =0,
Cla)p + [D(a) — 2] fi(a) =0,

where A(a), B(a), C(a), D(a) € Z[a].
It follows that % — [A(a) + D(a)]x + [A(a) D(a) — B(a) C(a)] = 0; hence
x satisfies a quadratic relation over Z[a] and is integral over Z[a].

(2) Under assumptions of 2.11, we can henceforth put 6(X) = pb;(X) and
c(X) = p?e(X), with by (X), ¢;(X) e Z[X]. Then 2.10 gives:

(s ) a(a) fE(a) = —pby(a) f;(a) — pZe;(a) e pP;
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PROPOSITION 2.13. — Let a be an algebraic integer with minimal polynomi-
al f(X); the following conditions are equivalent:

(1) Zla] is not integrally closed.

(2) There is a maximal ideal (p, f;(X)) in Z[X] such that f(X)e
(p, (X))

(8) There exist a prime integer p and an irreducible monic polynomial
f.(X) e ZIX] such that f3(X) divides f(X) and p ¢ (p, f(a))%

Furthermore, if one of these equivalent conditions holds, f(X) belongs to
the square of a maximal ideal (p, f;(X)) in ZIX] if and only if fZ(X) divides
fX) and pe(p, fi(a)).

PROOF. — (1)< (2) is 1.1. We have (1)=(3) by 2.11 (we cannot have P; =
pZ[a] since x ¢ Z[a]). Conversely, by 2.11, (3) yields x € Q[a]\Z[a] such that
xP;c P;, for a maximal ideal P; of Z[a]. Now 2.12 (1) shows that x is integral
over Z[al, so that Z[a] is not integrally closed.

When Z[a] is not integrally closed, there are maximal ideals (p, f;(X)) in
7[X] such that f(X) e (p, f,(X))? (see 1.1). We can ask what is the link be-
tween a and the prime integers p. The answer is given by the following
proposition:

PROPOSITION 2.14. — Let a be an algebraic integer with minimal polynoma-
al f(X) such that Z[a] is not integrally closed. Let w7 be the anwnihilator of
the Z-module 7Z[al/Z[a), where 7Z[a] is the integral closure of Z[al If
(p, £:(X)) is a maximal ideal of ZIX], then f(X) € (p, f(X))? if and only if p
divides n and f;(X) is a monic irreducible divisor of f(X) in 7, [X].

PROOF. — Let #Z be the conductor in 7 of Z[a]— Z[a]. For a prime inte-
ger p, set S = 7\ pZ. Obviously Z[als— Z[a]g is an isomorphism if and only if
n ¢ pZ. Then Zlals is integrally closed if and only if n ¢ pZ. But we have
Zlals =7glal and f(X) € Zg[X] is still the minimal polynomial of «. Since Zg
is a Dedekind domain, Zg[a] is integrally closed if and only if f(X) is not con-
tained in the square of any maximal ideal of Zs[X] by 1.1. But the maximal ide-
als of Zg[X] containing f(X) are of the form (p, f;(X)), where f;(X) is an irre-
ducible factor of f(X) in F,[X].

To sum up, the following statements are equivalent:

® p divides n,
® 7sla] is not integrally closed,
® f(X)e(p, f.(X))Zs[X] for some f,(X) in Zg[X].
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This last condition is equivalent to the following:
® f(X)e(p, f.(X))*Z[X] for some f;(X) in Z[X].

One implication is obvious. Conversely, assume that f(X)e
(p, f:(X))?Zs[X], where f;(X) € Zs[X]. As I, is the residue class field of Z and
Zg, there exists f;' (X) e Z[X] such that f;(X) — f;' (X) e pZs[X] so that we can
choose f;(X) € Z[X]. Since f(X) e (p, f.(X))*Zs[X], we can write in a unique
way : f(X) = a(X) f7(X) + pb(X) f;(X) + p*e(X), with a(X), b(X), ¢«(X) e Zs[X]
and deg b(X), degc(X) < degf;(X). But, as f(X) and f; (X) e Z[X], we can also
consider the double Euclidean division of f(X) by f;(X) in Z[X]. We have then,
in a unique way:

X)) =a' X fFEX)+b' X)X+ (X)),

with o’ (X), b'(X), ¢’ (X) eZ[X] and degb’(X), degc'(X) <degf;(X). By
unicity of the division in Zg[X] we have:
aX)=a'(X), b'(X)=pbX) epZs[XINZ[X].

m

Ifo'(X)= Eb X7 and b(X) = Ebs 1 X7, with bj, bj € Z and s;e S, then

s;b/ = pb; for each Jyield b/ e pZ smce s;¢pZ.Sob’ (X) e pZ[X]. In the same
way, we get ¢'(X)=p c(X)ep ZS[X]ﬁZ[X] p2Z[X]. Thus we have
fX) ep, f;(X))Z[X] with f;(X) e Z[X].

REMARK. — We can find prime integers p such that Zg[a] is not integrally
closed in another way : let d be the discriminant of f(X); if f(X) € (p, f,(X))?,
then p divides d. So, we have only to consider the prime divisors of d.

Let R be a Dedekind domain. The double Euclidean division obtained in
2.10 is still valid for a Dedekind domain. For each maximal ideal P in R, the
ring Rp is a principal domain. Let a be an element of some integral domain
which contains R and such that « is integral over R and let f(X) € R[X] be the
minimal polynomial of a. Then a is also integral over Ry and f(X) is still its
minimal polynomial in Rp[X]. Moreover, for a maximal ideal P in R, we can
identify R/P and Rp/PRp. So, let f;(X) be a monic polynomial in R[X] such that
f;(X) is a monic irreducible divisor of £(X) in R/P[X]; we get then that f;(X) is
also a monic polynomial in Rp[X] such that f;(X) is a monic irreducible divisor
of f(X) in Rp/PRp[X]. Hence it follows that the double Euclidean division of
f(X) by f:(X) in R[X] given in 2.10 is still the double Euclidean division of f(X)
by f(X) in Rp[X] and, for f(X)=a(X)fiX)+bX)f(X)+c(X) with
a(X), b(X), ¢(X) e R[X], we also have a(X), b(X), c¢(X) e Rp[X].

Now, if P is a maximal ideal in R, there exists p € P such that PRp = pRp,
where p is an irreducible element in Bp. A maximal ideal in R[X] containing
f(X) is of the form (P, f;(X)) [12, Lemma] so that (p, f;(X)) is a maximal ideal
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in Rp[X] containing f(X). Conversely, a maximal ideal in Rp[X] containing
f(X) is of the form (p, f;(X)) and comes from a maximal ideal (P, f;(X)) in
R[X]. So we get:

LEMMA 2.15. — Let R be a Dedekind domain and P be a maximal ideal in
R such that PRp = pRp, with pe P. For any monic polynomial f(X) e R[X]
such that (P, f(X)) is a maximal ideal in R[X], we have (P, f(X))=
(p, fX)) NRIX] (resp. (P, f(X))* = (p, f(X))* N RIX]), where (p, f(X)) is a
maximal tdeal in Rp[X].

Proor. — We have obviously (P, f(X))c (p, f(X)) N R[X].

Let g(X) e (p, f(X)) N R[X]. The Euclidean division of ¢g(X) by f(X) in
R[X] gives g(X) = a(X) f(X) + b(X), with deg b(X) < deg f(X) and a(X), b(X) e
R[X]. We get then b(X)epRp[X]N R[X]=PR[X]. Thanks to p2Rp[X]N
R[X] = P2R[X] we obtain the second equality by considering the double Eu-
clidean division of a polynomial by f(X).

To close the section, we have the following result:

PROPOSITION 2.16. — Let R be a Dedekind domain and a be an element of
some integral domain which contains R where o s integral over R. Then
Rl[a] is seminormal (resp. t-closed) if and only if Rplal is seminormal (resp.
t-closed) for each maximal ideal P in R.

ProoF. — Consider a maximal ideal P in R. We have obviously Rpla] =
(Rla])p. If R[a] is seminormal or t-closed, so is Rp[a] [10, Proposition 3.7] and
[7, Proposition 1.15].

Conversely, as R[a] is an R-module, we have R[a] =PEanR(R[a])p=

- 1@ R(Rp[a]). Then, if Rp[a] is seminormal (resp. t-closed) for each maximal

ideal P in R, so is R[a] by [10, Corollary 3.2] and [7, Proposition 1.14].

3. — When is Z[a] seminormal?

In view of 2.4 and 2.5, a nonseminormality condition for Z[a] is the follow-
ing : there is some x e Q[a]\Z[a] such that 2%, x®e Z[a] and M c M, for a
maximal ideal M of Z[a] : indeed, Z[a] is not seminormal if and only if Z[«a] #
*Zlal, or equivalently, if and only if there exists a subring B of the integral
closure of Z[a] such that Z[a]— B is a ramified morphism.
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ProPOSITION 3.1. — Let a be an algebraic integer with minimal polynomial
JX).
For each maximal ideal M; = (p, f;(X)) of Z[X] containing f(X), let

fX) = a(X) fZ(X) + b(X) £(X) + e(X)

be the double Euclidean division of f(X) by f;(X).
Then, Z[a] is not seminormal if and only if there exists a maximal ideal
M;=(p, £.(X)) of ZIX] containing f(X) such that f(X)eM? and

b2(X) — da(X)e(X) e p2 M, .

ProOF. — As we have just seen, Z[a] is not seminormal if and only if there
exists v € Q[a]\Z[a] such that x2, x3e Z[a] and xP;c P;, for a maximal ideal
P; in Z[a]. Such an ideal P; is the conductor of Z[a] — Z[a, x] where Z[a, x]
is a Z[a]-module generated by 1 and x. Thus, Z[«a] is not seminormal if and
only if there exists € Q[a]\Z[a] such that x2 e P; and xP;c P;, for a maximal
ideal P; of Z[a]. The condition xP;c P; is characterized in 2.11, and we have
x = [ph(a) + f;(a) k;(a)]p ~!, under the notations of 2.11; furthermore, we got
in the proof of 2.11 that f2(X)k,(X) = f(X) k(X), where k(X) and f;(X) are co-
prime; then we have k,(X) = k(X)@(X) by (). We can now write, with new no-
tations: x = [ph(a) + f;(a) k(a) a(a)]p ~}, where k(X) and f;(X) are coprime in
I7, [X].

Now consider condition (i): %€ P;. The following statements are equiva-
lent to (i):

(ii) p2h2(a) + 2pfi(a) k() k(a) ala) -I—ff(a) k2(a) a?(a) eszi;
(iii) ph®(a)+2f;(a) a) k(a) a(a)—k*(a)a(a)lf;(a) by () +pe;(a)]epPy;

() ph*(X) + 2£X) MX) KX) a(X) — k*(X) aX)[fX) b1 (X) + pey(X)]=
p2rX) + pfi(X) s(X) + t(X[a(X) fA(X) + pb(X) f;(X) + p2ey(X)], where
(X)), s(X), «X) e Z[X].

Now, (iv) implies: 7;(X) K(X) aX)2RX) — kX) b, (X)] = (X) aX) F2(X)
in F,[X], which is equivalent to: k(X)[2M(X) — k(X) b;(X)] = {X) f;(X). As
k(X) and f;(X) are coprime, f; (X) divides 2/(X) — k(X) b;(X) whence 2/(a) —
k(a) by(a) € P;. Since fZ(a)a(a)epP;, we have a(a)f,(a) P;c pP; (indeed,
pa(a) fi(a) e pP; and a(a) fZ(a) e pP;). So, condition 2/i(a) — k(a) b;(a) € P;
implies that (i) is equivalent to: ph2(a) — pk*(a) a(a) ¢;(a) € pP;, from which
it follows that 2%(a) — k*(a) a(a) ¢;(a) € P;; this last condition is equivalent to
fi (X) divides 22(X) — k2(X) a(X) ¢ (X) in I, [X]. Thus we get from (i) the two
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conditions: f;(X) divides 2/(X) — k(X) b;(X) and h*(X) — k*(X) a(X) ¢ (X) in
IF,[X]. Hence we have in I,[X] congruences mod (f;(X)):

J 20(X) = k(X) b;(X),
[ EZ(X) = l_cz(X) a(X) ¢, (X).

Eliminating 72(X), these two relations combine to yield: f;(X) divides
E2(X)[D3(X) — 4a(X) ¢ (X)]. Since k(X) and f;(X) are coprime, f;(X) divides
b3(X) —4a(X) ¢;(X). Then it follows from 2.9 that bZ(X) —4a(X)¢;(X) e
(, £(X)) and b2(X) — 4a(X) «(X) e p%(p, f;(X)), since b(X) =pb,(X) and
¢(X) = p?e;(X). The direct part of the proof is done.

Conversely, assume that there exists a maximal ideal M; = (p;, f;(X)) in
7[X] such that f(X) e M? and b%(X) — 4a(X) ¢(X) e p?M;. Thus we have by
2.11: bZ(a) — 4a(a) ¢;(a) € P;= (p, f;(a)). Now we have to consider two cases:
p=2 and p=2.

o If p=2.

Observe that bZ(a) € P;; it follows that b,(a) € P;, since P; is a prime ideal.
As degb;(X) < degf;(X), we get b;(X) e2Z[X] and b,(a) e 2Z[al].

Each element of the finite field K = IF,[X]/(f;(X)) is a square since the
characteristic of K is 2. Thus there exists (X)) e Z[X] such that %(X) —
G (X)) aX) e (f;(X)), or equivalently, such that 2%(a)—c¢,(a) a(a) e P;. Set
r="ha)+f(a)a(a)2”t. We have x¢Z[al, otherwise relation f.(a)a(a)e
27[a] implies that £(X) divides f;(X) a(X) in F,[X], a contradiction by 2.10.
Such an x satisfies xP;c P; since f#(a) a(a) € 2P;. Furthermore, we have:

22=h%a) + ha) fi(a) ala) +fi2(a) a?(a)27 2=
() fi(a) ala) + [h2(a) — ¢;(a) ala)] — ala) by(a) fi(a)2 e P;,

since h2(a) —¢;(a) a(a) e P; and b;(a) e2Z[al. So, there exists xe Qla] —
Z[a] such that xP;c P; and x2e P;. Therefore Z[a] is not seminormal.

o If p=2,

As p is odd, we can write p =2n — 1, where neN*. Set x=nb,(a) +
a(a) f;(a)p ~1. We obtain x ¢ Z[a] as above, since a(a) f;(a) ¢ pZ[a]; further-
more xP;cP; because fZ(a)a(a)epP;. Thus we get x®=n%bZ(a)+
2nb;(a) fi(a) ala)p P+ f2(a) a?(a) p 2 But bi(a)—4a(a)c;(a) =by(a)e
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P; implies
22 =n2by(a) +4n’ala) ¢;(a) +
2mb (a) fi(@) ala) p "+ ala) p ~*[=pby () fi(a) = p*ei(a)] =
nZby(a) + (4n%—1) ala) ¢i(a) + (2n —1) p "tby(a) fi(a) ala).

Thus p =2n — 1 implies %€ P; and Z[a] is not seminormal.

Next, we give one of our main results, a seminormality criterion for an or-
der Zlal.

THEOREM 3.2. — Let a be an algebraic integer with minimal polynomial
J(X).
For each maximal ideal M; = (p, f;(X)) of Z[X] containing f(X), let

fX) = a(X) f2(X) + bX) £(X) + e(X)

be the double Euclidean division of f(X) by f;(X).
Then 7[a] is seminormal if and only if b*(X) —4a(X) ¢(X) ¢ p>M; for
each prime pe”Z and f.(X) for which f(X) e MZ.

ProoF. — We know that integral closedness implies seminormality. Z[a] is
seminormal if and only if the conditions of 3.1 are not fulfilled, that is to say,
for each maximal ideal (p, f;(X)) in Z[X], either f(X) ¢ (p, f;(X))? or f(X) €
(p, £X)P and b32X)—4aX) c(X) ¢p®(p, £(X)). If we have f(X)¢
(p, f;(X))? for each maximal ideal (p, f;(X)) in Z[X], apply 1.1 to get that Z[a]
is integrally closed.

COROLLARY 3.3. — Let R be a Dedekind domain and o be an element of
some integral domain which contains R where o is integral over R. Let
f(X) e R[X] be the minimal polynomial of a. For each maximal ideal M; =
(P, (X)) in RI[X] containing f(X), let

fX) = a(X) f2X) + bX) £(X) + e(X)

be the double Euclidean division of f(X) by f;(X) in R[X] and let p € P be such
that PRp = pRp. Then R[a] is seminormal if and only if, for each maximal
ideal M;= (P, f.(X)) in R[X] such that f(X)eM?, we have:

® 2¢ P implies b*(X) — 4a(X) ¢(X) ¢ P2M,,

® 2cP implies b(X)¢ P R[X] or p 2a(X)c(X) is not a quadratic
residue mod (M;)p.
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ProoOF. — By 2.16, R[] is not seminormal if and only if there exists a maxi-
mal ideal P in R such that Bp[a] is not seminormal. As far as the PID property
of the ring Z is used we can go back to the proof of 3.1 since Rp is a principal
domain. If Rp[a] is not seminormal, by the first part of the proof of 3.1, there
exists a maximal ideal (M;)p = (p, f;(X)) in Rp[X], where M; = (P, f;(X))is a
maximal ideal in R[X], such that f(X)e (Mi)% and b2(X) —4a(X) ¢(X) e
p2(M;)p N R[X]=P2M,;. Moreover, we have b(X)=pb;(X) and c(X)=
pZey(X), with by (X), ¢;(X) e Rp[X]. So we get bZ(X) —4a(X) ¢;(X) e (M;)p.
Following the notations of the proof of 3.1, we still have in Rp/PRp[X] the con-
gruence h%(X) = k2(X)a(X) ¢, (X) mod (f;(X)).

If 2 € P, condition b2(X) — 4a(X) ¢(X) € P2 M, implies b*(X) € P2 M,;, since
c(X) e M;. Because we can write b(X) =pb,(X) in Rp[X], we get bZ(X)e
(M;)p. As in the proof of 3.1, we get then b,(X) e pRp[X], which implies
b(X) e p?Rp[X] N R[X] = P2R[X].

Conversely, let us assume that there exists a maximal ideal M,;p=
(p, f:(X)) in Rp[X] such that f(X) e (M;)? and such that:

— if 2¢ P, then b*(X) —4a(X) c(X) e P2 M,

- if 2e P, then b(X) e P2R[X] and p 2a(X) ¢(X) is a quadratic residue
mod (M;)p.

o If 2 ¢ P, we get that 2 and p are coprime in Rp. Hence we can write
2n+mp =1, with n, me Rp and the proof of 3.1 is again valid with
x=nb;(a) + a(a) fi(a)p .

e If 2e P, as R/P is not necessarily a finite field with characteristic 2,
any element may not be a quadratic residue mod (M;)p. Anyway, we can set
2=pn,neRp. If a(X)c;(X)=a(X)c(X)p ? is a quadratic residue mod
(M;)p, there exists h(X) e Rp[X] such that h%(X) —¢,(X) a(X) e (f;(X)) in
Rp/PRp[X]. Moreover, we have b, (X) € pRp[X] since b(X) € P2R[X]. We take
then x = h(a) + f,(a) a(a) p ! and we end the proof as in 3.1.

So we get the following result:
R[a] is not seminormal if and only if there exists a maximal ideal M; =
(P, f(X)) in R[X] such that f(X) e M? and such that:

- if 2¢ P, then b*(X) — 4a(X) ¢(X) e P2 M,

- if 2eP, then b(X)eP?R[X] and p Za(X)c(X) is a quadratic
residue mod (M;)p.

Then the seminormality criteria follows immediately.

REMARK. — If 2 is a unit in R or if R/P is a finite field for each maximal ideal
P in R containing 2, we recover the condition of 2.2.
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4. — When is Z[a] t-closed?

As in the previous section, we begin to give conditions for Z[a] not to be t-
closed. By 2.3, Z[a] is not t-closed if and only if Z[a] # 'Z[a], or equivalently,
Z[al—"Z[a] is composed only of ramified or decomposed minimal morphisms
(by 2.5). So, it follows from 2.4 that Z[«] is not t-closed if and only if there
exists a subring B of the integral closure of Z[a] such that Z[a] — B is a rami-
fied or a decomposed morphism. Hence, we deduce from 2.4 that Z[«] is not t-
closed if and only if there is some x € Q[a]\Z[a] and a maximal ideal P of Z[a]
with &P c P, where P is the conductor of Z[a]—Z[a, x], such that:

(1) either x2, x®eZ[al,
@) or x%2—ux, x®—x2eZ[al.
Condition (1) means that Z[a] is not seminormal and is 3.1.
Thus we are aiming to give a necessary and sufficient condition for the ex-

istence of x € Q[a]\Z[a] and a maximal ideal P of Z[a] such that xPc P and x
satisfies (2).

LEMMA 4.1. — Let a be an algebraic integer with minimal polynomial f(X).
For each maximal ideal M; = (p, f;(X)) of Z[X] containing f(X), let

fX) = a(X) f2(X) + bX) f;(X) + e(X)

be the double Euclidean division of f(X) by f;(X).

Then, there exist x e Qlal\Z[a] and a maximal ideal M;= (p, f;(X)) of
71 X] containing f(X) such that x(p, f.(a))c(p, fi(a)) and 2% —xe(p, f.(a))
if and only if f(X) e M? and:

—ifp=2, [b%2(X)—4a(X) «(X)]p 2 is a nonzero quadratic vesidue mod M;.
—if p=2, b(X) ¢ 47Z[X] and there exists MX) € Z[X] such that

bEX)[hE(X) + M(X)] — a(X) e(X) €4 M; .

PROOF. — For a maximal ideal M; = (p, f;(X)) of Z[X], let P; be the maximal
ideal (p, fi(a)) of Z[al. As in 3.1, the condition xP;c P;, for xe Q[a]\Z[a]
gives x = [ph(a) + f;(a) k(a) a(a)]p 1, where k(X) and f;(X) are coprime in
IF,[X], so that f;(a) k(a) a(a) ¢ pZ[a]. The following statements are equiva-
lent:

G)x%—axeP;,

(i) plh*(a) — ha)] + fi(a) k(a) a(a)[2h(a) — 1] — k*(a) a(a) by (@) f;(a) +
pei(a)] e pPy,
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(i) pLh*(X) — MX)] + f(X) k(X) a(X)[2/(X) — 1] — k*(X) a(X)[b:(X) f;(X) +
per(X)] = p? ax(X) + pfi(X) by(X) + ¢2(X) f(X), with a5 (X), by(X), ¢2(X) € Z[X].

Then (iii) implies in [F,[X] the relation:

Fi (0 KX) a@ORIX) -1 - KX) b;(X)] = &X)fHX) aX)
so that: K(X)[21(X) — 1 — k(X) b, (X)] = &(X) f;(X). But, as k&(X) and f;(X) are
coprime, we get the following condition
Fi(X) divides 27(X) — T — R(X) b,(X) (1)
Thus, 2/(a) — 1 — k(a) by(a) € P; allows us to write:
2Ma) =1 = k(a) by(a) = pag(a) + fi(a) bs(a), with as3(X), b3(X) e Z[X].

So (i) implies plh%(a) — h(a)] +fi(a) k(a) a(a)[pas(a) + f(a) bs(a)] —
pk?(a) ala) ¢;(a) e pP; which gives h2(a) — h(a) — k2?(a) a(a) ¢;(a) e P; and
then

(X)) divides h2(X) — h(X) — E2(X) @(X) &, (X) (T1).

To sum up, (i) implies (1) and (7). To carry on the direct part of the proof
we have to consider two cases.

— If p = 2, condition () becomes : f;(X) divides 1 + k(X) b, (X). So, f;(X)
and b;(X) are coprime, b(X) ¢ 47[X] and we get:

(i) = fi(X) divides b7(X)[A*(X) + M(X)] — AX) & (X)

=> there exists (X) e Z[X]
such that bZ(X)[h%3(X) + K(X)] — a(X) ¢;(X) € (2, (X))

=> there exists (X) e Z[X]
such that b2(X)[h%3(X) + MX)] — a(X) ¢(X) €4(2, f.(X)).

- If p#2, as in 3.1, set p =2n — 1. Eliminating A(X) between (7) and
(1), we get that (7) < f;(X) divides n(X) — %[l + k(X) b;(X)] and this last
condition combines with (i) to give the following equivalent conditions to
(T7):

® 7 (X) divides 721 +2k(X) b;(X)+k3(X) b3(X)] — 7[1 +
E(X) b;(X)] - k*(X) a(X) & (X)

o fi(X) divides W*-n+@n—1) Wk(X) by (X)+EA(X)[M2BHX) -
a(X) ¢ (X)].

e 7, (X) divides 4% —7n) + 4k*(X)[n2b3(X) — a(X) ¢,(X)],

o 7.(X) divides k2(X)[B}(X) — 4a(X) & (X)] - 1.
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Now, bearing in mind that k(X) and f;(X) are coprime, we observe that
there exists k;(X) such that f;(X) divides k(X)k;(X) — 1. Therefore, we get
that (71) is equivalent to

Fi(X) divides B2(X) — da(X) &, (X) — I2(X),

which implies bZ(X) — 4a(X) ¢;(X) = [b%(X) — 4a(X) ¢(X)] p 2 is a nonzero
quadratic residue mod (p, f; (X)).

Conversely, let us assume that the conditions of 4.1 are fulfilled.
If p =2 and if there exists k;(X) e Z[X]\(p, f;(X)) such that

[0%(X) — 4a(X) «X)]p > = kf(X) e (p, fi(X))

we have bZ(a) —4a(a) ¢,(a) — ki(a) € P;.
Consider A(X) =n[1 + k(X) by (X)], with k(X) k;(X) — 1 e (p, f, (X)), since
k1(X) and f;(X) are coprime. By the direct part of the proof, we get:

R*(X) — X)) = k*(X) a(X) ¢, (X) e (p, f;(X));

setting © = h(a) + f:(a) k(a) a(a) p ~1, we have: x ¢ Z[a], x? — x e P; and xP;C
P;, since 2h(X) — 1 — k(X) b;(X) e (p, f;(X)).

If p =2, assume that b(X) ¢ 47[X] and that there exist A(X) e Z[X] such
that b2(X)[A%(X) + M(X)] — a(X) ¢(X) €4(2, f.(X)) and k(X) € Z[X] such that
E(X) b;(X)—1e(2, £(X)). Then, for x=h(a)+f(a)k(a) a(a)2™!, we still
have x e Q[a]\Z[a] such that xP;c P; and x%— x e P, and we are done.

PROPOSITION 4.2. — Let a be an algebraic integer with minimal polynomial
SX).
For each maximal ideal M; = (p, f;(X)) of Z[X] containing f(X), let

fX) = a(X) f2(X) + bX) £, (X) + e(X)

be the double Euclidean division of f(X) by f;(X).
Then, Z[a] is not t-closed if and only if there exists a maximal ideal M; =
(p, (X)) of Z[X] such that f(X) e M? and:

(a) if p=2, [b3X)—4aX)cX)]p 2 is a quadratic residue mod
M;.

(b) if p=2, b(X) e4ZIX], or there exists M(X) e Z[X] such that

bEX)[hA(X) + M(X)] — a(X) ¢(X) €4 M; .
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ProoF. — Come back to the beginning of this section. We have seen that
Z[a] is not t-closed if and only if there exist some x € Q[a]\Z[«a] and a maxi-
mal ideal P of Z[a] with P c P such that:

(1) either x2, x®eZ[al,

@) or x%—ux, x®—x%eZ[al.

If (1) is satisfied, Z[a] is not seminormal and there exists, by 3.1, a maximal
ideal M; = (p, f,(X)) of Z[X] such that f(X) e M? and b%(X) —4a(X) ¢(X) e
p2M;, that is to say, [b2(X) —4a(X) c(X)]p 2eM,.

If (2) is satisfied, P is the conductor of Z[a]l— Zla, x] and x> —x%e Z[a]
implies % —xeP; we are then under the assumption of 4.1 and we get
fX)eME?.

If p = 2, with the notations of 4.1, we get that [b%(X) — 4a(X) ¢(X)] p 2is a
nonzero quadratic residue mod M;. But, [6%(X) — 4a(X) ¢(X)] p ~2 e M, implies
[62(X) —4a(X) c(X)] p 2 is a zero quadratic residue mod M.

Hence in any case [b%(X) — 4a(X) ¢(X)]p ~2is a quadratic residue mod M,.

If p =2, and if (1) is satisfied, we still have [6%(X) — 4a(X) ¢(X)]12 2e M, =
2, £(X)), with f(X) e M?. Remember that this last condition implies bZ(X) —
4a(X) ¢;(X) e M;, where b(X) =2b,(X) and c(X) =4c;(X); this implies that
b, (X) e2Z[X].

If (2) is satisfied, we have seen in 4.1 that b(X) ¢ 4Z[X] and that there
exists 2(X) e Z[X] such that b2(X)[h%3(X) + h(X)] — a(X) c«(X) e 4 M.

Conversely, let us assume the conditions of 4.2 are fulfilled. Let M; =
(p, f:(X)) be a maximal ideal of Z[X] such that f(X) e M? and satisfying (a) or
(b):

() If p # 2 then [b%(X) — 4a(X) c(X)]p 2 is a quadratic residue mod M;.
If this quadratic residue is nonzero, by 4.1, there exists x e Q[a]\Z[a] such
that x® —xeP;=(p, f;(a)), with xP;c P;. This implies x®—x%eZ[a] and
7Z[a] is not t-closed.
If [b2(X) —4a(X) ¢(X)]p “2e M;, then Z[a] is not seminormal in view of
3.1, whence is not t-closed.

(b) If p=2 and b(X) €e47Z[X], then b*(X) — 4a(X) ¢(X) €e4M; and Z[a] is
still not t-closed.

If p=2 and b(X) ¢ 47Z[X], there exists h(X) e Z[X] such that
b2(X)[h3(X) + MX)] — a(X) c(X) e4 M,

then it follows again that Z[a] is not t-closed by 4.1.
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REMARKS.

(D) If f(X) e (p, f;(X))?is such that f?(X) divides f(X) in [F,[X], we can ob-
serve that for any prime integer p, the conditions of 4.2 are fulfilled:

Indeed f;(X) divides a(X) whence a(X) e (p, f(X)).
If p#2, the condition «bZ(X) —4a(X) ¢;(X) is a quadratic residue mod
(p, f;(X))» is always satisfied.

If p = 2, the condition « b(X) € 47Z[X] or there exists n(X) e Z[X] such that
bZ(X)[h3(X) + h(X)] — a(X) ¢;(X) € (2, f:(X))» is satisfied, since we can
choose W(X) =0 if b(X) ¢47Z[X].

(2) The map z+—2z%+z is an additive group endomorphism of
o [X1/(f; (X)), the kernel of which is {0, 1}. Since this map is not surjective,
for a given k%(X) a(X) ¢;(X) e F,[X], there is not always h(X) e F,[X] such
that (71) is satisfied; nevertheless half of the elements of IF,[ X]/(f; (X)) can be
written 2%+ 2, with z e Fo[X1/(f; (X)).

We are now able to give a characterization for Z[a] to be t-closed.

THEOREM 4.3. — Let a be an algebraic integer with minimal polynomial
J(X).
For each maximal ideal M; = (p, f;(X)) of Z[X] containing f(X), let

fX) = a(X) f(X) + b(X) £(X) + e(X)

be the double Euclidean division of f(X) by f;(X).
Then Zlal is t-closed if and only if, for each maximal ideal M;=
(p, £.(X)) for which f(X)eM? we have:

—if p#2 [b2(X) —4a(X) c(X)] p 2 is mot a quadratic residue mod
M; ().

- if p=2, b(X) ¢4Z[X] and, for each WMX) e Z[X], we have:
bEXORAX) + MX)] — aX) e(X) ¢4M; (£%).

Moveover, if Z[a] is t-closed, for each maximal ideal M;= (p, f;(X)) for
which f(X) e M?, we have f(X) ¢ (f3(X)) in F,[X]

ProoF. — The proof is similar to the proof of 3.2.

REMARK. — Set K =T, [X1/(f;(X)) and denote by m(x) the residue class of
x e Z[X]. Then:

If p # 2, condition (%) is equivalent to: Y2 — a{(b%(X) — 4a(X) ¢(X))p 2]
is irreducible in K[Y].
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If p=2, condition (ff) is equivalent to: (Y?+Y)a(b?(X)27%)—
a(a(X) ¢(X)272) is irreducible in K[Y].

PRrOPOSITION 4.4. — Let Z[a] be a t-closed, non integrally closed ring, with
wntegral closure 7o) There exist P e Spec(Z[al) and @ e Spec(Zla]) lying
over P, such that [Z[al/Q: Z[al/P] is even.

PROOF. — Remark 2.12 (1) shows that there is some x e Z[a]\Z[a] satisfy-
ing a quadratic relation over Z[a]. Denote by A (resp. B) the ring Z[a] (resp.
Z[a, x]). We have seen that there exists a maximal ideal P in A such that xPc
P :in fact, P is the conductor of t-closed minimal morphism A — B since A is a
t-closed ring [6, Remark 2 of Definition 3.1]. Thus, P is a maximal ideal in B by
[6, Theorem 3.15] and B/P = (A/P)[x] is a two-dimensional vector space over
A/P. As A—7[a] is a finite (order) morphism, we get the result.

REMARK. — Assume that A = Z[a] is not integrally closed, with integral clo-
sure A. Then there exists an element x € A\ A which is a zero of a monic poly-
nomial f(X) e A[X] with degree 2:

— if Zl[al] is t-closed, the result is given by 4.4,
— if Z[al] is not t-closed, the result is given by 2.5.

We recall that an integral domain A is quadratically integrally closed if
x?+ax+b=0, for ¥ in the quotient field of A and a, be A, implies xcA
[2].

This implies the following result:

PROPOSITION 4.5. — Let a be an algebraic integer. Then, Z[a] is quadrati-
cally integrally closed if and only if it is integrally closed.

Proor. — Obviously, an integrally closed ring is quadratically integrally
closed. Conversely, assume that Z[a] is quadratically integrally closed and
not integrally closed. By 2.11 and Remark 2.12 (1), there exists x € Qla]\Z[a]
satisfying a quadratic (integral) relation over Z[a], 1t.e., there exist
a(a), b(a) e Z[a] such that 2%+ a(a) x + b(a) = 0. Then, the assumption on
Zla] implies xeZ[al], a contradiction. Therefore, Z[a] is integrally
closed.

COROLLARY 4.6. — Let R be a Dedekind domain and o be an element of
some integral domain which contains R where a is integral over R. Let
f(X) e R[X] be the minimal polynomial of o. For each maximal ideal M; =
(P, fi(X)) in RI[X] containing f(X), let

fX) = a(X) f(X) + b(X) £(X) + e(X)
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be the double Euclidean division of f(X) by f;(X) in R[X] and let p € P be such
that PRp = pRp. Then R[a] is t-closed if and only if, for each maximal ideal
M;= (P, £(X)) in R[X] such that f(X) e M?, we have:

® 2¢ P implies [b*(X)—4a(X) c(X)]p 2 is mot a quadratic residue
mod (M;)p

® 2 e P implies:

—if b(X) ¢ P2R[X], then b2(X)[h*(X)+ WX)] — a(X) ¢(X) ¢ P2M; for
each h(X) e R[X]

— if b(X) e P2R[X], then, p 2a(X) c(X) is not a quadratic residue mod
(M)p.

ProoF. — By 2.16, R[a] is not t-closed if and only if there exists a maximal
ideal P in R such that Rp[a] is not t-closed. Then, there exists a maximal ideal
in Rp[X], of the form (M;)p, where M; = (P, f;(X)) is a maximal ideal in R[X]
such that f(X) e (M?)p.

Following the proof of 4.3, we begin to give conditions for the existence of
an element x in the integral closure of Rp[a] such that 2% — x or 2% e (P;)p and
2(P;)pcC (P;)p, where P; = (P, fi(a)) is a maximal ideal in R[a]. We get then
(P))p=(p, fi(a)) in Rp[al, where peP is such that PRp = pRp.

Condition 22 — x € (P;)p is the same as the one get in 4.1, considering the
cases 2 € P and 2 ¢ P instead of p =2 and p # 2. Now, we have seen in 3.3 that,
if 2 € P, there exists x in the integral closure of Rp[a] such that 22 e (P;)p and
x(P;)pc (P;)p if and only if b(X) e P2R[X] and a(X) ¢(X)p 2 is a quadratic
residue mod (M;)p. When 2 € P, the condition of non t-closedness of Rpla]
gotten in 4.2 for p=2 is changed into one of the two following condi-
tions:

«b(X) ¢ P2Rp[X] and there exists #(X) e Rp[X] such that
b2X)[R*(X) + X)] — a(X) e(X) e p*(M;)p >
or
«b(X) e P2Rp[X] and p 2a(X) ¢(X) is a quadratic residue mod (M;)p» .

We get then the two following conditions for t-closedness of Rp[a], when
2eP:

«b(X) e P2Rp[X] or b2(X)[h2(X) + M(X)] — a(X) e(X) ¢ p*(M;)p
for each M(X) e Rp[X]»
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and
«b(X) ¢ PZRp[X] or p 2a(X) ¢(X) is not a quadratic residue mod (M,)p» .

Hence it results that Rp[a] is t-closed, when 2 € P, if and only if the two fol-
lowing conditions are satisfied:

«b(X) ¢ P2Rp[X] implies that for each i(X) e Rp[X] we have
b2(X)[R*(X) + X)] — a(X) e(X) ¢ p*(M;)p >
and
«b(X) e P2Rp[X] implies that p 2a(X) c¢(X)
is not a quadratic residue mod (M;)p».

In fact, the condition
for each (X) e Rp[X] we have b2(X)[723(X) + M(X)] — a(X) ¢(X) ¢ p2(M,)p
is equivalent to:
for each (X) e R[X] we have b2(X)[h2%(X) + M(X)] — a(X)c(X) ¢ P2 M.

Indeed, we have seen in 3.3 that p2(M;)p N R[X] = P2M,. So, if i(X) € R[X] is
such that

b2XOR*(X) + MX)] — a(X) eo(X) ¢ p*(M;)p
we get then bZ2(X)[h2(X) + h(X)] — a(X) c(X) ¢ P2M;. Conversely, assume
that for each i(X) e R[X], we have b2(X)[h%(X) + MX)] — a(X) ¢(X) ¢ P2 M,
and let g(X) € Rp[X]. Thanks to the isomorphism R/P = Rp/PRp, there exists
MX) e R[X] such that g(X) = (X) + pk(X), where k(X) e Rp[X]. Now
b2X)[h*(X) + W(X)] — a(X) e(X) = p*[bf X)[g*(X) + g(X)] — a(X) ¢;(X)] +

PPofX)p?k*(X) — 2pg(X) k(X) — pk(X)] & p*(M,)p.

But p2bf(X)[p?k*(X) — 2pg(X) k(X) — pk(X)] e p*(M;)p implies

bEX) g% (X) + g(X)] — a(X) ¢1(X) & (M;)p

and then b2(X)[¢g%(X) + g(X)] — a(X) e¢(X) ¢ p2(M;)p.
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5. — Application to simple cubic orders.

H. Tanimoto [11, Theorem 2.3, Theorem 4.4 and Theorem 5.1], D. Dobbs
and M. Fontana [3, Theorem 2.5 and Corollary 4.5] obtained characterizations
for a quadratic order to be integrally closed, quasinormal or GPVD (which is
equivalent to be t-closed in our situation) or seminormal. Their results can be
deduced from 2.12, 3.2 and 4.3. Now we study the situation for another special
class of algebraic orders : a cubic order Z[a], where o is a zero of the irre-
ducible polynomial f(X) =X3+aX + b (in Z[X]).

Let p be a prime integer. The decomposition in I¥,[X] of f(X) into monic ir-
reducible polynomials f;(X) give f(X) =[] f¢(X), with an index e; such that
e; = 2 if and only if £(X) has a multiple zero, that is to say if and only if p di-
vides the discriminant A = —(4a® +27b%) of f(X).

PrOPOSITION 5.1. — Let a be an algebraic integer with minimal poly-
nomial

fX)=X3+aX +beZ[X].

Then, Z[a] is integrally closed if and only if, for each prime integer p divid-
ing the discriminant A = —(4a®+ 27b%) of f(X), we have:

—if p=2,3 or divides both a and b, then p* does mot divide
fla—10),
— for all other p dividing A, then p? does not divide A.

ProoF. — We know by 2.13 that Z[«] is integrally closed if and only if, for
each prime integer p and each monic irreducible divisor f;(X) of X +aX +b
in IF,[X], we have X* + aX + b ¢ (p, f;(X))? where f;(X) is a monic polynomial
in Z[X] with residue f;(X) in F,[X].

If deg £;(X) =2, we get X3+ aX+be(p, f(X))? since f2(X) cannot di-
vide f(X).

Hence it is enough to consider the case deg f;(X) =1, i.e., f;(X) =X — ;.
Then a, € Z, with residue @, € I, satisfies the relation f(a,) = ai +aa, +be
pZ. With definition 2.10, we obtain f(X) = (X —a;)*(X +2a;) + (X —ay) k +
f(ay), where k=f"(a;) =3ai + a, that is:

fX) = (X —a (X +2a;) + (X —a)(Baf + a) + fla,) (+).
Consider the relation f(X) e (p, X — a,)% which is equivalent to
X —ap) f'(a) +fla) e (p, X — ),

and also, after an easy calculation, to f'(a;) € pZ (xx) and f(a,) € p27Z (sxx).
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Then, for such an a, €7, we have in [,:

©) Jl gla

where the last condition is equivalent to (xx), which implies A = —
40®+27b% =0 in F,. Conversely, if 4 =0 in F,, there exists a; e Z satisfy-
ing (S).

Now, if p is a prime integer such that p divides 4, there exists a,e€Z
satisfying (S).

- If p =2, 3 or divides both a and b, relation (S) is fulfilled by a; = a — b.
So, f(X) e (p, X — a,)? if and only if p? divides (a — b)® + a(a — b) + b.

- If p=2,3 and does not divide both a and b, relation (S) yields
2aa, +3b = 0 in F,; thus we get @, = —(80)2a) . Furthermore, we can write
af + aa; + b=np and 3af + a = mp, with n, m € Z. Thus, we observe that:

—A=4a%+270%=4m>*p>® + 9p%(3n? — 6nma, — af m?) + 108ai pn .

As 30 = —@in F,, we get that p does not divide a,. So, f(a,) € p*Z if and only
if p divides n, or also, if and only if p? divides A4.

To sum up, for a, e’Z such that f(a,) e pZ, the following conditions are
equivalent:

® f(X)¢(p, X—ay),
® f(ay) ¢p*Z or f'(ay) ¢ pZ,

® cither @, is not a multiple zero of £(X) in IF,[X] or @, is a multiple zero
of f(X) in F,[X] (and, in this case, p divides 4) and f(a,) ¢ p*7Z,

® cither @; is not a multiple zero of f(X) in [,[X] or p divides 4
and

— if p=2, 3 or divides both a and b, then p? does not divide (a — b)® +
ala —b)+ b,

— for all other p dividing 4, then p? does not divide A.

Thus the result is gotten.

REMARK. — We have shown, under suitable assumptions (4 is coprime
to 2, 3, a and b), a noteworthy converse to the well known result: if
the diseriminant of an integral ring extension A of 7Z is square-free, then
A is integrally closed (see for instance [9, 5.3, Proposition 1]). Let a
be an algebraic integer with minimal polynomial f(X) = X3 + aX + b e Z[X].
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If the diseriminant A of f(X) is coprime to 2, 3, ¢ and b and Z[a] is
integrally closed, then 4 is square-free.

EXAMPLE. — Let a be an algebraic integer with minimal polynomial X® +
2X + 2 (an irreducible polynomial by Eisenstein’s criterion). Here a = b =2, so
A= —140 = —7 X 5 X 4. Then, 25 and 49 does not divide 4, 2 divides 4, but 4
does not divide (a —b)*+ a(a —b) + b=2. So, Z[a] is integrally closed al-
though 4 divides A.

PropPoSITION 5.2. — Let o be an algebraic integer with minimal poly-
nomial

fX)=X3+aX +beZ[X].

Then, Zla] is t-closed if and only if for each prime integer p dividing the
discriminant A= —(4a®+27b?) of f(X), conditions (1) and (2) are veri-
fied:

(1) if p =2, 3, does not divide both a and b and if p? divides A, we have
Ap ~% is not a quadratic vesidue mod (p).

() if p=2, 3 or divides both a and b and if p* divides f(a — b), then p =
2 and 8 divides neither f(a —b) nor 2f'(a —b) (or, equivalently 4 divides
a+1)

ProoOF. — Let us assume that Z[a] is not integrally closed. So, with the no-
tations of 4.3, there must be a prime p and f;(X) € Z[X] such that f(X)e
(p, f:(X))?. According to the proof of 5.1, we must have deg f; (X) = 1, so that
fi(X) =X —a, and @, is a multiple root of f(X) in F,[X].

As we get f(X) = (X —a,)?(X +2a;) + (X — a1)(3a? + a) + f(ay), it follows
from 4.3 that Z[a] is t-closed if and only if, for each prime p € Z and f; (X) for
which f(X) e (p, f.(X))? we have:

—if p#=2, [(a+3a2)?—4X+2a;)f(a;)]p 2 is not a quadratic residue
mod (p, X - &1) (i),

- if p=2, a+3af¢47 and, for each W(X) e Z[X], we get:
(a+3afP[h*(X) + MX)] — (X +2a;) flay) ¢ 42, X — ay) ($5).
For p # 2, condition (¥) is equivalent to:

VIi(X) e Z[X], (a+3al)—12a,f(a;) —p?h*(X) ¢p*(p, X —a)).
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But, we can write M(X) = (X —a,) 9(X) + k, ke Z. So, we have
(1) © VkeZ,(a+3al)? —12a;(af + aa; + b) — k*p2e¢piZ
< VkeZ,a?-3af —6aal —12a,b — k*p2ep37Z.

As p? divides 4, we can write 4= —(4a®+27b%) = —rp?, with reZ, and
2aa; + 3b = sp, with seZ, since @, is such that 2aa, +3b =0 in IF,.
Moreover, if p # 3 and does not divide @ and b, we get then:

()= VkeZ,16a*(a® - 3ai — 6aaf — 12a,b — k*p?) ¢ p>Z
< VkeZ,16a% - 3(sp —3b)* — 24a3(sp — 3b)* —
96a3b(sp —3b) — 160 k*pZep3Z
< VkeZ,(4a®+27b2%)(—6s%p% + 12spb + 4a® — 9b%) — 16a*k>pZ ¢ p3Z
< VkeZ,(4a®—9b%) — k®¢pZ, since 4a? is invertible in I,
< VkeZ, —36b%r — k®¢ pZ since 4a®+27b%e pZ
<VkeZ, —r—k*¢pZ since6b is invertible in F,.

So (%) is equivalent to —(4a®+27b%)p 2= Ap % is not a quadratic residue
modulo p.

If p=3, we know that 9 divides f(a;) so that 12a,(aj + aa, + b) € 277Z.

In the same way, if p divides both a and b, we obtain that p? divides f(a;)
and we have seen in 5.1 that we can choose a; =0.

In these two cases, (%) is equivalent to (a + 3af)?p 2 is not a quadratic
residue mod (p), a contradiction. So, we cannot have p =3 or p divides both a
and b.

If p =2, the same argumentation for i(X) shows that condition (&%) is
equivalent to: for each keZ, (a+3al)?(k®+k)—3a,f(a;)¢87 and a+
3af¢47. But, since 2 divides a + 3a? and k2 + k for each k e Z, condition (§%)
is equivalent to a,f(a;) and 2f' (a;) ¢ 8Z. Furthermore, we have only to con-
sider the case where f(X) € (2, X — a,)% which, by the proof of 5.1, is equiva-
lent to 2 divides A and 4 divides f(a,). So, it implies that a is odd, 4 divides a +
1, and a,f(a;) ¢87 is then equivalent to (@ —b)* + a(a —b) + b¢87. Con-
versely, this last condition, combined with 4 divides @ + 1 implies (i#) and the
proof of the proposition is done.

EXAMPLE. — Consider f(X) = X? + 8X + 1. Since f(X) has no zero in I, we
get that f(X) is irreducible in Z[X]. Let a be a zero of f(X) and consider Z[a].
The discriminant of f(X) is 4 = — (2048 + 27) = —2075 = —25 x 83. By 5.1, we
get that Z[«a] is not integrally closed. The only prime p such that p? divides A
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is 5, and 5 = 3, 2, divides neither 8 nor 1. As we have —(4a®+270%)5 2= —
83 =2mod(5) and as 2 is not a quadratic residue modulo 5, then Z[a] is
t-closed.

PRrROPOSITION 5.3. — Let a be an algebraic integer with minimal poly-
nomial

fX)=X3+aX+beZ[X].

Then, Z[a] is seminormal if and only if for each prime integer p dividing the
discriminant A = —(4a®+27b?) of f(X), conditions (1) and (2) are veri-
fied:

(1) if p =2, 3, does not divide both a and b and if p? divides the discrim-
inant A, we have that p® does not divide A.

() if p=2, 3 or divides both a and b and if p? divides f(a — b), then
f'(a—0b)¢p:Z.

PrOOF. — Let us assume that Z[«a] is not integrally closed. So, with the no-
tations of 3.2, there must be a prime p e Z and f; (X) e Z[X] such that f(X) e
(p, f:(X))%. According to the proof of 5.1, we must have deg f;(X) = 1, so that
fi(X) =X —a, and @, is a multiple root of f(X) in F,[X].

As we get f(X) = (X —a,)*(X+2a;) + (X —a;)8al + a) + f(a,), the fol-
lowing conditions are equivalent:

® 7[a] is seminormal,

® according to 3.2, for each prime integer p and each f;(X) e Z[X] for
which f(X) e (p, £(X))?, we have b%(X) —4a(X) ¢(X) ¢ p2(p, £(X)),

® for each prime integer p and a, € Z for which f(X) e (p, X — a;)? we
have (a +3a2)? — 4 X + 2a,)f(ay) ¢ p*(p, X — ay),

® p? does not divide (a + 3a?)? — 12a,(ai + aa, + b) for each prime inte-
ger p and a, e Z for which f(X) e (p, X —a,)% that is such that p divides A.

Consider a prime integer p dividing A.

— if p#2, 3, does not divide both @ and b and is such that p? divides 4,
we get: p? does not divide (a + 3a2)* — 12a,(af + aa, + b) if and only if p? does
not divide 16a’[(a+3af)?—12a,(af + aa; + b)] if and only if (4a®-—
9b2)(4a® + 27b%) ¢ p®7 by using notation and calculation of 5.2.
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But 403 —9b%= (4a® +27b%) — 3602 and 4a® + 27b% e p?Z. So, the following
conditions are equivalent:

® (4a®—9b2)(4a®+27b2) ¢p37Z,

o —36b%(4a’+27b%) ¢p37,

® 4a%+27b%¢p37, since p =2, 3 and does not divide b.
Thus we obtain (1).

— if p=2, 3 or divides both a and b, we have seen in 5.1 that we can choose
a; = a — b. In any case, p? divides f(a,), and, if p =2, 3 or divides both a and b,
then p? divides 12a,f(a,); then p? does not divide (a +3a?)* —12a,(af +
aa, + b) is equivalent to p? does not divide (a + 3a)?, which is equivalent to p2
does not divide a + 3aZ=a + 3(a — b)%

EXAMPLE. — Consider f(X) = X® + 2X + 4. As f(X) has no zero in I;, f(X) is
irreducible in Z[X]. Let a be a zero of f(X) and consider Z[a]. The discrimi-
nant of f(X) is 4= —(32+27x16) = —16 X 29. So, p =2 is the only prime
such that p? divides 4. Here, 8 divides f(a — b) = —8; thus Z[a] is not t-closed
by 5.2 . But, f'(a —b) =14 ¢47, so Z[a] is seminormal.

REMARKS. — (1) When a = 0, we recover the results obtained by H. Tanimo-

to for Z["\/m] to be normal, seminormal and quasinormal when = =3
[11].

(2) In this section, we did not study the situation for a ring R[a], where R
is a Dedekind domain and « is an element of some integral domain which con-
tains R where a is integral over R. Indeed, for R = 7Z, special cases where p is
a prime integer dividing the discriminant such that p =2, 8 or divides both a
and b imply: @; = a — b is a common zero of f(X) and /' (X) in F,[X], which may
no longer be verified when taking another Dedekind domain E. Hence we can-
not give an explicit expression of a; when R # 7.
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