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Normally Constrained p-Groups.

C. BONMASSAR - C. M. SCOPPOLA (*)

Sunto. – In questo lavoro si studiano i gruppi finiti di ordine una potenza di un nume-
ro primo in cui i sottogruppi normali sono compresi tra due termini successivi
della serie centrale discendente. Si ottengono numerose proprietà generali di questi
gruppi, e una loro dettagliata descrizione in classe di nilpotenza 2.

1. – Introduction and examples.

In this paper G will denote a finite p-group, where p is a prime. With the
exception of the last example in section 2, p will be odd. Let ]Gi ( be the lower
central series of G .

DEFINITION. – We say that G is normally constrained (NC for short) if for
every i , 1 G iGc , Gi satisfies the following equivalent conditions:

(i) Gi is the only normal subgroup of G of order NGi N,

(ii) if N J G , we have NGGi or NFGi ,

(iii) if x�G2Gi then Gi G axbG .

Note that factor groups of NC-p-groups are NC. Other elementary proper-
ties of NC-p-groups are found in [Bo]. We now list some examples, to show
that the class of NC-p-groups is rather rich. This list is by no means complete.
However we will characterize below the NC-p-groups of class 2, showing that
they are like one of those listed in examples 1, 2, or 4. Furthermore, we will
show that the associated Lie algebra (as described e.g. on [HB, VIII.9]) of the
central factor of a NC-p-group of sufficiently large nilpotency class can be ob-
tained as a factor of a tensor product over GF(p) of a 2-generated Lie algebra
with a larger finite field. Therefore the groups described in example 3 seem
really to be the crucial examples of NC-p-groups of large class, at least under
the point of view of the associated Lie algebra. It is well known that the associ-
ated Lie algebra of a p-group does not capture all the structural features of
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the group itself, but our results here, with those of [CMNS]), suggest that in
the case of NC-p-groups a classification up to isomorphism of the associated
Lie algebras should be both possible and interesting, while a classification up
to group isomorphism seems to be completely out of reach.

EXAMPLES. – 1. If G is of class 2, and G is monolithic with monolith G 8 ,
then clearly G is normally constrained: e.g., the split extension of a cyclic p-
group of order larger than p with the group generated by its automorphism of
order p .

2. If G is a p-group of class 2 or 3 such that every nontrivial coset of G 8

consists of conjugate elements, then, by the results of [McD], G is normally
constrained. Furthermore, we have that NG : G 8N is a square and that G/G3 is
special. (We say, in this case, that (G , G 8 ) is a Camina pair, or , if G has class
2, that G is a semi-extraspecial p-group; see also [Be], [MS]). An example here
is given by a Sylow p-subgroup of SL(3 , q), where q4p n .

3. The class of NC-p-groups includes all the p-groups of maximal class
and thin p-groups (see [Bl], [BCS], [CMNS]). Among these, we note in partic-
ular the finite quotients of some p-adic analytic groups, like M0, 1 , 1 , in the no-
tation of [H, III.17], and the finite quotients of the well-known «Nottingham
group» (see [Y]).

4. Let Z4Cp 2 3Cp 2 (additive notation) and let a act on Z as

g1

p

pn

1
h ,

where n is not a square mod p. Now a is an automorphism of Z , and we con-
struct the semidirect product aabZ4G . We note that G has class 2, G 84G p 4

pZ , and that for x�G2Z we have [x , G] 4G 8, while for x�Z2G 8 we have
G 84 apx , [x , G]b. Then G is an NC-p-group.

2. – NC-p-groups of class 2.

We give here an elementary account of the structure of the normally con-
strained p-groups of class 2.

PROPOSITION 2.1. – Let p be an odd prime. Then G is a NC p-group of class
2 if and only if either G is one of the groups described in examples 1, 2, or G is
special, G 84 ax p b[x , G] for every x�G2G 8 , NG : G 8N4p 2n11 , G p 4G 8 , and
NG 8NGp n11 .
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PROOF. – If G is a group like those described in the statement, and x�G2

G 8 , we have axbG FG 8 , and G is NC. Note that examples 1, 2, 4 show that all
the classes listed in the statement are non-empty.

To show the converse, assume first that G 8EZ(G). Then Z(G) is cyclic, be-
cause it has only one subgroup of order G 8 . Since G is noncyclic, it has a nor-
mal elementary subgroup N of order p 2 , by [H, III.7.5(a)]. We have NGO G 8,
since G 8EZ(G) is cyclic. Then NDG 8, NG 8N4p and G is like in example 1.

Then we may assume G 84Z(G), NG 8NDp . Set G4G/(G 8)p . Note that G is
NC. If Z(G) DG 8 we would get, as above, NG 8N4p , and G 8 would be cyclic.
By [H, III.7.5(a)] again, we would have NG 8N4p , contradiction. Hence Z(G) 4

G 8 , and G/G 8CG/Z(G) has exponent p , by [H, III.2.13(a)]. Then G p GG 8, and
G is special.

If NG : G 8N is a square, G is like in example 2, because, for every maximal
subgroup K of G 8, G/K is NC, Z(G/K) is cyclic, and G/K is extraspecial, by [H,
III.13.7]. If NG : G 8N4p 2n11 , we apply again [H, III.13.7] to G/K , for every
maximal subgroup K of G 8 , and we get that G 84 axbp [x , G] for every x�G2

G 8 , and that G p 4G 8 . Thus we are only left to show that, in this case,
NG 8NGp n11 .

Let x1 , R , x2n11 be generators of G , z1 , R , zl be generators of Z(G) 4G 8,
where NZ(G)N4p l . We now switch to additive notation, for G/G 8 and G 8 , and
we describe the p-th power map and the commutation in G in terms of matri-
ces, as follows:

xi
p 4 !

k41

l

a i0k zk ,

[xi , xj ] 4 !
k41

l

a ijk zk .

Our Condition NC can now be rephrased in any of the following, obviously
equivalent, ways (for 1 G iG2n11, 0 G jG2n11, 1 GkG l):

(1) (x�G2G 8 , x p and ][x , xj ](( j41, R , 2n11) generate G 8;

(2) ((b) 4 (b 1 , R , b 2n11 ) c (0 , R , 0 ) we have G 84 a!
i , k

b i a ijk zk b;

(3) ((b)c(0, R , 0) the matrix B , defined by (B)j , k4!
i

b i a ijk has rank l ;

(4) ((b) c (0 , R , 0 ) the matrix B has independent columns;

(5) ((b) c (0 , R , 0 ), !
i , k

b i a ijk g k 40 implies (g) 4 (0 , R , 0 );

(6) ((g)4(g 1 , R , g l )c(0 , R , 0 ) !
i , k

b i a ijk g k40 implies (b)4(0 , R , 0 );
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(7) ((g) c (0 , R , 0 ) the matrix G , defined by (G)i , j 4!
k

a ijk g k has inde-
pendent rows;

(8) G has rank 2n11, for every (g) c (0 , R , 0 ).

Note now that, if we define a 0 jk 42a j0k d ij , and a 00k 40, we can complete
G to a skew-symmetric matrix G

A , (GA)i , j 4!
k

a ijk g k .

The rank of G
A is at least 2n11, but, by [H, III.9.6(a)], that rank is even;

therefore G
A is nonsingular, for every (g) c (0 , R , 0 ).

We now proceed as in [McD], [Be]: det (GA) 4 (Pf (GA) )2 can be seen as a
polynomial in the indeterminates g k , and, by Chevalley-Warning’s theorem,
det (GA) 40 has nontrivial solutions if lDn11. Thus lGn11.

REMARK. – A. Caranti and A. Mann have independently noticed that we can
equivalently obtain the last part of the proof of Proposition 2.1 extending our
group G by the automorphism of G that sends x�G into x p11 . This extension
is easily seen to form a Camina pair with its commutator subgroup, and as
in [McD], [Be] we can conclude lGn11.

EXAMPLE. – The hypothesis pc2 cannot be removed from the statement of
Proposition 2.1, as shown by the following construction, due to H.
Heineken.

Let F4GF(8), and set

L4{u1

0

0

a

1

0

b

a 2

1

vNa , b�F} .

Clearly NLN426 . Furthermore

L 84L 2 4Z(L) 4{u1

0

0

0

1

0

a

0

1

vNa�F}
and L/L 8CL 8 is elementary abelian of order 8. To show that L is NC, we will
show that, if x�L2L 8, then axbL 4 ax , L 8 b. Let

x4u1

0

0

a

1

0

b

a 2

1

v , y4u1

0

0

r

1

0

s

r 2

1

v ,

so that

x 2 4u1

0

0

0

1

0

a 3

0

1

v , [x , y] 4u1

0

0

0

1

0

ar 2 1a 2 r

0

1

v ,
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and therefore if ac0 we have CL (x) 4 ax , L 8 b. Thus we have that axbL
c

ax , L 8 b if and only if there exists a value of r such that ar 2 1a 2 r4r 3 . But,
setting u4ra 21 , our condition becomes u 2 1u11 40, and this last equation
does not have any solution in F .

3. – Associated Lie algebras of NC-p-groups.

From now on, we assume that p is an odd prime, and we study some prop-
erties of the lower central sections of NC-p-groups.

PROPOSITION 3.1. – Let G be an NC-p-group, with cl (G) F3. Then G/G3 is
special of exponent p, and NG 8/G3 N2 4NG/G 8N .

PROOF. – We may assume that NG3N4p . Let G4G/G3 . We first show that
G is special. Otherwise, by Prop. 2.1, we have that NG 8N4p , and that Z(G) is
cyclic. Again, if Z(G) 4G 8, we get easily that G/G 8 is of exponent p , G p GG 8 ,
and G is (extra-)special. Hence Z(G) DG 8 , and

NZ(G)NFp 2 .( * )
Now NZ(G)NDp , or we would have a contradiction by ( * ) and [H, III.2.13(a)].
But since G 8 is the only subgroup of order p 2 of G , we get Z(G) FG 8 , a con-
tradiction with cl (G) 43. Thus G is special.

We now show that G/G 8 has even rank. By way of contradiction, assume
NG : G 8N4p 2n11 . By proposition 2.1, we have that G has exponent p 2 . Note
first that G 8 does not have exponent p . In fact, let x�G2G 8 such that x p �
G3 . Then H4 axb G 8 is a normal subgroup of class at most 2, and, if G 8 is of ex-
ponent p , NH pN4p , but H p

cG3 , contradiction. Now G is regular, because p is
odd, and, by Prop. 2.1, there exists x�G2G 8 such that x p �G3 . Set H4

G 8 axb. H has class at most 2, H J G , and thus V 1 (H) J G . Now NV 1 (H)N4

NH : H p N4NH : G3 N4NG 8N , because H is regular, and V 1 (H) has exponent p .
But we have seen that G 8 does not have exponent p , and thus G 8cV 1 (H),
contradiction. Then G/G 8 has even rank. By Proposition 2.1, G/G3 is like in
example 2, and by [M, 1.1] we have that G/G3 has exponent p and NG 8/G3 N2 4

NG/G 8N .

COROLLARY 3.2. – Let G be a NC-p-group of class at least 3. Then Gi /Gi12

is elementary abelian for every iF2.

We can now state one more condition which is equivalent to any of those
defining NC-p-groups:

PROPOSITION 3.3. – Let G be a p-group of class cF3. The following are
equivalent:
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(a) G is a NC-p-group;

(b) (iF1, (x�Gi 2Gi11 , we have [x , G] Gi12 4Gi11 .

PROOF. – By Corollary 3.2, if x�Gi 2Gi11 ,we have that [x , G] Gi12 is max-
imal in axbG . But [x , G] Gi12 GGi11 , and by (a) we get that Gi11 is properly
contained in axbG , whence (b).

Conversely, we show that, for any cF1, if a p-group G of class c satisfies
(b) then G is NC. We proceed by induction on c , starting with c41: in this
case the result is trivial. Assume it true for groups of class less than c . It is
then enough to show that, if N J G , then either NGGc or Gc GN . Let NGO Gc ,
and x�N2Gc . By our hypothesis, we may assume that x�Gc21 2Gc , and
therefore Gc GN .

REMARK. – Note that (b) is equivalent to the apparently stronger:

(b8) (iF1, (x�Gi 2Gi11 , we have [x , G] 4Gi11 .

In fact, (b) inductively implies that (iF1, (x�Gi 2Gi11 we have
[x , G] Gi1 j11 FGi1 j . However, the equivalence holds for finite p-groups only,
while (b) can be extended to pro-p-groups with open lower central subgroups.
Furthermore, (b) stresses the Lie theoretical nature of our condition. In fact,
we can define a NC-Lie algebra as a finitely generated Lie algebra L over the
field GF(p), graded by its lower central factors Li , such that the following con-
dition holds:

(iF1, (x�Li , xc0, we have [x , L1 ] 4Li11 .

COROLLARY 3.4. – Let G be a NC-p-group of class at least 3. Then the upper
and lower central series of G coincide.

PROOF. – Since G/G3 is special, it is enough to show, by induction, that
Z(G) 4Gc . If x�Z(G)2Gc we have 1 4 [x , G] FGc , contradiction.

We now adapt some techniques from [DS]. We begin extending [M, 1.1]:

THEOREM 3.5. – Let G be a NC-p-group of class cF3 such that NG : G 8N4

p 2n . Then for 2 G iEc we have p n GNGi : Gi11NGp 2n .

PROOF. – The second inequality is an immediate consequence of Proposi-
tion 3.3.

We already know NG2 : G3N4p n , if cl (G) 43, and we prove the first in-
equality by way of contradiction. Let G be a a NC-p-group of class cF4 such
that NG : G 8N4p 2n , p n GNGi : Gi11N for 2 G iEc21, and NGc21 : GcN4p r E

p n . We may assume, without loss of generality, NGc N4p . Set C4CG (Gc21 ),
Z4Gc22 OZ(G 8 ). Since the centralizers of the elements of Gc21 2Gc are
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maximal subgroups, we have NG : CNGp r . Note here that, in fact, we have
NG : CN4p r , as Gc21 /Gc can be identified with a subspace of the GF(p)-dual
space of G/C. Let x�Gc22 2Z . Setting D4CG (x) we have easily NG : DNG

p r11 . As rEn , there exists b�COD2G 8 . Let g�G . We have [x , b , g] 41,
since b�D , and [g , x , b] 41, since b�C . Then Witt identity gives [b , g , x] 4

1, and by the remark after Proposition 3.3, [G 8, x] 41, as g is arbitrary. This
contradicts with our choice of x . Then Gc22 4Z . Note that [Z , G , C] 4

[G , C , Z] 41, and, by the three-subgroup lemma, also [C , Z , G] 41. There-
fore [C , Gc22 ] GGc . Let now M be a maximal subgroup of Gc21 containing Gc .
We apply our inductive hypothesis to G/M , and conclude that
NG : CG (Gc22 /M)N4NGc22 /Gc21 NFp n . But CGCG (Gc22 /Gc ) GCG (Gc22 /M),
and p r 4NG : CNFNG : CG (Gc22 /M)NFp n .

THEOREM 3.6. – Let G be a NC-p-group of class cF3 such that NG : G 8 N4

p 2n. If NG3 NFp n we have that G/G3 is isomorphic to a Sylow p-subgroup of
SL(3 , p n ).

PROOF. – By Theorem 3.5, we may assume that G has class 3, and that
NG3 N4p n . Let x�G2G2 . We will show that CG (xG3 ) /G3 is abelian, and by
Lemma 1.2 of [MS], we will get the result. Assume first that [x , G 8 ] EG3 , and
let M be a maximal subgroup of G3 that contains [x , G 8 ]. Then xM centralizes
G 8/M in G/M . As in [MS, 1.3(v)] we conclude easily that CG (xG3 ) /G3 is abelian.
Assume then that [x , G 8 ] 4G3 . We have N[x , G 8 ]N4p n , and NCG 8 (x)N4p n ,
then G3 4CG 8 (x). We have [CG (x): CG 8 (x) ] 4p n , since NCG (x)N4p 2n ; but
CG (x) /CG 8 (x) is abelian, thus CG (xG3 ) /G3 4G 8/G3 3CG (x) /G3 is abelian.

We now fix some notation: if F is a field, we denote the free Lie algebra on
d generators over F by LF (d). We can look at LF (d) as a graded Lie algebra,
with graduation 5

i
LF (d)i associated with the filtration given by the lower

central series. If L is a Lie algebra over F , and F is an extension of the field K ,
we denote by LK the algebra L viewed as a Lie algebra over K .

LEMMA 3.7 [DS]. – Let F4GF(p n ), K4GF(p). Then the kernel of the
canonical homomorphism from LK (2n) onto LF (2)K is generated, as a Lie
ideal, by elements of degree 2.

THEOREM 3.8. – Let G be an NC-p-group of class cF4. Let L be the associ-
ated graded Lie algebra of the group G/Gc . Let F and K be as above. Then
there exists an F-Lie ideal J of LF (2) such that L is isomorphic to
(LF (2) /J)K .

PROOF. – By Theorem 3.6, (LF (2)K )1 5 (LF (2)K )2 is isomorphic, as a K-Lie
algebra, to L1 5L2 . Thus, by Lemma 3.7, LF (2)K projects canonically onto L .
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Consider J4Ker W , where W is the canonical projection of LF (2)K onto L , as
K-Lie algebras. We show that J is closed under field multiplication by ele-
ments of F . Let x�J . We may assume x�Jr , for some rEc . If w�F , we show
that xw�Jr . By our assumption on G , and Proposition 3.3, we would have oth-
erwise [xw , LF (2)1 ] ’O Jr11 . But [xw , LF (2)1 ] 4 [x , (LF (2)1 )w] 4 [x , LF (2)1 ] ’
Jr11 , contradiction.

Acknowledgements. – The authors wish to thank A. Caranti, R. Dark, H.
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was written.
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