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On Presentations of Semigroup Rings.

MARIO PETRICH - PEDRO V. SILVA

Sunto. – Siano I un ideale di un anello R e s una congruenza su un semigruppo S.
Consideriamo l’anello semigruppo (ROI)(SOs) come un’immagine omomorfa del-
l’anello semigruppo R(S). Questo è fatto in tre passi: prima studiando l’anello se-
migruppo R(SOs), poi (ROI)(S) e infine combinando i due casi speciali. In ciascun
caso, determiniamo l’ideale che è il nucleo dell’omomorfismo in questione. I risul-
tati corrispondenti per le C-algebre, dove C è un anello commutativo, possono esse-
re facilmente dedotti. Alcuni raffinamenti, casi speciali e presentazioni di anelli e
semigruppi sono anche considerati.

1. – Introduction and summary.

Given an arbitrary ring R and a semigroup S, we may form the semigroup
ring R(S) in the usual way; its definition is formally the same as in the case of a
group ring. The first question one may ask is: if I is an ideal of R and s is a con-
gruence on S, is there a natural way of relating the semigroup ring (ROI)(SOs)
with the original semigroup ring R(S) modulo some ideal? As a special case,
we could take R to be a free ring and S to be a free semigroup so that ROI
amounts to a presentation as does SOs. For S4X 1, the free semigroup on X,
and R4Z, the ring of integers, we get that Z(X 1 ) is a free ring on X which
further enhances the consideration of the problem outlined above. For we may
start with a presentation of R and a presentation of S and ask about a presen-
tation of R(S). Related to this is the structure of C-algebras where C is a com-
mutative ring.

The theme of this paper belongs to the circle of problems concerning pre-
sentations of rings, as applied to semigroup rings. It may not be surprising, at
the second look, that in the case of a semigroup ring R(S), its presentation is
expressible in terms of presentations of R and S.

This problem arose in the treatment of a very special semigroup ring
which, in a separate publication [3], plays an important role in the study of di-
rectly finite rings.

(*) Supported by F.C.T. and PRAXIS XXI/BCC/4358/94.
(**) Supported by F.C.T. and Project AGC/PRAXIS XXI/2/2.1/MAT/63/94.
1991 Mathematics Subject Classification: 16S10, 15A36.
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In Section 2, we gather the minimum of needed notation and terminology
as well as prove a theorem concerning free rings and C-algebras for a commu-
tative ring C. Section 3 contains basic results concerning the semigroup ring
R(SOs) where R is a ring and s is a congruence on a semigroup S in relation to
the «original» semigroup ring R(S). In Section 4 we consider a dual situation,
namely the semigroup ring (ROI)(S) where I is an ideal of R and S is a semi-
group. The two cases are combined in Section 5 to yield the general situation
mentioned above. In all cases, we derive corollaries concerning presentations
of such semigroup rings.

2. – Background.

We assume that the reader is familiar with the basic concepts of ring and
semigroup theories; for their symbolism and concepts, we follow [4] and [1],
respectively. All our rings are associative, but they do not necessarily have an
identity.

Let V denote a variety of algebras of a certain type. Given a homomor-
phism W : AKB of algebras in V, we denote by W the congruence on A induced
by W . Given a V-algebra A and a relation r on A (that is, a subset of A3A), we
denote by r ll-- the congruence on A generated by r. The congruence r ll-- can be
described by layers, an important concept for inductive arguments, according
to the following rules.

l Let P1 be the reflexive and symmetric closure of r.

l For every jF1, let Tj be the transitive closure of Pj .

l For every jF1, let

Pj11 4Tj N ]((a1 , R , an ) f , (b1 , R , bn ) f ) ;

f is an n-ary operation of A and (a1 , b1 ), R , (an , bn ) �Tj ( .

It is easy to see that r ll-- 4 0
jF1

Tj .

Let X be a nonempty set. A free object of V on X is an ordered pair
(FV(X), i V ) such that:

l FV(X) � V;

l i V : XKFV(X) is a map;

l for every map W : XKA, with A� V, there exists a unique homomor-
phism of V-algebras F : FV(X) KA such that W4 i V F.

A free object of V on X is defined up to isomorphism and FV(X) is often re-
ferred to as a free object on X itself. A V-presentation is a formal expression
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of the form V aX ; rb, where X is a nonempty set and r is a relation on FV(X).
The algebra of V defined by the presentation V aX ; rb is the quotient
FV(X)Or ll--. It follows easily from the definition that every algebra A� V can be
defined, up to isomorphism, by a presentation of the form V aX ; rb. In such a
case, we write

AJ V aX ; rb .

If AJ V aX ; rb and BJ V aY ; lb with XOY40O, the free product of A and B in
V is defined, up to isomorphism, to be the V-algebra defined by the
presentation

V aXNY ; rNlb .

We denote the free product of A and B by A * B.
Our interest will be focused on the following varieties:

S : the variety of semigroups - type (2);

M : the variety of monoids - type (2, 0);

R : the variety of rings - type (2, 2);

U : the variety of unitary rings - type (2, 2, 0).

For every commutative ring C, we also consider

AC : the variety of C-algebras - type (2 , 2 , (1 )NCN );

and if C is unitary, then also

UAC : the variety of unitary C-algebras - type (2 , 2 , (1 )NCN , 0 ).

We shall produce concrete descriptions of the free objects in all these
varieties.

Let X denote a nonempty set. A word over X is a finite sequence of ele-
ments of X, usually written in the form x1 x2 R xn , with nF0 and x1 , R , xn �
X. The empty word is denoted by 1. We denote by X 1 the set of all nonempty
words on X and write X *4X 1N ]1(, with concatenation of words as binary
operation on X *. With this multiplication, X * is a monoid with the empty word
as an identity, and X 1 is a subsemigroup of X *. Let z : XKX 1 be the map
which associates to every x�X the word x. It is well known that

l (X 1 , z) is a free semigroup on X,

l (X *, z) is a free monoid on X.
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Let S be a semigroup and R a ring. Given a map f : SKR, the support of f
is

supp ( f ) 4 ]s�SNsfc0( .

We say that f has finite support if supp ( f ) is finite. Let R(S) denote the set of
all maps f : SKR with finite support. Given f , g�R(S), we define f1g and f Qg
by

s( f1g) 4sf1sg , s( f Qg) 4 !
xy4s

(xf )(yg) (s�S) ,

respectively. It is well known that with these operations R(S) constitutes a
ring. For every r�R, we denote by

ri : SKR(S) , s O ri s

the map defined by

s 8 (ri s ) 4
.
/
´

r

0

if s 84s ,

otherwise ,
(s 8�S) .

If R is unitary, we write i for 1 i. If M is a monoid and U a unitary ring, U(M) is
a unitary ring.

We consider also the scalar multiplication: for r�R and f�R(S), rf is de-
fined by

s(rf ) 4r(sf ) (s�S) .

If C is a commutative ring, then C(S) can be viewed as a C-algebra by means of
this scalar multiplication.

It is often simpler to describe the elements of R(S) as formal sums accord-
ing to the correspondence

fD !
s�S

(sf ) s .

We will often use this notation, but we will also need the more precise map no-
tation to overcome some technical difficulties.

The next result is known ([4], Chapter 1.3) but we prove one of the claims
(all the proofs are similar) for the sake of completeness. Since every ring can
be viewed naturally as a Z-algebra, we can in fact derive (i)-(ii) from (iii)-(iv),
respectively.

THEOREM 2.1. – Let X be a nonempty set and C a commutative unitary ring.

(i) (Z(X 1 ), iNX ) is a free ring on X.

(ii) (Z(X *), iNX ) is a free unitary ring on X.
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(iii) (C(X 1 ), iNX ) is a free C-algebra on X.

(iv) (C(X *), iNX ) is a free unitary C-algebra on X.

PROOF. – (iii) We have already observed that C(X 1 ) is a C-algebra and
iNX : XKC(X 1 ) is obviously a well-defined map. Let A be a C-algebra and
W : XKA a map. Define a mapping

f : X 1KA , x1 R xn O (x1 W) R (xn W) (x1 , R , xn �X) .

Clearly, f is a semigroup homomorphism. Define a mapping

F : C(X 1 ) KA , !
u�X 1

cu u O !
u�X 1

cu (uf) .

Since cu 40 for all but finitely many u�X 1, F is well defined. Let

f4 !
u�X 1

cu u , g4 !
u�X 1

du u

be elements of C(X 1 ) and b�C. Then

( f1g) F4g !
u�X 1

(cu 1du ) uh F4 !
u�X 1

(cu 1du )(uf)

4g !
u�X 1

cu (uf)h1g !
u�X 1

du (uf)h4 ( fF)1 (gF) ,

( f Qg) F4g !
u , v�X 1

(cu dv ) uvh F4 !
u , v�X 1

(cu dv ) ((uv) f)4

4 !
u , v�X 1

(cu dv )(uf)(vf) 4g !
u�X 1

cu (uf)hg !
v�X 1

dv (vf)h4 ( fF)(gF) ,

(bf ) F4g !
u�X 1

(bcu ) uh F4 !
u�X 1

(bcu )(uf) 4bg !
u�X 1

cu (uf)h4b( fF) ,

and so F is a homomorphism of C-algebras. The uniqueness of F follows from
Xi generating C(X 1 ) as a C-algebra. It is immediate that xiF4xW for every
x�X. Therefore (C(X 1 ), iNX ) is a free C-algebra on X. r

3. – The semigroup ring R(SOs).

For a ring R and any congruence s on a semigroup S, we shall find here a
suitable isomorphic copy of R(SOs). Given a ring R and a relation r on a semi-
group S, let

R(ri) 4 ](ri a , ri b )N(a , b) �r , r�R( .
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We are now ready for the first principal result of the paper, essentially similar
to ([2], Corollary I.4.2).

THEOREM 3.1. – Let R be a ring, S a semigroup and r a relation on S. Let
s4r ll-- and t4 (R(ri) )ll--. For every g�R(S), define g× �R(SOs) by

(as) g× 4 !
b�as

bg (a�S)

and a mapping

a : R(S) KR(SOs) , g O g× .

Then a is a homomorphism of R(S) onto R(SOs) which induces t . In
particular,

R(S)Ot`R(SOs) .

PROOF. – Since supp (g×) ’ (supp (g) ) s is finite, g× is well defined. We show
that a is a ring homomorphism. Let g , h�R(S). Then for every a�S, we
get

(as)(g1h×)4 !
b�as

b(g1h)4g !
b�as

bgh1g !
b�as

bhh4(as) g×1(as) h×4(as)(g×1h×)

and thus (g1h) a4ga1ha. Let C , D�SOs. For any a�S we have

(as) g Qh×4 !
b�as

b(g Qh) 4 !
b�as

!
xy4b

(xg)(yh) ,

(as)(g× Qh×) 4 !
CD4as

(Cg×)(Dh×) 4 !
CD4as

g!
x�C

xghg!
y�D

yhh4 !
CD4as

!
x�C

!
y�D

(xg)(yh) .

Hence we only need to show that the pairs (x , y) involved in both sums are the
same. Let x , y�S be such that xy4b for some b�as. Taking C4xs and D4

ys, we have x�C, y�D and CD4 (xs)(ys) 4bs4as. Conversely, let as4CD
for some C , D�SOs, x�C and y�D. For b4xy, we get

bs4 (xs)(ys) 4CD4as

and so b�as. We have proved that (as) g Qh×4 (as)(g× Qh×) for every a�S and
thus (g Qh)a4 (ga) Q (ha). Therefore a is a ring homomorphism.
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Let (p , q) �r and r�R. For every a�S, we have

(as)(ri p×) 4 !
x�as

r(xi p ) 4
.
/
´

r

0

if a s p ,

otherwise ,

(as)(ri q×) 4 !
x�as

r(xi q ) 4
.
/
´

r

0

if a s q ,

otherwise .

Since (p , q) �r’s, it follows that ri p×4 ri q×. This can be expressed by R(ri) ’ a.
Since a is a ring homomorphism, a is a ring congruence and so t4 (R(ri) )ll-- ’ a.
Hence a induces a ring homomorphism

b : R(S)OtKR(SOs) , gt O g× .

Let S 0 be a subset of S such that S 0 contains exactly one element from each
s-class of S. For every a�S, let a 0 denote the (unique) element of S 0 in as.
For every f�R(SOs), define f 8�R(S) by

af 84
.
/
´

(as) f

0

if a�S 0 ,

otherwise .

For every f�R(SOs), the set

supp ( f 8 ) 4 ]a 0 Nas�supp ( f )(

is finite and so f 8 is well defined. We define

g : R(SOs) KR(S)Ot , f O f 8 t .

All we need now is to show that b and g are mutually inverse mappings.
Let f�R(SOs). For every a�S, we have

(as) f 8× 4 !
b�as

bf 84 (a 0 s) f4 (as) f ,

hence f 8× 4 f and gb41. Conversely, let a , b�S and r�R. Then

b(ri a×8 ) 4
.
/
´

(bs) ri a×

0

if b�S 0 ,

otherwise .

If b�S 0, then

(bs) ri a×4 !
c�bs

c(ri a ) 4
.
/
´

r

0

if a s b ,

otherwise .
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Hence

b(ri a×8 ) 4
.
/
´

r

0

if b4a 0 ,

otherwise ,

and so ri a×84ri a 0 . As a s a 0, we have (ri a ) t (ri a 0 ) and thus

((ri a ) t) b g4 ri a×8 t4 (ri a 0 ) t4 (ri a ) t .

Since ]ri a Na�S , r�R( generates R(S) as a ring, it follows that bg41 hence
b is an isomorphism. r

If R and S satisfy adequate conditions, the expression of the congruence t
in Theorem 3.1 may be simplified. Let U be a unitary ring and M a monoid.
Then

ri4 ](i p , i q )N(p , q) �r(

is a relation on U(M), and M being a monoid yields (ri)ll-- 4 (U(ri) )ll-- 4t. This
equality also holds if U is generated by its identity. Since Z is generated by its
identity, the next result follows immediately.

COROLLARY 3.2.

(i) If SJ SaX ; rb, then Z(S) J RaX ; rib.

(ii) If MJ MaX ; rb, then Z(M) J UaX ; rib.

Given a unitary ring U, when can we replace U(ri) by ri in Theorem 3.1 for
every semigroup S? The next result describes precisely all such rings.

PROPOSITION 3.3. – Let U be a unitary ring. Then U is generated by its
identity if and only if for every semigroup S and every relation r on S, we
have

U(SOr ll-- ) `U(S)O(ri)ll-- .

PROOF. – Necessity was observed above. Suppose that U is not generated
by its identity. Let X be an infinite uncountable set such that NXNDNUN, S4

X 1 and r be the universal relation on X. Obviously, SOr ll-- is countable and so
U(SOr ll-- ) is either countable or equipotent with U.

On the other hand, since U is not generated by its identity, there exists u�
U such that ucn Q1 for every n�Z. Let I denote the (ri)ll---class of 0 in U(S).
Then I is the ideal of U(S) generated by the set

I0 4 ]i a 2 i b N(a , b) �r( 4 ]i x 2 i y Nx , y�X( .
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Let x , y�X be such that ui x 2ui y �I. Since I is generated by I0 , we must have
an equality of the form

ui x 2ui y 4 !
j41

n

fj Q (i xj
2 i yj

) Qgj

where nF0, xj , yj �X and the fj , gj are either elements of U(S) or are absent.
Since S4X 1 , it follows easily from length considerations that we may assume
that all fj and gj are absent. Suppose that xcy. Comparing the coefficient of i x

on both sides of the above equality, we conclude that ui x 4ki x for some integer
k and so u4k Q1, a contradiction. Therefore x4y and so (ui x )(ri)ll--, x�X, are
all distinct elements of U(S)O(ri)ll--. Hence

NU(S)O(ri)ll-- NFNXNDNU(SOr ll-- )N

and so U(SOr ll-- ) Ò U(S)O(ri)ll-- . r

Given a semigroup S and a unitary ring U, we may identify S with the sub-
semigroup Si of the multiplicative semigroup of U(S). Keeping that in mind,
the next proposition expresses the following fact: if we consider a congruence
s on S, the restriction to S of the ring congruence generated by s in U(S) is equal
to s.

PROPOSITION 3.4. – Let s be a congruence on a semigroup S and U be a uni-
tary ring. Then (si)ll-- NSi4si. Identifying Si with S, s ll-- is the least extension of s
to a congruence on U(S); the greatest extension need not exist.

PROOF. – Trivially, we have si’ (si)ll-- NSi . Conversely, let a , b�S be such
that (i a , i b ) � (si)ll--. Then (i a , i b ) � (U(si) )ll-- and so, applying the isomor-
phism

b : U(S)O(U(si) )ll-- KU(SOs)

from Theorem 3.1, we obtain

i a× 4(i a (U(si) )ll-- )b4(i b (U(si) )ll-- )b4 i b× .

Now

!
x�as

xi b 4 (as) i b× 4 (as) i a× 4 !
x�as

xi a 41

yields a s b and so (i a , i b ) �si.
Now we identify Si with S. We have just proved that s ll-- is an extension
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of s to a congruence on U(S) and it is clearly the least such. We produce
a counterexample where there exists no greatest extension.

Let S be a nontrivial semigroup and s be the identity congruence on S. For
all a�S and nD1, let r a , n denote the (ring) congruence on Z(S) generated by
(ni a , 0 ). Clearly, the r a , n-class of 0 is the ideal of Z(S) generated by ni a and
so if fr a , n 0, then n divides sf for every s�S. It follows that (i b 2 i c ) r a , n c

0r a , n for all distinct b , c�S and so r a , n is an extension of s for all a�S and
nD1. However, the join of all these extensions is clearly the universal rela-
tion, which is not an extension of s. Therefore there is no greatest extension in
this case. r

Given a commutative ring C, a semigroup S and a relation r on C(S), we de-
note by

r ll--r
: the ring congruence on C(S),

r ll--a
: the C-algebra congruence on C(S),

generated by r. In the next proposition, we compare the two congru-
ences.

PROPOSITION 3.5. – Let C be a commutative ring and S a semigroup. Let r
be a relation on C(S) and write

C(r) 4 ](cp , cq)Nc�C , (p , q) �r( .

Then (C(r) )ll--r
4r ll--a

.

PROOF. – Since r’r ll--a
and r ll--a

is a C-algebra congruence, it follows that
C(r) ’r ll--a

. Since all C-algebra congruences are in particular ring congruences,
it follows that

(C(r) )ll--r
’ (C(r) )ll--a

’r ll--a
.

We have r’ (C(r) )ll--r
and so, to prove the opposite inclusion, we only need to

show that (C(r) )ll--r
is a C-algebra congruence. Since (C(r) )ll--r

is a ring congru-
ence by definition, it remains to establish that

(p , q) � (C(r) )ll--r
¨ (cp , cq) � (C(r) )ll--r

holds for every c�C. To show this, we are going to use the layer description
from Section 2, namely (C(r) )ll--r

4 0
jF1

Tj and apply induction on j.

Fix c�C and suppose that (p , q) �T1 , the equivalence relation generated
by r. Since (a , b) �C(r) ¨ (ca , cb) �C(r) holds for every (a , b), it follows
easily that (cp , cq) � (C(r) )ll--r

. Suppose now that our implication holds whenev-
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er (p , q) �Tn (nF1), and let (p , q) �Tn11 . Then there exist w0 , R , wk �C(S)
such that

p4w0; q4wk; for every j� ]1, R , k(, (wj21 , wj ) �Pn11 .

Since (C(r) )ll--r
is transitive, we only need to prove that (cwj21 , cwj ) � (C(r) )ll--r

for every j� ]1, R , k(. For each such j, one of the following situations must
occur:

(i) (wj21 , wj ) �Tn ;

(ii) there exist (x , y), (x 8 , y 8) �Tn such that wj214x1x 8 and wj4y1y 8 ;

(iii) there exist (x , y), (x 8 , y 8 ) �Tn such that wj214xx 8 and wj4yy 8.

If (i) occurs, then (cwj21 , cwj ) � (C(r) )ll--r
at once by the induction hypothe-

sis. If (ii) occurs, then (cx , cy), (cx 8 , cy 8 ) � (C(r) )ll--r
by the induction hypothe-

sis and so

(cwj21 , cwj ) 4 (cx1cx 8 , cy1cy 8 ) � (C(r) )ll--r
.

Finally, if (iii) occurs, then (cx , cy) � (C(r) )ll--r
by the induction hypothesis and

so (cwj21 , cwj ) 4 (cxx 8 , cyy 8 ) � (C(r) )ll--r
. In any case, we obtain (cwj21 , cwj ) �

(C(r) )ll--r
for every j� ]1, R , k( and the equality (C(r) )ll--r

4r ll--a
follows by

induction. r

We now derive some consequences of Proposition 3.

COROLLARY 3.6. – Let C be a commutative ring, S a semigroup, and r a re-
lation on C(S). Then the mapping a in Theorem 3.1 is a C-algebra homomor-
phism. In particular,

C(SOr ll-- ) `C(S)O(ri)ll--a

as C-algebras.

PROOF. – We only need to check that (cg)a4c(ga) for all c�C and g�C(S).
Let a�S. Then

(as) cg×4 !
b�as

b(cg) 4 !
b�as

c(bg) 4c !
b�as

bg4 ((as) g× )4 (as)(cg×)

and thus cg×4cg× and (cg)a4c(ga) for all c�C and g�C(S). Therefore a is a
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C-algebra homomorphism and so is the quotient isomorphism

b : C(S)O(C(r) )ll--r
KC(SOr ll-- ) .

The result now follows from Proposition 3.5. r

COROLLARY 3.7. – Let C be a commutative unitary ring.

(i) If SJ SaX ; rb, then C(S) J AC aX ; rib.

(ii) If MJ MaX ; rb, then C(M) J UAC aX ; rib.

COROLLARY 3.8.

(i) If S and T are semigroups, then Z(S * T) `Z(S) * Z(T) in R .

(ii) If M and N are monoids, then Z(M * N) `Z(M) * Z(N) in U .

(iii) If C is a commutative unitary ring and S and T are semigroups,
then C(S * T) `C(S) * C(T) in AC .

(iv) If C is a commutative unitary ring and M and N are monoids, then
C(M * N) `C(M) * C(N) in UAC .

PROOF. – (i) Let SJ SaX ; rb and TJ SaY ; lb with XOY40O. By Corol-
lary 3.2, we have

Z(S) J RaX ; rib , Z(T) J RaY ; lib ,

Z((XNY)1 O(rNl)ll-- )J RaXNY ; riNlib

and so Z(S * T) `Z(S) * Z(T) as rings.
The remaining statements are proved similarly, using also Corollary 3.7. r

4. – The semigroup ring (ROI)(S).

Given an ideal I of a ring R and a semigroup S, we can view the semigroup
ring I(S) as an ideal of R(S). Our main result here is a kind of dual of Theorem 3.1
which we formulate as follows.

THEOREM 4.1. – Let I be an ideal of a ring R and S a semigroup. For every
g �R(S), define gA � (ROI)(S) by agA 4ag1I and a function

f : R(S) K (ROI)(S) , g O gA .
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Then f is a homomorphism of R(S) onto (ROI)(S) with kernel I(S). In
particular,

R(S)OI(S) ` (ROI)(S) .

PROOF. – Since supp (gA) ’supp (g) is finite, gA is well defined. Let g , h�R(S).
Then for every a�S, we obtain

a(g1hA) 4a(g1h)1I4 (ag1I)1 (ah1I) 4agA 1ahA 4a(gA 1hA)

and so (g1h)f4gf1hf; also

a(g QhA) 4a(g Qh)1I4g !
xy4a

(xg)(yh)h1I4 !
xy4a

(xg1I)(yh1I)

4 !
xy4a

(xgA)(yhA) 4x(gA QhA)

and thus (g Qh)f4 (gf) Q (hf). Therefore f is a ring homomorphism. It is easy
to see that (I(S) )f40, hence f induces a ring homomorphism

c : R(S)OI(S) K (ROI)(S) , g1I(S) O gA .

Let R 0 ’R be such that NR 0 O (r1I)N41 for every r�R. For each r�R,
let r 0 denote the (unique) element of R 0 in r1I. We assume that 00 40. For
every f� (ROI)(S), define f *�R(S) by af *4afOR 0 . Since 00 40, we have
supp (f *) 4supp ( f ) for every f�R(S) and so f * is well defined. We define a
mapping

u : (ROI)(S) KR(S)OI(S) , f O f *1I(S) .

It suffices to show that u and c are mutually inverse mappings.
Let f� (ROI)(S). For every a�S, we have af *A

4af *1I4af , hence f *A
4 f

and uc41.
Conversely, let g�R(S). Then for every a�S, we get

agA*4agA OR 0 4 (ag1I)OR 0 4 (ag)0 ,

and so a(g2gA*) 4ag2 (ag)0 �I. It follows that g2gA*�I(S) hence

(g1I(S) ) cu4 gA*1I(S) 4g1I(S) .

Thus cu41 and c is an isomorphism. r

Given a ring R and a monoid M with identity 1, we may identify R with the
subring R Q1 of R(M). The next result is an analogue of Proposition 3.4.
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PROPOSITION 4.2. – Let I be an ideal of a ring R, M a monoid and

J4I Q1N (RI)(M)N (IR)(M) .

Then JO (R Q1) 4I. If we identify R Q1 with R, then J is the least extension of
I to an ideal of R(M); the greatest extension need not exist.

PROOF. – We show by a counterexample the nonexistence of a greatest ex-
tension. The rest is immediate.

Let R be a nontrivial ring and X be a nonempty set. Take I4 (0) and M4

X * and set

A4 ] f�R(M)N !
v�M

vf40( .

Then A is an ideal of R(M) known as the augmentation ideal of R(M) and
AOR4I. We may consider B4R(X 1 ) as an ideal of R(M) and we also have
BOR4I. Let r�R and x�X. Then

r4 (r2ri x )1ri x �A1B

and thus (A1B)OR4R. Therefore there is no greatest extension of I in this
case. r

We also have an analogue of Theorem 4.1 for C-algebras.

COROLLARY 4.3. – Let I be an ideal of a commutative ring C and S a semi-
group. Then the mapping f in Theorem 4.1 is a C-algebra homomorphism. In
particular,

(COI)(S) `C(S)OI(S)

as C-algebras.

PROOF. – By Theorem 4.1, we know that (COI)(S) `C(S)OI(S) as rings. In
order to show that f is in fact a C-algebra isomorphism, it remains to show
that (cg) f4c(gf) for all c�C and g�C(S). Let a�S. Then

a(cgA) 4a(cg)1I4c(ag)1I4c(ag1I) 4c(agA) 4a(cgA) ,

thus cgA 4cgA and (cg)f4c(gf) for all c�C and g�C(S). Therefore f is a C-al-
gebra homomorphism and so is the quotient isomorphism c : C(S)OI(S) K

(COI)(S). r

5. – The semigroup ring (ROI)O(SOs).

In this section we combine results obtained in Sections 3 and 4. We formu-
late the main result as follows.
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THEOREM 5.1. – Let I be an ideal of a ring R and r a relation on a semi-
group S. Let s4r ll-- and

m4 (R(ri)N ](ii s , 0 )Ni�I , s�S()ll-- .

Then

(ROI)O(SOs) `R(S)Om .

PROOF. – From the proofs of Theorems 3.1 and 4.1, we have the
isomorphisms:

b : R(S)OtKR(SOs) , gt O g× ,

c : R(SOs)OI(SOs) K (ROI)(SOs) , g1I(SOs) O gA ,

where t4 (R(ri) )ll--, respectively. The congruence mOt on R(S)Ot is generated
by the relation

](ii s t , 0t)Ni�I , s�S( .

It follows easily from the definition of b that the image of this relation under it
is the relation

](ii ss t , 0t)Ni�I , s�S( .

Thus b induces an isomorphism

d : (R(S)Ot)O(mOt) KR(SOs)OI(SOs) .

Composing with c, we obtain

(R(S)Ot)O(mOt) ` (ROI)(SOs) .

Since (R(S)Ot)O(mOt) `R(S)Om by the classical isomorphism theorems, the re-
sult follows. r

COROLLARY 5.2. – Let I be an ideal of a commutative ring C and r a rela-
tion on a semigroup S. Let s4r ll-- and

m4 (riN ](ii s , 0 )Ni�I , s�S( )ll-- .

Then (COI)O(SOs) `C(S)Om as C-algebras.

PROOF. – By Corollaries 3.6 and 4.3, all the isomorphisms considered in the
proof of Theorem 5.1 are in this case C-algebra isomorphisms. r
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COROLLARY 5.3. – Let I be an ideal of a commutative unitary ring C.

(i) If SJ SaX ; Rb, then

(COI)(S) J AC aX ; RiN ]ii x 40Ni�I , x�X(b .

(ii) If MJ MaX ; Rb, then

(COI)(M) J UAC aX ; RiN ]ii 1 40Ni�I(b. r

We have discussed in Section 3 semigroup rings of the form R(SOs), in Sec-
tion 4 those of the form (ROI)O(S) and in Section 5 those of the form
(ROI)O(SOs) as homomorphic images of the semigroup ring R(S). Even if I
runs over all ideals of R and s over all congruences on S, obviously the stated
homomorphic images of R(S) are very far from exhausting all homomorphic
images of R(S), even up to isomorphism. Ideals of R(S) may be inexpressible,
at least in a straightforward way, in terms of ideals of R and congruences on S.
Nevertheless, it would be of some interest to find classes of ideals of R(S)
which may, in some way, be extracted or, even better, expressed by means of
ideals of R and congruences on S. Even in simple cases, such constructions
may not guarantee description of all ideals of the semigroup ring R(S). In or-
der to see the extent of ideals which are kernels of homomorphisms of R(S)
onto (ROI)O(SOs), one would have to characterize such ideals of R(S) in an ab-
stract way. We offer these ideas as food for thought to the interested reader.
This by far does not exhaust the themes related to homomorphic images of
semigroup rings, for it is not even available knowledge how to characterize
semigroup rings (let alone their homomorphic images) within the class of all
rings.
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