BOLLETTINO UNIONE MATEMATICA ITALIANA

SZYMON DOLECKI, MICHEL PILLOT

Relatively maximal convergences

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 1-B (1998), n.3, p. 699–704.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_1998_8_1B_3_699_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 1998.

Relatively Maximal Convergences.

SZYMON DOLECKI - MICHEL PILLOT

Sunto. – Topologie, pretopologie, paratopologie e pseudotopologie sono importanti classi di convergenze, chiuse per estremi superiori (superiormente chiuse) ed inoltre caratterizzabili mediante le aderenze di certi filtri. Convergenze J-massimali in una classe superiormente chiusa $D \supset J$, cioè massimali fra le D-convergenze aventi la stessa imagine per la proiezione su J, svolgono un ruolo importante nella teoria dei quozienti; infatti, una mappa J-quoziente sulla convergenza J-massimale in D è automaticamente D-quoziente; d'altro lato, per $D \supset J$, una mappa D-quoziente conserva più proprietà topologiche che una mappa J-quoziente. Si stabilisce una caratterizzazione generale della J-massimalità in D quando J ed D appartengono alle classi di topologie, pretopologie, paratopologie e pseudotopologie. In casi particolari si ritrova le topologie di accessibilità di Whyburn e di forte accessibilità di Siwiec.

By a convergence ξ on a set X we understand here a relation between X and the set of all filters on X, denoted

$$x \in \lim_{\xi} \mathcal{F},$$

such that $\mathcal{F} \subset \mathcal{G}$ implies $\lim_{\xi} \mathcal{F} \subset \lim_{\xi} \mathcal{G}$ and such that the principal filter (*x*) of *x* converges to *x* for every $x \in X$. Given a convergence ξ on *X* and a convergence τ on *Y*, a mapping $f: X \to Y$ is *continuous* if $f(\lim_{\xi} \mathcal{F}) \subset \lim_{\tau} f(\mathcal{F})$ for every filter \mathcal{F} on *X*; a convergence ξ on *X* is *finer* than a convergence ζ on *X* (in symbols, $\xi \ge \zeta$) if the identity i_X is continuous from ξ to ζ .

Several important classes of convergences, like topologies, pretopologies, paratopologies and pseudotopologies, are closed for arbitrary suprema in the class of convergences. To every sup-closed class of convergences there corresponds a projection J (i.e., an isotone decreasing idempotent map) such that this class (of *J*-convergences) is equal to $\{\xi: J\xi \ge \xi\}$.

If J and D are projections with $J \leq D$, then a D-convergence τ is J-maximal at x_0 with respect to the class of D-convergences (shortly, J-maximal at x_0 in D) if for every D-convergence $\xi \geq \tau$ such that $J\xi = J\tau$, one has $x_0 \in \lim_{\tau} \mathcal{F}$ implies $x_0 \in \lim_{\xi} \mathcal{F}$.

Thanks to the characterizations of various classes of quotient maps in

terms of projections on classes of convergences $[2,6]^{(1)}$, relative maximality of an image space automatically improves the quotient class of the corresponding map.

V. Kannan in [5] characterizes implicitly (i.e., without introducing the notion of maximality) topologies that are topologically maximal with respect to the class of pretopologies; one of his characterizations amounts to accessibility (a notion due to G. T. Whyburn [8]). Unaware of [5] S. Dolecki and G. Greco gave in [3] a characterization of pretopologies that are topologically maximal with respect to the class of pretopologies extending the result of Kannan. In [4] we provided a unified characterization of topological maximality with respect to pretopologies, paratopologies and pseudotopologies. In particular we showed that a topology is topologically maximal with respect to paratopologies if and only if it is strong accessibility (the notion is due to F. Siwiec [7]).

In this paper, we succeed to give a single general criterion of J-maximality in D (in terms of adherences for special classes of filters dependent on J and D), where J and D are projections on topologies, pretopologies, paratopologies or pseudotopologies (Theorem 2); it specializes to the known criteria mentioned above.

Quotient maps onto maximal convergences.

If $f: X \to Y$ is surjective and if ξ is a convergence on X, then $f\xi$ stands for the finest convergence on Y making f into a continuous mapping. If τ is a convergence on Y, then f is a *J*-quotient map if and only if $\tau = J(f\xi)$. We consider a broader notion of *J*-map, i.e., such that $\tau \ge J(f\xi)$. A *J*-map is *J*-quotient if and only if it is continuous. It turns out that *J*-quotient maps onto *J*-maximal convergences in *D* are *D*-quotient maps.

THEOREM 1 [2], [4]. – A D-convergence τ is J-maximal in D if and only if every J-quotient map f from a D-convergence ξ to τ is a D-quotient map.

PROOF. – Let f be a J-quotient map from (X, ξ) onto (Y, τ) and let $D(f\xi) > \tau$. As $J(D(f\xi)) = J(f\xi) = J\tau$, the D-convergence τ is not J-maximal in D.

Conversely, if τ is not *J*-maximal in *D*, then there exists a *D*-convergence ξ such that $\xi > \tau$ and $J\xi = J\tau = \tau$. Therefore the identity map $\iota: \xi \to \tau$ is *J*-quotient but not *D*-quotient.

⁽¹⁾ Bi-quotient maps coincide with pseudotopologically quotient maps, hereditarily quotient with pretopologically quotient [6], almost open with convergence quotient, countably bi-quotient with paratopologically quotient, and quotient with topologically quotient [2]; here the first term corresponds to classical terminology and the latter to convergence-theoretic terminology.

In the terms of *J*-maps, classical quotient maps are continuous topological quotient maps. It was pointed out in [6] that *pseudo-open* (i.e., *hereditarily quotient*) maps coincide with pretopological quotients ($\tau \ge P(f\xi)$), while *bi-quotient* maps coincide with pseudotopological quotients ($\tau \ge S(f\xi)$), and in [2] that *countably bi-quotient* maps coincide with paratopological quotients ($\tau \ge P_{\omega}(f\xi)$) and *almost open* maps coincide with convergence quotients ($\tau \ge f\xi$).

Actually, for the discussed four classes of convergences the sufficiency part of the above theorem can be improved on replacing «a convergence ξ » by «a *J*-convergence ξ » (see [4, Theorem 4.4]). In particular, one recovers the results of G. Whyburn [4, Theorem 4.4] and [9, Theorem 2] that a T_1 topology is accessibility if and only if every quotient map onto it is pseudo-open, and of F. Siwiec [7, Theorem 4.3] that a topology is strong accessibility if and only if every quotient map onto it is countably bi-quotient.

Adherence-representable convergences.

Let \mathcal{F} be a filter on a convergence space X. The *adherence* of \mathcal{F} is the union of the limits of all filters that are finer than \mathcal{F} :

(1)
$$\operatorname{adh} \mathcal{F} = \bigcup_{g \supset \mathcal{F}} \lim g.$$

The *closure* of a subset A of X is equal to the adherence of the principal filter of A. A subset A of X is ξ -closed whenever for every filter \mathcal{F} with $A \in \mathcal{F}$, one has $\lim_{\xi} \mathcal{F} \subset A$. A set is ξ -open if its complement is ξ -closed. A convergence with unicity of limits is called *Hausdorff*.

A convergence is a *pseudotopology* (G. Choquet [1]) if $x \in \lim \mathcal{F}$ whenever $x \in \lim \mathcal{U}$ for every ultrafilter \mathcal{U} finer than \mathcal{F} . A convergence is a *pretopology* (G. Choquet [1]) if for every point x, its neighborhood filter

$$\mathcal{N}(x) = \bigcap_{x \in \lim \mathcal{F}} \mathcal{F}$$

converges to x. A pretopology is a *topology* if each neighborhood filter admits a base of open sets.

As we have already mentioned, the classes of pseudotopologies, pretopologies and topologies are closed for suprema. The corresponding projections are denoted by S (pseudotopologization) P (pretopologization) and T (topologization).

The projections *S*, *P* and *T* can be expressed in terms of adherences. Recall that the *grill* $\mathcal{H}^{\#}$ of a family \mathcal{H} is the set of all *G* such that $G \cap H \neq \emptyset$. Families \mathcal{F} and \mathcal{H} *mesh* ($\mathcal{F} \# \mathcal{H}$) whenever $\mathcal{F} \subset \mathcal{H}^{\#}$ (equivalently $\mathcal{H} \subset \mathcal{F}^{\#}$).

(2)
$$\lim_{D\xi} \mathcal{F} = \bigcap_{\mathcal{F} \notin \mathcal{X} \in \mathfrak{D}} \operatorname{adh}_{\xi} \mathcal{H},$$

where $\mathfrak{D} = \mathfrak{D}(\xi)$ is respectively the class of all filters (case of *S*), of the principal filters (case of *P*) and of the principal filters of ξ -closed sets (case of *T*).

A convergence ξ is a *paratopology* [2] if (2) holds with \mathfrak{D} being the class of countably based filters. It follows that the class of paratopologies is supclosed; we denote the corresponding projection P_{ω} .

Characterization of maximality.

We study the cases where J and D correspond to one of the usual classes: pseudotopologies, paratopologies and pretopologies. The remaining case where J = T is the class of topologies has been characterized in [4].

The maximality characterization theorem that we present in this section is restricted to convergences classes D and J corresponding to fixed families \mathfrak{D} and \mathfrak{F} in (2). The characterizing condition is the same as in [4, Theorem 3.1], but the argument although very similar to that used in the proof of that theorem, at one point uses a different property, namely that

$$(3) \qquad \qquad \mathcal{H} \in \mathfrak{D}, \ A \notin \mathcal{H} \Longrightarrow \mathcal{H} \backslash A \in \mathfrak{D}.$$

This property is satisfied in all the considered cases ($\mathfrak{F} = \mathfrak{S}, \mathfrak{R}_{\omega}, \mathfrak{F}$). We were unable to find a unified proof for both the mentioned theorems.

THEOREM 2. – Let $J \in D$ be convergence classes defined by (2) with respect to families $\mathfrak{F} \subset \mathfrak{D}$ so that \mathfrak{D} fulfills (3) and \mathfrak{F} is independent of convergence. A *D*-convergence τ is *J*-maximal at x_0 in *D* if and only if for each $\mathfrak{H} \in \mathfrak{D}$ with $x_0 \in \operatorname{adh}_{\tau}(\mathfrak{H} \setminus x_0)$, there exists $\mathfrak{G} \in \mathfrak{F}$ such that $x_0 \in \operatorname{adh}_{\tau}(\mathfrak{G} \setminus x_0)$ and

(4)
$$\forall_{H \in \mathcal{H}} x_0 \notin \operatorname{adh}_{\tau}(\mathcal{G} \setminus H \setminus x_0).$$

In [4, Theorem 3.1], for the topological maximality, the family of τ -closed subsets has the role of \Im .

PROOF. – (\Rightarrow) Let $\mathcal{H} \in \mathfrak{D}$ be such that $x_0 \in \operatorname{adh}_{\tau}(\mathcal{H} \setminus x_0)$ and such that for every $\mathcal{G} \in \mathfrak{F}$,

(5)
$$x_0 \in \operatorname{adh}_{\tau}(\mathcal{G} \setminus x_0) \Longrightarrow \underset{H \in \mathcal{H}}{\exists} x_0 \in \operatorname{adh}_{\tau}(\mathcal{G} \setminus H \setminus x_0).$$

Let $\mathcal{H}_0 = \mathcal{H} \setminus x_0$. Then $\mathcal{H}_0 \in \mathfrak{D}$ by our assumption. We define the following convergence θ :

(6)
$$\lim_{\theta} \mathcal{F} = \begin{cases} \lim_{\tau} \mathcal{F} \setminus \{x_0\}, & \text{if } \mathcal{H}_0 \ \# \mathcal{F}, \\ \lim_{\tau} \mathcal{F}, & \text{otherwise}. \end{cases}$$

It is a *D*-convergence strictly finer than τ at x_0 . Let us show that $J\tau = J\theta$. To

this end by (2) used for \mathfrak{F} independent of convergences, it is enough to prove that for each $\mathcal{G} \in \mathfrak{F}$, the difference $\operatorname{adh}_{\tau} \mathcal{G} \setminus \operatorname{adh}_{\theta} \mathcal{G}$ is empty. Since this difference is included in $\{x_0\}$, we need only assume $x_0 \in \operatorname{adh}_{\tau} \mathcal{G} \setminus \operatorname{adh}_{\theta} \mathcal{G}$ and get a contradiction. We infer that $x_0 \notin \bigcap_{G \in \mathfrak{G}} G$, hence $x_0 \in \operatorname{adh}_{\tau}(\mathcal{G} \setminus x_0)$, thus by (5), there is $H \in \mathcal{H} \subset \mathcal{H}_0$ such that $x_0 \in \operatorname{adh}_{\tau}(\mathcal{G} \setminus H \setminus x_0) = \operatorname{adh}_{\theta}(\mathcal{G} \setminus H \setminus x_0)$ by (6).

(\Leftarrow) Let $\tau = D\tau$ be not *J*-maximal at x_0 in *D*: there exists $\xi = D\xi \ge \tau$ with $J\xi = J\tau$ and such that for some filter \mathcal{F} , $x_0 \in \lim_{\tau} \mathcal{F} \setminus \lim_{\xi} \mathcal{F}$. Consequently by (2), there exists a filter $\mathcal{H} \in \mathfrak{D}$ such that $x_0 \in \operatorname{adh}_{\tau} \mathcal{H} \setminus \operatorname{adh}_{\xi} \mathcal{H}$. Therefore, $x_0 \in \operatorname{adh}_{\tau}(\mathcal{H} \setminus x_0)$ and thus with the aid of $\mathcal{H}_0 = \mathcal{H} \setminus x_0$ we can define by (6) the convergence θ .

Let now $\mathcal{G} \in \mathfrak{F}$ be such that $x_0 \in \operatorname{adh}_{\tau}(\mathcal{G} \setminus x_0)$. As $\xi \ge \theta > \tau$, one has $J\theta = J\tau$ and $\mathcal{G} \setminus x_0 \in \mathfrak{F}$, therefore by (2) for \mathfrak{F} fixed, $x_0 \in \operatorname{adh}_{\theta}(\mathcal{G} \setminus x_0)$. By (6), there exists $H \in \mathcal{H}$ such that $H^c \cup \{x_0\} \in (\mathcal{G} \setminus x_0)^{\#}$, hence $x_0 \in \operatorname{adh}_{\theta}(\mathcal{G} \setminus H \setminus x_0)$ and thus (5) holds.

COROLLARY 3. – A paratopology τ (resp. a pseudotopology τ), on a set X, is pretopologically maximal at x_0 in the class of paratopologies on X (resp. pseudotopologies on X) if and only if for each countably based filter \mathcal{H} (resp. each filter), with $x_0 \in \operatorname{adh}_{\tau}(\mathcal{H} \setminus x_0)$, there exists $G \subset X$ such that $x_0 \in \operatorname{cl}_{\tau}(G \setminus x_0)$ and

(7)
$$\qquad \qquad \forall_{H \in \mathcal{H}} x_0 \notin \mathrm{cl}_\tau(G \setminus H \setminus x_0) \,.$$

COROLLARY 4. – A pseudotopology τ , on a set X, is paratopologically maximal at x_0 in the class of pseudotopologies on X if and only if for each filter \mathfrak{IC} with $x_0 \in \operatorname{adh}_{\tau}(\mathfrak{IC} \setminus x_0)$, there exists a countably based filter \mathfrak{S} such that $x_0 \in \operatorname{adh}_{\tau}(\mathfrak{S} \setminus x_0)$ and

(8)
$$\forall_{H \in \mathcal{H}} x_0 \notin \operatorname{adh}_{\tau}(\mathcal{G} \setminus H \setminus x_0).$$

EXAMPLE 5 (A pseudotopology ξ such that $\xi > P_{\omega}\xi > P\xi > T\xi$). – Recall that the *Stone topology* on the set βX of the ultrafilters of X admits the following base: $\beta W = \{ \mathcal{U} \in \beta X \colon W \in \mathcal{U} \}, W \subset X.$

A pseudotopology on X is determined by the collection

$$\{\mathfrak{B}(x): x \in X\}$$

of families of the ultrafilters convergent to each $x \in X$; conversely, every class (9) with the property that the principal ultrafilter of x belongs to $\mathfrak{B}(x)$ for each $x \in X$, determines a pseudotopology.

It has been shown in [2] that a pseudotopology on X is a paratopology if and only if all the sets in (9) are closed for the topology $G_{\delta}(\beta)$, i.e., the topology generated by the base for open sets composed of the countable intersections of the Stone open sets.

On the other hand, a pseudotopology on X is a pretopology if and only if the class (9) consists of Stone closed sets.

Consider a subset \mathfrak{B} of free ultrafilters on an infinite countable set X which is $G_{\delta}(\beta)$ -closed but not Stone closed. Such sets exist, because for each strictly decreasing sequence $(W_n)_n$ of infinite subsets of X, the set $\bigcap_n \beta W_n$ is not open. On the other hand, as the Stone interior of $\bigcap_n \beta W_n$ is not empty hence the discrete sets for the Stone topology and for $G_{\delta}(\beta)$ coincide such sets are not discrete. Let $\mathcal{U} \in \operatorname{cl}_{G_{\delta}(\beta)} \mathfrak{B} \setminus \{\mathcal{U}\}$. Consider the set $\{0\} \cup \{1/n: 0 \neq n \in \mathbb{N}\} \cup \bigcup_{n \in \mathbb{N}} X_n$, where X_n are copies of X. Define the following pseudotopology ξ the points of $\bigcup_{n \in \mathbb{N}} X_n$ are isolated, the ultrafilters convergent to 1/n are: the principal ultrafilter and all the elements of $\mathfrak{B}_n \setminus \{\mathcal{U}_n\}$ (the *n*-th copies of $\mathfrak{B} \setminus \{U\}$); each free ultrafilter on $\{1/n: 0 \neq n \in \mathbb{N}\}$ converges to 0. \mathcal{U}_n is the only ultrafilter that converges to 1/n for $P_{\omega} \xi$ but not for ξ . All the ultrafilters of $\operatorname{cl}_{\beta} \mathfrak{B}_n$ converge to 1/n for P_{ξ} . Finally the trace on $\bigcup_{n \in \mathbb{N}} X_n$ of the topological neighborhood filter of 0 is $\bigcup_{n \in \mathbb{N}} W_n$.

Therefore, ξ , $P_{\omega}\xi$, $P\xi$, $T\xi$ are examples of convergences that are not maximal in any of the discussed cases.

REFERENCES

- [1] G. CHOQUET, Convergences, Ann. Univ. Grenoble, 23 (1947-48), 55-112.
- [2] S. DOLECKI, Convergence-theoretic methods in quotient quest., Topology Appl., 73 (1996), 1-21.
- [3] S. DOLECKI G. H. GRECO, Topologically maximal pretopologies, Studia Math., 77 (1984), 265-281.
- [4] S. DOLECKI M. PILLOT, Topologically maximal convergences and types of accessibility, submitted (1996).
- [5] V. KANNAN, Ordinal invariants in topology, Memoirs Amer. Math. Soc., 32, No. 245 (1981), 1-164.
- [6] D. C. KENT, Convergence quotient maps, Fund. Math., 65 (1969), 197-205.
- [7] F. SIWIEC, Sequence-covering and countably bi-quotient mappings, Gen. Topology Appl., 1 (1971), 143-154.
- [8] G. T. WHYBURN, Mappings on inverse sets, Duke Math. J., 23 (1956), 237-240.
- [9] G. T. WHYBURN, Accessibility spaces, Proc. Amer. Math. Soc., 24 (1970), 181-185.

Département de Mathématiques, Université de Bourgogne BP 400, 21011 Dijon, France e-mail: dolecki@satie.u-bourgogne.fr

Pervenuta in Redazione

il 30 ottobre 1996 e, in forma rivista il 9 settembre 1997