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Bollettino U. M. I.
(8) 1-B (1998), 677-689

On Special p-Groups.

RENZA CORTINI

Sunto. – In questo lavoro viene data una caratterizzazione di quei p-gruppi nilpotenti
di classe due ed esponente p che sono speciali. Vengono inoltre studiate alcune co-
struzioni, automorfismi e sottogruppi abeliani di p-gruppi speciali.

1. – Introduction.

Let p be a prime. A finite p-group G is called special if the center Z(G), the
commutator subgroup G 8 and the Frattini subgroup F(G) coincide. In this
case, one can immediately show that G 8 and G/G 8 are elementary abelian
groups and so exp(G) 4p or p 2.

Special p-groups are a relevant class of finite groups. First of all, in a paper
of 1973 Heineken and Liebeck [6] have shown that, for every odd prime, there
is an injective mapping from the class of finite groups to that of special p-
groups of exponent p 2. A similar result, but concerning infinite groups, is
given by U. H. M. Webb in [14]. Then, (see [12]), Verardi has constructed a
mapping from the class of groups to that of special p-groups of exponent p. By
these mappings the knowledge of the associated special p-group allows us to
obtain specific informations about the structure of the initial group. Moreover
several papers and books present the study of particular subclasses, namely
extra-special p-groups (see [3], [7] and their references), semi-extraspecial p-
groups (see [1], [2], [5], [10]) and so on. In these books and papers, properties
of subgroups, automorphisms and centralizers are investigated and some clas-
sifications are given. In two papers by Visnevetskii ([13]) and Heineken ([5]),
the case of NG 8N4p 2 is investigated. In particular they have shown that a spe-
cial p-group of this type is the product of two abelian subgroups, and a classifi-
cation is given as well.

Since every special p-group is nilpotent of class 2, it is natural to ask in
which case a group of nilpotency class 2 is special. Therefore in this paper,
firstly, a characterization of special p-groups of exponent p is given in terms of
a family of skew-symmetric matrices associated to the commutators of a mini-
mal generating set (see Proposition 2.1 and Theorem 2.3).

This characterization allows us to find a general construction of special p-
groups of exponent p and order p m1s, where p 2 4NG 8 NGp m(m21)O2. Particu-
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lar constructions are given in the cases of m4s with mG3 or m4s11. For
some values of m and s, these groups are not the product of two abelian sub-
groups (see Proposition 3.3). Moreover the maximum order of an abelian sub-
group is investigated as well (see Proposition 4.1). In particular it is studied
the case of the so-called ordinary special p-groups (see Remark 4.6 and
Proposition 4.7).

A characterization of automorphisms of a special p-groups is given in
Proposition 4.5.

Finally special p-groups are studied as quotients of the relatively free p-
group of nilpotency class two and exponent p. Indeed, such a group F is spe-
cial, and every special p-group of exponent p, with the same number of genera-
tors, is its omomorphic image. Some conditions are given on normal subgroups
of F, so that the quotient group turns out to be special (see Proposition
5.1).

2. – Some characterizations of special p-groups of exponent p with odd p.

In this section we want to characterize special p-groups of exponent p
through some properties of a family of skew-symmetric matrices associated to
the commutators of a minimal generating set. Firstly, we recall the presenta-
tion of a nilpotent group of class 2 and exponent p.

Let p be an odd prime and Mk 4 [mkij
], (k41, R , s skew-symmetric

matrices of order m; then:

G4 ae1 , R , em , c1 , R , cs Oei
p 4ck

p 41, [ei , ck ] 4 [cl , ck ] 41 ,

[ei , ej ] 4c1
m1ij c2

m2ij
Rcs

msij , i , j41, R , m ; k , l41, R , sb

is a nilpotent group of class 2 and exponent p, with:

G 84 ac1 , R , cs b GZ(G)

Conversely, let pD2 and G be a p-group of nilpotency class 2 and exponent
p; so F(G) 4G 8 and then G 8 and G/G 8 are elementary abelian p-groups,
namely vector spaces on the field ZOpZ. Accordingly we can write them
additively and, hence, read the map

f : G/G 83G/G 8KG 8 ,

[xG 8 , yG 8 ] O [x , y] ,

as a bilinear alternating one between these vector spaces. Setting
]e1 G 8 , R , em G 8( and ]c1 , R , cs ( as bases of these vector spaces, we
can find s skew-symmetric matrices M1 , R , Ms so that, if Mk 4 [m

kij
], then
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[ei , ej ] 4 »
k41

s

ck
mkij . On the other hand G 8GZ(G) implies [ei , ck ] 4 [cl , ck ] 41;

hence G has the previous presentation.
Our aim is now to characterize special p-groups of exponent p through

properties of M1 , R , Ms .

2.1. PROPOSITION. – Let G be a nilpotent group of class 2 and exponent p.
Then G is a special p-group if and only if the following conditions
hold:

a) 1
k41

s

ker Mk 4 ]0(,

b) G has no direct abelian factors.

PROOF. – Suppose that a) and b) hold. We already know that G 8G

ac1 , R , cs b GZ(G); now our first aim is to prove that ac1 , R , cs b 4Z(G). Writ-
ing additively the elementary abelian groups G 8 and G/G 8 and setting
]e1 G 8 , R , em G 8( and ]c1 , R , cs ( as bases of them, we can consider

X4 !
i41

m

xi ei 1 !
j41

s

xj cj 4X 81 !
j41

s

xj cj .

Then X�Z(G) if and only if

(Y4 !
i41

m

yi ei 1 !
j41

s

yj cj 4Y 81 !
j41

s

yj cj

it results:

0 4 [X , Y] 4 [X 8 , Y 8 ] 4 !
k41

s

(X 8t Mk Y 8 )ck

(recalling that we are writing the groups additively). That is X�Z(G) if and
only if:

.
`
`
`
´

X 8t M1

X 8t M2

÷

X 8t Ms

ˆ
`
`
`
˜

40s3m .

Consequently X 8� 1
k41

s

Ker Mk 4 ]0(, i. e. X 840 and therefore Z(G) 4

ac1 , R , cs b. To prove that G is a special p-group we must still verify that G 84

ac1 , R , cs b. By way of contradiction, let us suppose G 8EZ(G) 4 ac1 , R , cs b.
Then there exists i� ]1, R , s( such that ci �G 8. Since exp G4p and F(G) 4

G 8, it follows ci �F(G). Therefore there exists a maximal subgroup M of G
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such that ci �M. Then G4M3 aci b, that is a contradiction. Hence G 84Z(G)
and the group under consideration is special.

Vice versa, suppose that G is a special p-group of exponent p. First we will
prove that G cannot have any direct abelian factor. Suppose G4P3A , with A
abelian. Then G 84P 8, but Z(G) FA, and then A41.

Moreover, as already said, G has a representation by matrices M1 , R , Ms

and, setting X4xZ(G) 4 !
i41

m

xi ei Z(G), we have x�Z(G) if and only if

X t Mk 40 , (k41, R , s

that is X�ker Mk (k41, R , s. Since Z(G) 4G 84 ac1 , R , cs b we must have

X40; hence 1
k41

s

ker Mk 4 ]0(, q.e.d.

2.2. REMARK. – A sufficient condition to a) is that )l 1 , R , l s �ZOpZ such
that

det g !
k41

s

l k Mkhc0 .

We call such a special p-group an ordinary special p-group.

In fact, in this case, X t Mk 40, (k41, R , s implies X tg !
k41

s

l k Mkh4013m

and, since this linear combination is non-singular, we have X40 and conse-

quently 1
k41

s

ker Mk 4 ]0(.

The following theorem gives another characterization of those nilpotent p-
groups of class 2 and exponent p which are special.

2.3. THEOREM. – With the notations of Proposition 2.1, G is a special p-
group of exponent p if and only if the following conditions hold:

a) 1
k41

s

ker Mk 4 ]0(,

b) the vectors

v14(m112
, m212

, R , ms12
), v24(m113

, m213
, R , ms13

), R ,

vm214(m11m
, m21m

, R , ms1m
), vm 4 (m123

, m223
, R , ms23

), R ,

v2m234(m12m
, m22m

, R , ms2m
), R , v(m(m21))O2 4 (m1m21, m

, m2m21, m
, R , msm21, m

)

consist in a system of generators for the vector space ZOpZ3R3ZOpZ
���

s

.

PROOF. – As already seen in Proposition 2.1, 1
k41

s

Ker Mk 4 ]0( if and only if

ac1 , R , cs b 4Z(G); therefore to prove that the nilpotent group G is special it
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suffices to prove that ac1 , R , cs b 4G 8, that is c1 , R , cs �G 8. Conversely
c1 , R , cs �G 8 if and only if the following relation holds:

c1 , R , cs � a[ei , ej ], i , j41, R , mb 4 o »
k41

s

ck
mkij , i , j41, R , mp

and since

c1 4c1
1 c2

0
Rcs

0 , c2 4c1
0 c2

1 c3
0
Rcs

0 , R , cs 4c1
0 c2

0
Rcs21

0 cs
1

then ](m1ij
, m2ij

, R , msij
), iE j(

must be a set of generators of ZOpZ3R3ZOpZ
���

s

.

2.4. REMARK. – The previous theorem gives a restriction to the order of G 8:
a nilpotent group of class 2 and exponent pc2, with m generators and with
the commutator subgroup of order p s, can be special only if sGm(m21)O2,
as we want to stress.

3. – Some constructions of special p-groups of exponent p with m genera-
tors and commutator subgroup of order p s, with sGm(m21)O2.

Let p be an odd prime, m and s integers with sGm(m21)O2; firstly, in
this section, we will show that it is always possible to construct, up to isomor-
phism, a special p-group of exponent p with m generators and commutator
subgroup of order p s. In fact, let G be such a group, then s matrices
M1 , R , Ms , with the conditions of Theorem 2.3, are associated to G; in
fact:

[ei , ej ] 4z1
m1ij z2

m2ij
R zs

msij

where Mk 4 [Mkij
], (k41, R , s .

We construct a group GA which results to be isomorphic to G.
Consider the product of m1s copies of the field ZOpZ, i.e.

ZOpZ3R3ZOpZ
���

m1s

, with the following operation:

(x1 , R , xm , c1 , R , cs ) * (y1 , R , ym , d1 , R , ds ) 4

gx11y1 , R , xm1ym , c11d11!
l41

m21

!
k4l11

m

m1kl
xk yl , R , cs1ds1!

l41

m21

!
k4l11

m

mskl
xk ykh .

3.1. PROPOSITION. – (GA, * ) is a group isomorphic to G.

PROOF. – It is easy to verify that (GA, * ) is a group. In order to show that it
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is isomorphic to G, define W : GK GA by the rule:

x4 »
i41

m

ei
xi z1

a 1
Rzs

a s O (x1 , R , xm , a 1 , R , a s )

(x , y as before; we have:

xy4 »
i41

m

ei
xi1yi »

l41

s

zl

!
l41

m21
!

k4l11

m
mlkl xk yl1a l1b l

.

Then

W(xy) 4ux1 1y1 , R , xm 1ym , a 1 1b 1 1 !
l41

m21

!
k4l11

m

m1kl
xk yl , R , a s 1b s 1

!
l41

m21

!
k4l11

m

mskl
xk ylv4 (x1 , R , xm , a 1 , R , a s ) * (y1 , R , ym , b 1 , R , b s ) 4

W(x) * W(y) .

This mapping is an isomorphism; in fact it results:

ker W4 ]x�GOW(x) 4 (0 , R , 0 , 0 , R , 0 )( 4

mx4 »
i41

m

ei
xi z1

a 1
Rzs

a s �GO(x1 , R , xm , a 1 , R , a s ) 4 (0 , R , 0 , 0 , R , 0 )n41 .

The inequality sGm(m21)O2 is weak, as we will show from the last
results.

3.2. REMARK. – Let G be a special p-group satisfying the conditions of The-
orem 2.3. If (m1ij

, m2ij
, R , msij

) c0 for some particular i and j and
m1lt

, m2lt
, R , mslt

) 40, (lc i and (tc j, then G is the product of two abelian
subgroups. In fact, consider:

A4 aZ(G),

(0,R,0,1
i
,0,R ,0,1

j
,0,R ,0,R ,0

���
s

),(0,R ,0,21
i

,0,R ,0,21
j

,0,R ,0,R ,0
���

s

)b

and

B4aZ(G),(1,0,R ,0), (0,1,R ,0),R ,(0,R ,0, 1
i21

,0,R ,0), (0,R ,0, 1
i11

,0,R ,0),R

R , (0 , R , 0 , 1
j21

, 0 , R , 0 ), (0 , R , 0 , 1
j11

, 0 , R , 0 )b .

Then it is easy to prove that NAN4p s12, NBN4p s1m22 and A and B are
abelian with G4AB.

In 1977 Bert Beisiegel [1] has constructed special p-groups of order p 3n,
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with commutator subgroup of order p n, in the following way: let G4F 3, where
F4GF(p n ); consider G with this multiplication law:

(a1 , a2 , a3 ) * (b1 , b2 , b3 ) 4 (a1 1b1 , a2 1b2 , a3 1b3 1 f (b1 , a2 ) ) .

It is possible to generalize such a construction in several ways. One of them
is the following. Let G4ZOpZ3R3ZOpZ be the cartesian product of 2n11
copies of the ciclic group ZOpZ. Let then f : ZOpZ3ZOpZKZOpZ be a bilinear
mapping on ZOpZ, different from the zero one. Consider G with the following
operation:

(a1 , R , an , an11 , R , a2n11 ) * (b1 , R , bn , bn11 , R , b2n11 ) 4

(a11b1,R ,an111bn11,an121bn121f (b1,a2),R ,a2n111b2n111f (b1,an11)) .

By easy but tedious calculation one can see that (G , * ) is a non-abelian group
with (0 , R , 0 ) as identity element and (2a1 , R , 2an11 , 2an12 1

f (a1 , a2 ), R ,
2a2n11 1 f (a1 , an11 ) ) as inverse of (a1 , R , a2n11 ). Furthermore the follow-
ing condition holds:

F(G) 4G 84Z(G) 4 ](0 , R , 0 , xn12 , R , x2n11 ) with xn12 , R , x2n11 �ZOpZ(

so that (G , * ) is a special p-group of exponent p, for odd p, and of exponent 4
for p42.

Observe that by such a construction we can only have special p-groups
which are product of two abelian subgroups: it will be sufficient to consider the
subgroups:

A4 aZ(G), (1 , 0 , R , 0 )b ,

B4 aZ(G), (0 , 1 , 0 , R , 0 ), (0 , 0 , 1 , R , 0 ), R , (0 , 0 , 0 , R , 0 , 1
n11

, 0 , R , 0 )b .

Now consider G4ZOpZ3R3ZOpZ the product of 2n copies of ZOpZ with
nF3. Let again f : ZOpZ3ZOpZKZOpZ be a bilinear mapping on ZOpZ, dif-
ferent from the zero one. Consider in this set the following operation:

(a1 , R , an , an11 , R , a2n ) * (b1 , R , bn , bn11 , R , b2n ) 4

(a11b1,R ,an111bn111f (a2, b3), an121bn121f (b1, a2),R , a2n1b2n1f (b1, an)) .

Then (G , * ) is a non-abelian group with (0 , R , 0 ) as identity element and (2

a1 , R , 2an , 2an11 1 f (a2 , a3 ), 2an12 1 f (a1 , a2 ), R , 2a2n 1 f (a1 , an ) ) as
inverse of (a1 , R , a2n ). In this case the following condition holds as well:
F(G) 4G 84Z(G) 4 ](0 , R , 0 , xn11 , R , x2n ) with xn11 , R , x2n �ZOpZ(, so
that also this group is a special one. Moreover, (G , * ) has exponent p for odd
p, and exponent 4 for p42.
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3.3. PROPOSITION. – Not all these special p-groups are the product of
abelian subgroups.

PROOF. – Consider in the last construction the case p42. We want to inves-
tigate the abelian subgroups of G. It is easy to verify that

H4 ](0 , 0 , 0 , x4 , x5 , R , x2n ), x4 , x5 , R , x2n �ZO2Z(

and all its subgroups are abelian.
Then an abelian subgroup K of G, K/%H, must contain an element a4

(x1 , x2 , , x3 , x4 , R , x2n ) in wich at least one among x1 , x2 , x3 is not zero.
We now proceed to rule out each possible case:

if

a4 (1 , 0 , 0 , a4 , a5 , R , a2n ) ,

then CG (a) 4 aZ(G), ab i.e. NCG (a)N4p n11;

if

a4 (0 , 1 , 0 , a4 , a5 , R , a2n ) ,

then the only elements which commute with this one and commute with each
other are of this type: (0 , x2 , 0 , x4 , x5 , R , x2n ), then NKN4p 2n22;

if

a4 (0 , 0 , 1 , a4 , a5 , R , a2n ) ,

then the only elements which commute with this one and commute with each
other are of this type: (0 , 0 , x3 , x4 , x5 , R , x2n ), then NKN4p 2n22;

if

a4 (1 , 1 , 0 , a4 , a5 , R , a2n ) ,

then CG (a) 4 aZ(G), ab i.e. NCG (a)N4p n11;

if

a4 (0 , 1 , 1 , a4 , a5 , R , a2n ) ,

then the only elements which commute with this one and commute with each
other are of this type: (0 , x2 , x3 , x4 , x5 , R , x2n ), then NKN4p 2n22;

if

a4 (1 , 0 , 1 , a4 , a5 , R , a2n ) ,

then CG (a) 4 aZ(G), ab i.e. NCG (a)N4p n11;
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if

a4 (1 , 1 , 1 , a4 , a5 , R , a2n ) ,

then CG (a) 4 aZ(G), ab i.e. NCG (a)N4p n11.

In all this cases NANNBNONAOBNEp 2n, for all abelian subgroups A and B
of G; so G cannot be the product of two abelian subgroups, q.e.d.

4. – Abelian subgroups and automorphisms.

Let G be a special p-group of exponent p with NGN4p m1s and NG 8 N4p s.
What can we say about a natural number r if A is an abelian subgroup of G of
order p s1r?

4.1. PROPOSITION. – Let G be a special p-group of exponent p with NGN4

p m1s. If A is an abelian subgroup of G with NAN4p s1r then r(r21)O2 G

m(m21)O22s.

PROOF. – Let ]e1 , R , em ( be a base of G with e1 , R , er �A, then the matri-
ces associated to G 8 are of this type:

Mj 4
.
`
´

0

2M1 j

M1 j

M2 j

ˆ
`
˜

, (j41, R , s .

By Theorem 2.3, ](m1ij
, m2ij

, R , msij
), iE j( is a system of generators of

ZOpZ3R3ZOpZ
���

s

; on the other hand we have: (m1lt
, m2lt

, R , mslt
) 4

(0 , R , 0 ) (l , t41, R , r , lE t. Consequently by Theorem 2.3: m(m2

1)O22r(r21)O2 Fs, i.e. r(r21)O2 Gm(m21)O22s.

4.2. PROPOSITION. – Every special p-group of exponent p, NGN4p m1s,
with s4m(m21)O2, has abelian subgroups of order at most p s11 and then,
if it is not an extraspecial p-group of order p 3, it cannot be the product of two
abelian subgroups containing the center.

PROOF. – The proof is almost immediate. In fact, since r(r21)O2 G

m(m21)O22s40, then r41 and NAN4p s11.

4.3. COROLLARY. – Every vector space of dimension m on ZOpZ, with s bi-
linear alternating forms, s4m(m21)O2, has isotropic subspaces of dimen-
sion at most 1.

4.4. PROPOSITION. – Let G be a special p-group of exponent p with NGN4

p m1s. If it is ordinary, then m42n and every abelian subgroup of G con-
taining the center has order at most p n1s.
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PROOF. – By our hypothesis on G there exists a non singular matrix

M4 !
i41

s

l i Mi . Let f be the bilinear form associated to M: then (GOG 8, f ) is a

non-degenerate simplectic space on ZOpZ and dim GOG 84m42n (see [7]).
Let
AFZ(G) 4G 8 be an abelian subgroup of G. Then AOG 8 is an isotropic sub-
space of GOG 8; hence dim AOG 8Gn, i. e. NANGp s1n.

Let now s be an automorphism of G. Since G 8 is characteristic, it holds
s(G 8 ) 4G 8 and then, since G 8 is a s-dimensional vector space on ZOpZ, s in-
duces an automorphism s 8 : G 8KG 8 which can be represented by a non singu-
lar matrix T of order s on ZOpZ, i. e. T� (ZOpZ , s3s). Similarly s induces on
GOG 8 an automorphism of vector space which can be represented by a non sin-
gular matrix N� (ZOpZ , m3m). Moreover, T and N satisfy the following con-
ditions: (x , y�G it holds [x s , y s ] 4 [x , y]s, then, if X and Y are the column
matrices of coordinates of xG 8 and yG 8 with respect to a given base, we
have:

[NX , NY] 4T[x , y] , (X , Y .

Consequently:

N t Mj N4 !
k41

s

tjk Mk , (j41, R , s .( * )

Vice versa, let T and N be non singular matrices satisfying condition ( * ). They
give rise to p sm different automorphisms of G by the following expres-
sions:

.
/
´

ei
s4e1

n1 i e2
n2 i

R em
nmi yi , with yi �G 8 ,

ck
s4c1

t1k c2
t2k

R cs
tsk ,

where N4 (nij ), T4 (tij ). It follows:

4.5. PROPOSITION. – Let T and N be two non singular matrices of order m
and s respectively on the field ZOpZ. Then there exists s�Aut (G), such that T
and N are its associated matrices, if and only if they satisfy ( * ). In this case
there are precisely p sm of such automorphisms.

Now suppose that G is the product of two abelian subgroups A and B. In
this case one can choose a base ]e1 , R , em ( of G with e1 , R , er �A and
er11 , R , em �B, so that:

Mj 4u 0

2M1 j
t

M1 j

0
v , (j41, R , s .
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4.6. REMARK. – If G is the product of two abelian subgroups and it is ordi-
nary, then each M1 j is a square matrix of order n. Indeed, in this case,
m42n.

Suppose that NAN4p s1r with rDn, i. e. M1 j � (ZOpZ , r32n2r), (j4

1, R , s. Then also M4 !
k41

s

l k Mk is of the following type:

M4g 0

2M1
t

M1

0
h

with M1 � (ZOpZ , r32n2r). Since rDn, we have rD2n2r and rank M1 Er,
that is rank M1 E2n . Obviously this is an absurd, so r4n and M1 , M1 i �
(ZOpZ , n3n), (j41, R , s.

4.7. PROPOSITION. – If G is an ordinary special p-group product of two
abelian subgroups, then G admits p 8-automorphisms.

Proof. – Consider N4hI2n and T4h 2 Is , with h� (ZOpZ)*, then the follow-
ing is an automorphism of G:

.
/
´

ei
s4ei

h ,

ck
s4ck

h 2
,

(i41, R , 2n ,

(k41, R , s .

Since h p
fh( mod p), then s p 4s and so s p21 4IdG , i.e. NsNN(p21).

4.8. COROLLARY. – If G is the product of two abelian subgroups, then G has
normal subgroups which are not characteristic.

Proof. – Let NAN4p s1r and NBN4p s1m2r, with G4AB. If h , k� (ZOpZ)*,
hck, we consider:

N4ghIr

0

0

kIm2r
h , T4hkIs .

Since T and N satisfy ( * ), then from Proposition 4.5 there exists an automor-
phism s of G associated to them. Let then x4e1 er11. Consider H4 axbG 8:
then H is normal in G and, since hck, we have: x s4e1

h er11
k �H. Therefore H

is not characteristic in G.

4.9. REMARK. – There are some special p-groups such that each normal
subgroup is characteristic (see [4], [11]).
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5. – Relatively free special p-groups and their quotients.

In this section we discuss about relatively free special p-groups. Firstly
we will show that every special group having m generators is a quotient of
the free group F on m generators. Let pD2 be a prime, K3 (F) 4 [F 8 , F] and
F p 4 ax p /x�Fb. The quotient G4FOF p K3 (F) is the relatively free group in
the class of nilpotent groups of class 2 and exponent p. It is well known that

G` aa1 , R , am /ai
p 4 [[ar , as ], ai ] 41, (i , r , s41, R , mb .

G is a special group. In fact, by contradiction, if x4a1
a 1

Ram
a m �Z(G)2G 8

then xai 4ai x , (i41, R , m, that is, a1
a 1

Ram
a m ai 4ai a1

a 1
Ram

a m . These are re-
lations different both from those of the presentation and any of their linear
combinations. This fact violates the freedom of F on generators. Moreover,
G 84 a[ar , as ], (r , s41, R , mb, so that it has order p m(m21)O2 . Necessarily G
has a smaller order than p m(m21)O2 . Otherwise the commutators [ai , aj ], iE j
would not be indipendent and then there would exist l ij for some i , j so that
»

iE j
[ai , aj ]l ij 41, contrary to the assumption of the relative freedom of G.

If H is a special p-group of exponent p, using Von Dyck’s theorem (see [8]),
H is an omomorphic image of G, that is, there exists an epimorphism W : GKH
with H`GOker (W).

Now we want to characterize those quotients of G which are special groups.
Let then H be special, with H 84Z(H) 4F(H) and NHOH 8 N4p m . It
holds

ker (W) GG 84F(G) .

Conversely )x�ker (W)2F(G), so that x could be an element of a basis of G,
]x1 , R , xm (. In this case H`GOker (W) would have less than m generators,
what is a contradiction. If ker (W) 4G 84F(G) then GOH is elementary
abelian. If it is non abelian, then ker (W) EG 8 . It holds W(Z(G) ) GZ(H). More-
over, since [G : Z(G) ] 4 [H : Z(H) ] 4p m, we have, W(Z(G) )4Z(H).

Finally in Proposition 5.1 we will show that not every subgroup of Z(G) can
be the kernel of an epimorphism from G into a non-abelian special group.

5.1. PROPOSITION. – KGZ(G) is the kernel of the above morphism if and
only if K does not contain any of [ai , G] 4 a][ai , g] /g�G(b, (ai �G2

Z(G).

Proof. – Since KGG 84F(G), we have

(GOK)8`G 8 OK ,

F(GOK) 4F(G)OK .

In order to verify whether the quotient is special it is necessary to study the
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properties of Z(G). Surely

Z(G)OKGZ(GOK) ,
therefore we must investigate when this inclusion becomes an equality.

It holds aK�Z(GOK) if and only if abK4baK , (bK�GOK, in other words
if and only if a 21 b 21 ab�K , (b�G . The last condition is equivalent to have ei-
ther [a , b] 41, (b�G, namely a�Z(G), either [a , b] �K , (b�G, that is
[a , G] GK .

Then it results Z(G)OK4Z(GOK) if and only if [a , b] %OK , (a�G2Z(G).
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