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On the Resolvability of Hall Triple Systems.

MARTIN OXENHAM - REY CASSE

Sunto. — E ben noto che fra le classi di sistemi ternari di Hall (HTS), gli HT'S Abeliani
ammettano una risoluzione siccome sono esattamente gli spazi affint finiti d’ordi-
ne 3; per questt sistemi una tal risoluzione ¢ fornita dalla relazione di paralleli-
smo. In questa nota viene dimostrato che certe classt di HTS non Abeliani costrutti
dai gruppi di Burnside B(3, r), =3 anche ammettono una risoluzione. Allora,
questi esempt di HTS si possono considerare anche come spazi finiti di Sperner e
dunque la nota conclude con un discorso d'una domanda posta di Barlotti in [1] ri-
guardo a questi spazi..

1. - Introduction.

Given a Steiner triple system (STS) S and any point a of S, we define the
symmetry of S with fixed point a to be the mapping

0400,
=Y,

whenever {a, x, y} is a line of S.

A Hall Triple System (HTS) is then a STS S in which each symmetry of S is
also a collineation of S. HTS’s may also be characterised as those STS’s in
which any three non-collinear points generate a finite affine plane of order 3.
It is then immediate that the finite affine spaces defined over GF(3) give rise
to examples of HTS'’s; these are commonly referred to as the Abelian HTS’s.
The order of a HTS S (i.e. the number of points in S) is always of the form 3°
for some s; s is the size of S (see [9]). Furthermore, any two minimal generat-
ing sets of a HTS have the same number of elements. Writing this number as
n + 1, the dimension of the HTS is then defined to be n (see [2]). The smallest
non-Abelian HTS has size 4 and dimension 3; all systems with these parame-
ters are isomorphic to one another (see[11]). In[13], Hall constructs this
using the Burnside group B(3, 3); this construction can be generalised to pro-

r
duce an infinite family of non-Abelian HTS’s of dimension # and size (3) + 7,
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r=3 (see[14]). For other results concerning the existence and classification
of HTS’s, see [2], [3].

An exponent 3 commutative Moufang loop (3-CM loop) is a loop (I, o)
which satisfies the following identities for all x, y, z e JN:

@) woy=you,
(i) 2% (xoy) =1,
(ifi) (xoy)o(zow) =(xo(yo2))ox.

Note: Setting = 1 in (i), we have that 2® =1 for all x € 91 and so the loop
is of «exponent 3», (see [3]).

It is reported in [15] that in 1965, M. Hall and R.H. Bruck discovered the
close ties which exist between 3-CM loops and HTS’s. Given a 3-CM loop
(91, o), we can construct a HT'S S by taking the elements of 91 as the points of
S and the triples {x, ¥, (x o y)*} as the lines of S (the incidence relation being
that of set inclusion). Conversely, given a HTS S, we can construct a 3-CM loop
I with binary operation o as follows:

For any two points a and b of S we define a-b to be the third point on the
line containing a and b if @ and b are distinct, otherwise it is equal to a. Then
the elements of It are the points of S and for all elements x and y of I, we
set

xoy=(ex)(ey)

where ¢ is an arbitrary fixed point of S. Two 3-CM loops constructed in this
way via distinct fixed points e and e’ are isomorphic. Furthermore the HTS’s
which arise from these 3-CM loops by the technique described above, are all
isomorphic to S. Thus, up to isomorphism, there is a one-to-one correspon-
dence between HTS’s and 3-CM loops. (See[3], [12] and [15] for further de-
tails.) It may be readily checked that the 3-CM loop corresponding to the fi-
nite affine space AG(n, 3), n =2 is associative. Therefore we conclude the
following:

THEOREM 1.1 ([15]). — The HTS associated with a 3-CM loop I is a finite
affine space if and only if I is associative. M

A HTS is said to be resolvable if its line-set can be partitioned into subsets
called resolution classes in such a way that each point of S lies on a unique line
of each resolution class. The partition itself is called a resolution. Each
Abelian HTS S is resolvable as the parallelism relation of the corresponding
affine space AG(n, 3) affords a resolution of S. In Section 3, we use the Burn-
side groups B(3, r), »=3, to construct an infinite class of resolvable non-
Abelian HTS’s.
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2. — Nilpotence of loops.

The 3-CM loops constitute a subclass of the more general class of loops
known as Moufang loops in which only relation (iii) need hold. In addition, the
loops are commutative if relation (i) holds. Amongst the best known examples
of Moufang loops are the groups. In discussing properties of these loops, espe-
cially the 3-CM loops in relation to the HTS’s which they coordinatise, one
powerful mathematical tool is the concept of central nilpotence of a loop. Be-
fore defining central nilpotence, we briefly recall some of the background the-
ory pertaining to loops; for a fuller account see [15].

In the sequel, where it does not lead to ambiguity, we shall denote the loop
operation by juxtaposition.

DEFINITION 2.1 ([15], p. 132, 133). — A subloop of the loop (G, ) is any sub-
set of (G, o) which s itself a loop with respect to o. A subloop (H, o) is normal
m (G, o) if for all @, y, €G

(i) *H = Hx,
(i) (Hx)y = H(wy),
(iii) y(xH) = (yx) H.

Given a normal subloop (H, o) of (G, o) we can define the quotient loop
G/H = ({H9|9 € G}’ ) where (Hgy) = (Hgs) = H(g,95).

DEFINITION 2.2 ([10], [15]). — Let (G, o) be a loop. Then

(1) The commutator of two arbitrary elements x, y € G is the unique ele-
ment [x, y] of G which satisfies

(yx)lx, y] = (xy).

(ii) The associator of three arbitrary elements x, y, z€ G is the unique
element (x,y, z) of G which satisfies

(xy2))x, y,2)=(ey)z. =™

Note 2.3. — (i) ([15], p. 133). Two elements «, y e G commute with each
other if and only if [x, ¥] =1 and three elements x, ¥, z associate with each
other (in the given order) if and only if («x, ¥, z) =1.

(ii) ([10], p. 138). A series of higher order (left) commutators can
be defined recursively as follows:

[x1, x5] is as already defined ,



642 MARTIN OXENHAM - REY CASSE
[mla Loy ooey xnfh 9071] = [[xla Loy ey 9(/'”,1], xn] ) 77/23 .

A commutator of 7 elements is said to have weight n. =

DEFINITION 2.4 ([15], p. 134). — The centre Z(G) of a loop (G, o) is the set
{zeG|lz,x]=(z,x,y) =(x,2,y) =(x,y,2) =1Ve,yeG}. [ ]

It is immediate by Definition 2.1 that Z((G) is a normal subloop (subgroup)
of G.

DEFINITION 2.5 [4]. — (i) Given a loop (G, o), the upper central series (Z;) of
G s defined recursively as given below:

Z():{l},
Z;={z2e@G|lz, x],(z,y, 0),(x, 2, ¥),(x,y,2)€Z;_;, Vx, yeG, i=1}.

(ii) A loop (G, o) is said to be centrally nilpotent if Z; = G for some 1.
The central nilpotence class of such a loop G is the smallest integer i for which
this holds. m

We note that if G is commutative, then (x, ¥, z) =1 implies (z, ¥, ) =
(x, z,y) =1, and so we may rewrite Z; as

Zi={z2eG|(x,y,2)eZ;_Vx,yeG}.

In general, a loop need not be nilpotent. However, if the loop is a commuta-
tive Moufang loop, then by the celebrated Bruck-Slaby Theorem, it is nilpo-
tent (see [15], p. 136). We shall only require the full statement of this theorem
for 3-CM loops.

THEOREM 2.6 ([3]). — Let (G, <) be a 3-CM loop and write |G/D(G)| = 3"
where D(G) is the (normal) subgroup of G generated by the associators
of G. Then Z,_(G)=G, te. G is centrally nilpotent of class at most
n—1. =

NotE 2.7 ([3]). — A 3-CM loop is nilpotent of class 1 if and only if Z,(G) = G,
if and only if G is Abelian. For results on 3-CM loops of class =2 see|[3]
and[15]. m=m

When the loop is also a group, the binary operation is necessarily associa-
tive and so we may rewrite Z; as
Zi={z2eG|lz,xleZ;_VeeG}

which coincides with the usual definition of the ith term of the upper series for
G (see [10], p. 151.) We may also define nilpotence of a group (G, o) in terms of
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a lower series (I';) which is defined as follows ([10], p. 150):
FO = G )
Fi=<[901,...,901‘4_1]'901,...,%i+1€G>, 1=1.

G is then nilpotent if and only if I'; = {1} for some ¢ = 1. In this case, G is said
to be of class 1, if 7 is the smallest integer for which this is true. Thus, as a con-
sequence, we have

COROLLARY 2.8 ([10], p. 153). — A group G is nilpotent of class i if and only
if for some 1, each commutator of weight i + 1 is the identity whereas at least
one commutator of weight 1 is not the identity. ™

3. — The burnside groups and resolvable HTS’s.

Given a group G, a set of subgroups of G is said to form a partition & of G if
the subgroups intersect pairwise in only the identity and if the set theoretic
union of them is the whole of G. Using such a partition, it is possible to con-
struct a linear space £ as described below:

(i) The points of £ are the elements of G.
(ii) The lines of .€ are the left cosets of the subgroups in the partition.
(iii) The incidence relation is set inclusion.

It is immediate that G acts via left multiplication as a collineation group of
£. In particular G acts transitively on the point-set of £. This, together with
the fact that each element of G\{1} lies in a unique subgroup of &, implies that
&£ is a linear space. Finally, £ is resolvable because we can construct a resolu-
tion of 2 which has each resolution class consisting of a subgroup in the parti-
tion and its proper cosets in G.

In this section, we use this technique to construct resolvable linear spaces
from groups G in which x” =1 for each x € G and where p is a fixed prime.
When p =3 and G is finite, the linear spaces all turn out to be HTS’s, a fact
which gives rise to our main result: for each s = 7, there exists at least one re-
solvable non-Abelian HTS of size s.

THE CONSTRUCTION. — Let G be a group in which x” =1 for each xe G
where p is a given prime. Let & be the set of subgroups of G of the form (x),
x # 1. Each such subgroup has exactly p elements and by invoking Lagrange’s
theorem and the fact that (x) N (y), «, ¥ # 1 is again a subgroup of G, it is im-
mediate that any two of these subgroups either coincide or intersect trivially
in {1}. Hence & is a partition of G and so gives rise to a linear space £ as de-
scribed previously.
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In the case that G is the elementary p-group 6—91 Z,, the resulting linear

space £ is simply AG(n, p) and the resolution of .2 comprises the usual parallel
classes of AG(n, p).

It is worth noting at this point that for all prime powers ¢ there exist infi-
nite classes of finite affine spaces AG(n, q) which admit other resolutions;
these are known as skew resolutions and are intimately related to 1-packings
of PG(n, q) (see[5], [6], [7]).

Amongst the other groups in which x? =1 for every element x are the
Burnside groups B(p, r), r=1 and their subgroups. The Burnside group
B(n, r), r, n =1 is constructed from the free group ¥, on r generators by fac-
toring out the normal subgroup N of F, which is generated by all finite prod-
ucts of the form

[Ty )
J

where x;, y; vary over F,, i.e. B(n, r) = F,/N (see [8], [10]). It is routine to ver-
ify that «”=1 for every xe B(n, r). Various results on the cardinality of
B(n, r) are known. (To avoid trivialities, we assume that » > 1 in the sequel.)
Of relevance here is the fact that B(p, r) is finite for only a finite number of
primes p (see[8]). When p =2, B(2, r) is elementary Abelian and so, as al-
ready mentioned, it gives rise to a finite affine space of order 2. For 5 <p <
665, the cardinality of B(p, ) is still an unresolved matter although it is con-
jectured that the group is infinite. This is known to be the case for all p > 665.
Finally with p =3, the group is finite for all » and is non-Abelian.

In the remainder of the section, we shall concentrate on determining the
nature of the linear spaces £ arising from B(3, r), » = 3 but before doing so it
is convenient to note the following results and properties of B(3, 7).

(G a®*=1 for all xeB(3, r), N
i) |B(3,1)| =3, |B(3,2)| =21, |B(8,7ﬂ)|=3(3)+(2)+(1), r=3.
For r=3
(i) |Z(B(3,7)|= 3(3)
Furthermore, if B(3, ) has generators x;, %3, ..., %, then Z(B(3, r)) is gen-

r
erated by the ( ) commutators [x;, x;, 4], ¢ <j <k, and this is a minimal gen-
erating set.

(iv) [a, b, c,d] =1 for all a, b, ¢, deB(3, r).

(v) B(8, r) is nilpotent of class 3. (This follows from (iii), (iv) and
Corollary 2.8.)
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(See [4], p. 292, [10].) m=
From properties (iii) and (iv), we may deduce

LEMMA 3.1. — For each proper subgroup N of Z(B(3, r)), r=3, B(3, r)/N
1is nilpotent of class 3.

ProOOF. — For any commutator of weight k& in B(3, r)/N we have that
[N, ..., . N] =[aq, ..., ;1N .

Hence by property (iv), B(3, r)/N is nilpotent of class at most 3. However, by
(iii), since N = Z(B(3, 7)), there is a commutator [x;, x;, x;], ¢ <j<k of
B(3, r) which does not belong to N. Thus

[; N, 2N, 2, N1 = [, ®;, 0, JN =N,
and so B(3, r)/N is of class 3. =

For the sake of brevity, we shall henceforth refer to a group in which 22 =
1 for all xe G as a group of exponent 3.

LEMMA 3.2. — Let G be a group of exponent 3. Then, in the finite linear
space £ arising from G, we have that

() the points a, b, ¢ are collinear if and only if ¢ =ba’b,

(ii) the points a, bab, b%ab? are collinear for each pair of elements a, b
of G.

Proor. - (i)
{a, b, ¢} is aline of L<>a{1, a®b, a®c} is a coset in G
{1,a%b, a*c} is a (cyclic) subgroup of Ge>a*c=(a*by’<a*c=a*ba*b<>c=ba’b.

(ii) Let a, b € G and consider the line through bab and a. If c¢ is the third
point of the line, then by (),

c=a(bab)’a= (ab)?(ba)®= (ab) ' (ba) ' =
(baab)™ = (ba"'0)"'=b"lab '=0%ab%:. m
THEOREM 3.3. — Under the hypotheses of Lemma 3.2, the linear space £ 1s a
HTS if G s finite.

ProOF. — Since each line of £ has 3 points, it may be equally well regarded
as a Steiner triple system.
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Let a be an arbitrary point of € and let o, be the symmetry of ¢ with fixed
point a. Let « be a point distinct from a. Then by Lemma 3.2 (i), the line con-
taining @ and « is {a, x, xa®x}. Hence

04 0—a,

x—xa’y.

We now show that o, is a collineation of £. Each line of € is a coset of a non-
trivial cyclic subgroup of G. Therefore each line can be written in the
form

c{1,b,b%} = {c, cb, cb?}
for some elements b, ¢ of G. The image of this line under the action of o, is the set
o.{c, cb, cb*} = {ca®c, cba®ch, cb*a*cb*} = c{(a®c), b(a®c) b, b*(a®c) b*}.

By Lemma 3.2 (i), [ = {(a?c), b(a®c) b, b%(a®c) b®} is a line of €. Hence, it
follows that ¢l = o, {c, cb, cb®} is also a line because G acts via left multiplica-
tion as a collineation group of €.

Since each symmetry of £ is also a collineation, it follows by definition that
£Lisa HTS. =

If G is a finite group of exponent 3, then the HTS £ arising from G can be
coordinatised by a 3-CM loop J. By the discussion presented in the introduc-
tion, the 3-CM loop corresponding to the point 1 of £ is isomorphic to In.
Therefore we identify these two loops. Letting o denote the binary operation
of I and applying the result of Lemma 3.2 (i), we have that

aob=(1-a)-(1-b) = (a?)-(b%) = b%ab?

for each pair of elements a, beG.

This 3-CM loop is a special case of a class of commutative Moufang loops
studied by Bruck in[4] (see p. 307). He showed that given any Moufang loop
(9, ) in which 2+ x? is an endomorphism of 91’ into its centre, then the ele-
ments of I’ under the binary operation = defined by

1

xry=a leyex?

constitute a commutative Moufang loop. (Note: In a Moufang loop (I, e) any
two elements generate a subloop which is also a subgroup. Hence for each x e
I, the inverse x ~! is well-defined and x ! o(y e2%) = (x "' oy) ex? for all x,
y € 9. Thus the expression & ~! ey e2% is unambiguous, (see [15], p. 134).) Fur-
thermore if (91U, o) is a group, then (MU', =) is centrally nilpotent of class <2
with equality holding if and only if (91T', e) is nilpotent of class 3. Thus, if G is a
group of exponent 3, then &+ x3(=1) is an endomorphism of G into its centre
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and so, considered as a Moufang loop, G gives rise to a 3-CM loop under the
operation = where

axb=bxa=0'ab?=0b%ab® (since b>=1)

which is identical to the operation o obtained from the HTS .€ arising from G
(when G is finite). Summarising these results, we now have

THEOREM 3.4. — Let G be a finite group of exponent 3. Then the HTS £ aris-
g from G is non-Abelian (i.e. not an affine space of order 3) if G is of
class 3. =

We can now prove our main result:

THEOREM 3.5. — For each s =7, there exists at least one non-Abelian re-
solvable HTS of size s.

PRrOOF. — Let G be the group which is the direct product of B(3, 3) and (s —
7) copies of (Zs, +).

G is a group of exponent 3 and is nilpotent of class 3 because B(3, 3) is of
class 3 and each 73 is of class 1. Hence by Theorem 3.3, since G is finite, it
gives rise to a HTS ., and by Theorem 3.4 ., is non-Abelian. Furthermore, the
order of £ is

|B(3,8)| X |Zs | "=387-8""T=3",

so £ has size s.
Finally, by the initial construction, £ is resolvable. ™

Note: We can also construct non-Abelian resolvable HTS’s of various sizes
by using combinations of the Burnside groups B(3, #), » =3 and the factor
groups B(3, r)/N, r=3 (where N is a proper subgroup of Z(B(3, r)); see
Lemma 3.1), with any finite number of isomorphic copies of (Zs, +).

4. — Conclusion.

A linear space £ is said to be uniform and of order m if each line of .€ is in-
cident with a fixed (possibly infinite) number m of points of £. If, in addition, £
is resolvable then it is a Sperner space or alternatively a weak affine space. As
a consequence of a Sperner space’s admitting a resolution, it can be deduced
that through each point P of the space there pass exactly k lines where k is in-
dependent of P. There are three possibilities for the form of k:

() k is finite and of the form (m" —1)/(m — 1),
(ii) k is finite but not of the form (m" —1)/(m — 1),
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(iii) k is infinite.
If k is of form (i), then £ is said to be of dimension n. If k is of form (iii), then it
is said to be nfinite dimensional. Finally if k is of form (ii), then its dimen-
ston is undefined.

The classical examples of Sperner spaces are the affine spaces which is the
motivation behind the term «weak affine space». Thus it is of interest to deter-
mine the extent to which a Sperner space may behave like an affine space
without actually being an affine space. It is shown in [1] that a Sperner space
of dimension 2 is necessarily a finite affine plane. Hence, for a finite Sperner
space, the degree of «affineness» of the space may be gauged by the number of
subspaces of dimension 2 which it possesses. As an example, for a finite Spern-

er space, consider the set {np} where np is the number of planes passing
through the point P. Then we have

THEOREM 4.1 ([1], p. I-14). — A finite 3-dimensional Sperner space of order
m with min{np} >m?+m —1 is the finite affine space AG(3, m). m

It was mentioned in[1] that it was an unresolved problem as to whether
this result might be improved. If we interpret this as generalising the result to
finite Sperner spaces of higher dimension, then the non-Abelian resolvable
HTS’s which we constructed in Section 3 show that for Sperner spaces of di-
mension » = 7 and order 3, no similar result holds because for these HTS’s, np
for each point P is the same as the number of planes through a point of
AG(n, 3). The cases in which the spaces have order 3 and dimension 4, 5 or 6
are still open.
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