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Bollettino U. M. I.
(8) 1-B (1998), 571-584

On the Localization of the Vortices (*).

CARLO MARCHIORO

Sunto. – Studiamo l’evoluzione temporale di un fluido bidimensionale incomprimibile
non viscoso quando la vorticità iniziale è concentrata in N regioni di diametro e e
mostriamo che la vorticità evoluta temporalmente è anche lei concentrata in N pic-
cole regioni di diametro d, dGconst ea per qualunque aE1/3 . Noi chiamiamo
questa proprietà “localizzazione”. Come conseguenza abbiamo una connessione ri-
gorosa tra il modello dei vortici puntiformi e l’Equazione di Eulero.

1. – Introduction and main result.

In this paper we discuss the time evolution of a two-dimensional inviscid
incompressible fluid of unitary density, when the initial vorticity is concentra-
ted in N small disjoint regions L i (0) of diameter e . It is known that, for any fi-
xed time t, the time evolved vorticity remains concentrated in N small regions
L i (t) of diameter d(e) and d(e) K0 as eK0. We call this property “localiza-
tion”. Furthermore if zi , i41, R , N , is the solution of the ordinary differen-
tial system (called point vortex system [Hel67], [Kir76], [Poi93], [Kel10])

d

dt
zi (t) 42˜i

» 1

2p
!

j41; jc i
aj ln Nzi (t)2zj (t)N zi (0) 4zi , zi �R2(1.1)

where

˜»f (¯2 , 2¯1 )(1.2)

it can be proved that if zi (0) �L i (0) then zi (t) �L i (t). (This proves a rigorous
connection between the Euler equation and the point vortex model: [MaP83],
[MaP84], [MaP86], [Tur87], [Mar88], [MaP93]. For a review on the topic see
[MaP94]).

In the present paper we investigate in more details the property of “locali-

(*) Research supported by MURST (Ministero dell’Università e della Ricerca
Scientifica e Tecnologica) and by CNR-GNFM (Consiglio Nazionale della Ricerche-
Gruppo Nazionale Fisica Matematica).
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zation” (d(e) K0 as eK0). In fact in ref. [MaP93] it was given an estimate on
d(e) like eb with b very small (sayE (100)21 ) . Here we improves this result
and we give the “best” estimates of the size of the support of the vorticity d(e)
compatible with the present mathematical technique. It turns out that d(e)
must vanishes as eK0 with a law more observable in a real fluid. Moreover, as
a technical point, we use in the proof a weaker assumption on the initial data.
We will return on this point after the statement of Theorem 1.1.

For simplicity we formulate the result when the fluid moves in the whole
R2 . The generalization to a generic domain is straightforward.

Consider the Euler equation in R2 in terms of vorticity:

¯t v(x , t)1 (u Q˜) v(x , t) 40(1.3)

˜ Qu(x , t) 40(1.4)

.
/
´

vfcurl uf¯1 u2 2¯2 u1

v(x , t) 4v 0 , x4 (x1 , x2 ) .
(1.5)

Here u4 (u1 , u2 ) denotes the velocity field.
We assume that u decays at infinity and so we can reconstruct the velocity

field by means of v as

u(x , t) fsK(x2y) v(y , t) dy ,(1.6)

K4˜» G ,(1.7)

G(x) 42
1

2p
ln NxN .(1.8)

As well known, eq. (1.2) means that the vorticity is constant along the particle
paths which are the characteristics of the Euler equations. Therefore

v(x(x0 (t), t)4v(x0 , 0 )(1.9)

where the trajectory x(x0 , t) of the fluid particle, initially in x0 , satisfies:

d

dt
x(x0 , t) 4u(x(x0 , t), t) , x(x0 , 0 ) 4x0 ,(1.10)

where the velocity field u(x , t) is given by eq. (1.5).
We want to study the Euler equation when no strong properties of regula-

rity on the initial vorticity are supposed. So we need a weak formulation of the
Euler equation, which is meaningful in this case. As well known eqs. (1.9),
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(1.10), (1.11) imply the weak form of the Euler equation:

d

dt
v[ f ] 4v[u Q˜f ]1v[¯t f ] ,(1.11)

where f (x , t) is a bounded smooth function and

v[ f ] fsdx v(x , t) f (x , t) .(1.12)

It is well known that there exists a unique solution v(x , t) �L1 O lQ to the in-
itial value problem associated to (1.11) provided that v(x , t) �L1 O lQ . Moreo-
ver the divergence-free condition (1.3) implies that the time evolution (1.10)
preserves the Lebesgue measure on R2.

We consider an initial datum of the form:

v e (x , 0 ) 4 !
i41

N

v e ; i (x , 0 )(1.13)

where v e ; i (x , 0 ) is a function with a definite sign supported in a region L e ; i

such that

L e ; i fsupp v e ; i %S(zi Ne); S(zi Ne)OS(zj Ne) 40 if ic j(1.14)

for e small enough. Here S(zNr) denotes the circle of center z and radius r.
We put

sdx v e ; i (x , 0 ) fai �R(1.15)

the vortex intensity (independent of e) and assume

Nv e ; i (x , 0 )NGMe2g , MD0 , gD0 .(1.16)

We remark that in previous paper [MaP93] we assumed that

Nv e ; i (x , 0 )NGconst e2h , hE8O3(1.17)

while here g is arbitrary, so that condition (1.16) is an improvement of the kno-
wn results.

The main result of the present paper is the following

THEOREM 1.1. – Denote by v e (x , t) the time evolution of v e (x , 0 ) accor-
ding the Euler equation. Then for any fixed TD0 for any aE1/3

i) there exists C(a , T) such that for 0 G tGT

supp v e ; i (x , t) %S(zi (t)Nd)(1.18)
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where

d4C(a , T) ea(1.19)

and zi (t) is the solution of the ordinary differential system (1.1), provided that
such a solution exists up to the time T.

ii) for any continuous bounded function f (x)

lim
eK0

sdx v e (x , t) f (t) 4 !
i41

N

ai f(zi (t) ) .(1.20)

Proposition i) states that the blobs of vorticity remain localized until time
the T. Position ii) states that

v e (x , t)K
eK0

!
i41

N

ai d(zi (t) )(1.21)

weakly in the sense of measures, where d(Q) denotes the Dirac measure. This
last statement gives a rigorous justification of the point vortex model.

We observe that the singular nature of the right hand side of eq. (1.1), di-
verging when two vortices are close, does not guarantee the existence of the
solutions of eq. (1.1) for every time. In many cases (for instance for all ai D0)
collapes are forbidden by the first integrals of the motion, but there are cases
in which singularities do happen. However it can be proved that the collapses
are exceptional [MaP84]. In general we can say that Theorem 1.1 holds up to
the time T for which the solution of eq. (1.1) does exist.

The proof of the Theorem 1.1 will be given in the next Section. Here we di-
scuss the meaning of the result and the improvement contained in the present
paper.

Condition (1.16) means that the initial conditions could be very singular wi-
thout changing the localization property.

Equation (1.19) gives a bound on the localization. It is not trivial, as we will
see in the proof, but we believe that in general it is not optimal. In fact it holds
for any initial condition of form (1.13). For particular initial conditions the
bound might be better. A wide discussion on this point is contained in the in-
troduction of [Mar94]. In that paper we discussed the growth of the support of
a vortex patch. By changing the scale of time and length we can obtain the re-
sult of the present paper for a single vortex. In this case a can be equal to 1/3
while in Theorem 1.1, that is a generalization to the case in which many vorti-
ces are present, a can be close as we want but smaller than 1/3. Finally, we re-
mark that the result in [Mar94], given for a bounded vortex patch, has been
generalized for unbounded initial vorticity in [LNL98], i.e. in our language by
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a changing of scale from g42 to any g . Of course these results refer to a sin-
gle vortex, while here we investigate the case of many disjoint blobs of
vorticity.

2. – Proof of Theorem 1.1.

The proof is a mixture of the proofs of [MaP93] and [Mar94] with some new
ideas. First we study the motion of a single vortex in a Lipschitz external field
and prove that this vortex remains localized. Then we observe that the other
vortices produce a Lipschitz external field.

We consider a single blob of unitary vorticity moving in an external,diver-
gence-free, uniformly bounded, time dependent, vector field F(x , t), satisfying
the Lipschitz condition

NF(x , t)2F(y , t)NGLNx2yN , LD0 .(2.1)

Equation (1.10) becomes

d

dt
x(t) 4u(x , t)1F(x , t)(2.2)

while eqs. (1.9), (1.11) remain unchanged. The Euler equation in weak form
reads as

d

dt
v[ f ] 4v[ (u1F) Q˜f ]1v[¯t f ] .(2.3)

Then we prove proposition i) of Theorem 1.1 for this particular evolution.
Define the center of vorticity as

Be (t) fsx v e (x , t) dt .(2.4)

THEOREM 2.1. – Suppose that

supp v e (x , 0 ) %S(x * Ne)(2.5)

and

Nv e (x , 0 )NGconst e2g gD0(2.6)

(from now on const. denotes a constant independent of e).

sdx v e (x , t) f1 .(2.7)

Then for any aE1O3 there exists C(a , T) such that for 0 G tGT

supp v e (x , t) %S(B(t)Nd)(2.8)
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where

d4C(a , T) ea(2.9)

and B(t) is the solution of the ordinary differential equation

d

dt
B(t) 4F(B(t), t) , B(0) 4x * .(2.10)

Moreover

NBe (t)2B(t)NK
eK0

at least as e , uniformly in t� [0 , T] .(2.11)

PROOF. – The difficulty of the proof arises from the singularity of the ker-
nel K which forces a fluid particle to rotate with a very large velocity around
the center of vorticity. To overcome this difficulty we study the motion of the
center of vorticity which will turn out to be much more regular than the motion
of a given fluid particle. Moreover,the moment of inertia is almost conserved
during the motion, so that we can also control the spreading of the vorticity di-
stribution around the center of vorticity. However, as we shall see, the control
given by the moment of inertia is not enough for our purposes.

We introduce the moment of inertia Ie with respect to Be :

Ie (t) fsv e (x , t) (x2Be (t) )2 dx .(2.12)

Then we study its growth in time. If F would vanish, Be and Ie would be con-
stant along the motion. For Fc0 we have

d

dt
Be (t) 4sF(x , t) v e (x , t) dx ,(2.13)

d

dt
Ie (t) 42 s (x2Be (t) ) QF(x , t)v e (x , t) dx .(2.14)

where we have taken into account the antisymmetry of K. Making use of the
fact that

s (x2Be (t) ) QF(Be (t), t) v e (x , t) dxf0(2.15)

and the Lipschitz condition on F, we have

N d

dt
Ie (t) NG2Lsv e (x , t) (x2Be (t) )2 dx42LIe (t)(2.16)
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from which

Ie (t) GIe exp (2Lt) .(2.17)

Therefore

lim
eK0

Ie (t) 40 at least as e 2 , uniformly in t� [0 , T] .(2.18)

The next steps to obtain eq. (2.11) are similar to that used in [MaP93] to ob-
tain eq. (3.16) and we omit them.

We have obtained eq. (2.18) which says that the main part of the vorticity is
concentrated around the center of vorticity. A priori small filaments of vortici-
ty could go far away. We want to prove that is not the case and also that the
support of the vorticity remains concentrated around the center. To this pur-
pose we study the radial part of the velocity field near the boundary of the
support of vorticity and prove that the difference between this field and the
velocity field acting on the center of the vortex vanishes as eK0. So the par-
ticle paths cannot go far apart from Be. This field is due essentially to three
terms: the velocity produced by the external field, the velocity produced by
the particles near the center of the vortex and the velocity produced by the
particles near the boundary. The first contribution is easily controled by the
Lipschitz condition, the second contribution gives a radial part which vanishes
as the initial vorticity is sharply concentrated and the third contribution needs
more care and vanishes after an iterative procedure. The proof of this fact,
given in the sequel, is rather technical.

We study the growth of the distance of a fluid particle in x�supp v e (x , t)
farest from Be (t):

N (u(x , t)1F(x , t)2
d

dt
Be (t) ) Q

x2Be (t)

Nx2Be (t)N NG(2.19)

(by using eqs. (2.2), (1.11) and (2.13))G

NF(x , t)2sdy v e (y , t) F(y , t) N1N x2Be (t)

Nx2Be (t)N
Qsdy K(x2y) v e (y , t) N4

(by using eq. (2 . 7 ) )4

Nsdy v e (y , t)[F(x , t)2F(y , t) ] N1N x2Be (t)

Nx2Be (t)N
Qsdy K(x2y) v e (y , t) N .

The first contribution due to the external field is trivial. Using the Lip-
schitz condition (2.1):

Gconst R , RfNx2Be (t)N .(2.20)
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Now we study the term

N x2Be (t)

Nx2Be (t)N
Qsdy K(x2y) v e (y , t)N(2.21)

The contribution due to the vorticity near the center of the vortex can be com-
puted as in [Mar.94]. We divide the circle S(Be (t)NR) into many different
annulii:

S(Be (t)NR)4(2.22)

!
k41

k *

[S(Be (t)Nak )2S(Be (t)Nak21 )N [S(Be (t)NR)2S(Be (t)Nak * )]

where

a0 40 , a1 4e , ak 42ak21 .(2.23)

We choose k * such that ak *11 GR and ak *12 DR .
The radial velocity can be expressed by the sum of the contribution obtai-

ned when the particles are contained in each annulus:

x2Be (t)

Nx2Be (t)N
Q s
S(Be (t)Nak )2S(Be (t)Nak21 )

dy v e (y , t) K(x2y) 4(2.24)

x2Be (t)

Nx2Be (t)N
Q s
S(Be (t)Nak )2S(Be (t)Nak21 )

dy v e (y , t) K(x2Be (t) )1

x2Be (t)

Nx2Be (t)N
Q s
S(Be (t)Nak )2S(Be (t)Nak21 )

dy v e (y , t)[K(x2y)2K(x2Be (t) )] .

The first term in the right-hand side of eq. (2.24) vanishes because of x Q
K(x) 40. Moreover by the explicit form of K(x), we have

NK(x2y)2K(x)NEconst
r

NxN(NxN2r)
if NyNErENxN .(2.25)

Hence

N x2Be (t)

Nx2Be (t)N
Q s
S(Be (t)Nak )2S(Be (t)Nak21 )

dy v e (y , t)[K(x2y)2K(x2Be (t) )] G(2.26)

const
ak

R(R2ak )
s

S (Be (t)Nak )2S(Be (t)Nak21 )

v e (y , t) dy .

The last integral describes the vorticity mass contained in the annulus



ON THE LOCALIZATION OF THE VORTICES 579

[S(Be (t)Nak )2S(Be (t)Nak21 ) ]. It can be bounded by Ie . It is obvious that

IeFr 2 mt (r) ,(2.27)

where

mt (r) f12 s
S(Be (t)Nr)

v e (y , t) dy(2.28)

is the vorticity mass outside S(Be (t)Nr) . Equation (2.27) and eq. (2.18)
imply

mt (r) Gconst
e 2

r 2
.(2.29)

Hence

s
S(Be (t)Nak )2S(Be (t)Nak21 )

v e (y , t) dyGconst
e 2

ak212

kD1 .(2.30)

We use this estimate in eq. (2.26), sum on k and obtain that the radial veloc-
ity field produced by the fluid particles far from the boundary is bounded
by

const
e

R 2
.(2.31)

Now we prove that the vorticity mass near the boundary of the support is
very small and so it can produce only a very weak velocity field.

To control the vorticity flux we introduce, for RD0, the following nonne-
gative function WR �C Q (R2 ), rKWR (r) depending only on NrN , defined
as:

WR (r) 4
.
/
´

1 ,

0 ,

if NrNER ,

if NrND2R ,
(2.32)

such that, for some C1 D0:

N˜WR (r)NE
C1

R
,(2.33)

N˜WR (r)2˜WR (r 8 )NE
C1

R 2
Nr2r 8 N .(2.34)
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Define the quantity:

m t (R) 412sdx WR (x2Be (t) ) v e (x , t) .(2.35)

Notice that, if supp v e (x , t) %S(Be (t)NR) then m t (R) 40. Thus we choose
m t (R) as a measure of the localization of v e (x , t) around Be . Then we evaluate
the time derivative by using eq. (2.3):

dm t (R)

dt
4(2.36)

2sdx ˜WR (x2Be (t) ) Q mu(x , t)1F(x , t)2
d

dt
Be (t)n v e (x , t) 4

2sdx v e (x , t) ˜WR (x2Be (t) )sdy K(x2y) v e (y , t)2

sdx v e (x , t) ˜WR (x2Be (t) ) Qsdy v e (y , t)[F(x , t)2F(y , t) ]

where we have used eqs. (2.7) and (2.13).
We now estimate the first term in the right hand side of eq. (2.36). By the

antisymmetry of K, it can be written as:

2
1

2
sdx sdy v e (x , t) v e (y , t)]˜WR (x2Be (t) )2(2.37)

˜WR (y2Be (t) )( QK(x2y) .

To estimate this term for R4e2n21 , we split the integration domain in the fol-
lowing sets

Th 4 ](x , y)Nx�S(Be (t)NR) y� [S(Be (t)Nah )2S(Be (t)Nah21 ) ]((2.38)

if hEn ,

Th 4 ](x , y)Nx�S(Be (t)NR) y�S(Be (t)Nan21 )( if h4n ,(2.39)

Sh 4 ](x , y)Ny�S(Be (t)NR) x� [S(Be (t)Nah )2S(Be (t)Nah21 )]((2.40)

if hEn ,

Sh 4 ](x , y)Ny�S(Be (t)NR) x�S(Be (t)Nan21 )( if h4n ,(2.41)

where n is a positive integer number and ah is defined as in eq. (2.23).
Notice that the integrand in eq. (2.37) vanishes in the complement of

0
h41

n

(Th NSh ).

Thanks to the identities ˜WR (x2Be (t) ) QK(x2Be (t) )40 and ˜WR Q
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(y2Be (t) )40 if y� [S(Be (t)Nah )2S(Be (t)Nah21 ) ], hEn the contribution to
the integral (2.37) due to Th , hEn is bounded by

N s
S(Be (t)Nah )2S(Be (t)Nah21 )

dy v e (x , t) v e (y , t) Q(2.42)

˜WR (x2Be (t) ) Q ]K(x2y)2K(x2Be (t)(N .

We now use eq. (2.33), the fact that ˜WR (x2Be (t) )40 if Nx2Be (t)NDR ,
and we obtain the bound:

(2.37) Gconst
mt (R)

R
{const

e

R 2
1 !

h42

n21 ah

R(R2ah )

e 2

ah21
2

}G(2.43)

const
e

R 3
mt (R) .

To estimate the contribution due to Tn , we use the obvious inequality
NK(x)NGconst NxN21 , eq. (2.34) and the bound

N]˜WR (x)2˜WR (y)( QK(x2y)NG
const

R 2
.(2.44)

We have that this contribution is smaller than const (e 2 OR 4 ) mt (R).
We can handle in the same way the term with Sh .
Finally we study the last term in eq. (2.36).
We consider two cases: either Ny2Be (t)NDR or Ny2Be (t)NGR . In the

first case

Nsdx v e (x , t) ˜WR (x2Be (t) )sdy v e (y , t)[F(x , t)2F(y , t) ]NG(2.45)

const VFVQ
mt (r) e 2

R 3
.

In the second one, by using the Lipschitz condition (2.1),

Nsdx v e (x , t) ˜WR (x2Be (t) )sdy v e (y , t)[F(x , t)2F(y , t) ]NG(2.46)

const mt (R) .
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In conclusion we have:

N d

dt
m t (R) NG yconst

e

R 3
1const

e 2

R 4
1constz mt (R) .(2.47)

We observe now that

mt (R) Gm tg R

2
h .(2.48)

Putting eq. (2.48) in the integral form of eq. (2.47), we obtain:

m t (R) Gm 0 (R)1A(R)s
0

t

m tg R

2
h dt(2.49)

where

A(R) 4 yconst
e

R 3
1const

e 2

R 4
1constz .(2.50)

We start now an iterative procedure

m t (R) Gm 0 (R)1A(R)s
0

t

m tg R

2
h dtG(2.51)

m 0 (R)1m 0g R

2
hA(R)s

0

t

dt1A(R) Ag R

2
hs

0

t

dt1s
0

t1

m tg R

4
h dt

and so on.
We start from R4const ea , aE1O3, and we iterate eq. (2.49) n times,

where n is chosen such that nKQ as eK0 and in the same time A(R22k ) is
bounded for any positive integer kGn and m 0 (R22n ) 40. We choose

n4Integer part of k2
123a

4
log2 el , (eE1) .(2.52)

Then

R22n 4const e (11a)O4(2.53)

and

A(R22k ) Gconst(2.54)
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for any positive integer kGn . So after the n iterations we have

mt (R) G
( const )n

n!
K0 as eK0 faster than any power in e .(2.55)

In conclusion we have proved that the vorticity mass becomes very small
near the boundary of the support. It is easy to bound the velocity field produ-
ced by it:

N s
S(Be (t)NR)2S(Be (t)Nak * )

dy K(x2y) v e (y , t) NG(2.56)

1

2p N s
S(Be (t)NR)2S(Be (t)Nak * )

dy v e (x , t)NyN21N .

The integrand is monotonically unbounded as yKx , and so the maximum of
the integral is obtained when we rearrange the vorticity mass as close as pos-
sible to the singularity:

N s
S(Be (t)NR)2S(Be (t)Nak * )

dy v e (x , t)NyN21NGconst e2gN s
S(ONh)

dy NyN21N(2.57)

where O denotes the origin and h is such that

Me2g ph 2 4mt (ak * ) .(2.58)

By using eq. (2.55) we have that

N s
S(Be (t)NR)2S(Be (t)Nak * )

dy v e (x , t)NyN21NK0(2.59)

as eK0 faster than any power .

We are now able to bound the radial velocity of a particle at a distance R
from Be (t). By using eqs. (2.20), (2.31) (2.59) we have:

N d

dt
RNGconst R1const

e

R 2
1(2.60)

terms smaller than any power in e when RDconst ea aG1O3 .

Hence for RDconst ea the last two terms of the right hand side of eq.
(2.60) are neglectable and inequality (2.60) by using Gronwall Lemma gives
bound (2.9). r

We return to the proof of Theorem 1.1. It is easy and we only sketch it. De-
noting by Rm the minimal distance between point vortices evolving via (1.1),
we chooce ebRm . Initially the vortices are separated and we simulate the in-
fluence of other vortices as an external field. Theorem 2.1 states that the vorti-
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ces remain separated. We observe that actually the other vortices produce a
velocity field depending on e but this dependence is very small. Then, it is easy
to prove the convergences stated in Theorem 1.1. r

Some further generalization are possible: we can consider more singular
initial data, with the only bound on the singularity to require that eq. (2.59) re-
mains valid (this would be a very weak result). Moreover we can consider non-
compact initial data or vortex-wave system as in [MaP93].
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