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Hilbert-Poincaré Series of Bigraded Algebras.

LORENZO ROBBIANO - GIUSEPPE VALLA (*)

Sunto. – Lo scopo di questo lavoro è la descrizione di alcune nuove tecniche per calco-
lare serie di Hilbert-Poincaré (HP-serie) di algebre standard, che possono essere
viste come sottoalgebre di algebre bigraduate. In particolare mostriamo come cal-
colare in modo uniforme le HP-serie delle potenze di un idele omogeneo. Mostria-
mo anche come calcolare le HP-serie di prodotti di Segre e di alcune algebre di
Blow-up, che sono di interesse in Geometria Algebrica. Per alcune classi siamo in
grado di descrivere formule esplicite, mentre per altre proviamo che c’è un algorit-
mo che calcola le HP-serie direttamente senza precalcolare le equazioni generatrici .

1. – Introduction.

The starting point of this paper is the idea of investigating finitely generat-
ed bigraded commutative k-algebras which arise, for instance, from certain
constructions in Algebraic Geometry. To name a few of them, let us remind the
tensor products of graded algebras and the graded ring, the Rees ring and the
symmetric algebra associated to a homogeneous ideal in a graded algebra.
Some of these algebras have bivariate Hilbert-Poincaré series (HP-series)
which can easily be computed, and recently several papers (see [CHTV], [CV],
[STV]) pointed out that many other interesting graded algebras sit inside
these bigraded algebras as straight-line subalgebras (see Definition 2.1). Sup-
pose that B is a straight-line subalgebra of some bigraded algebra S; a natural
question is the following: is it possible to compute the univariate HP-series of
B from the knowledge of the bivariate HP-series of S? This problem is too gen-
eral to have a universal answer applicable in every case, so we are naturally
led to restrict ourselves to some special families.

The main results that we obtain are the following. After the preliminaries
of Section 2, we review the notion of Hadamard product, and in Section 3 we
prove that there is an algorithm which computes the HP-series of the Segre
product S1 * S2 of two standard algebras S1, S2, without computing the equa-

(*) The authors were partially supported by the Consiglio Nazionale delle Ricerche
(CNR).
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tions of S1 * S2 (see Theorem 3.7). Then we generalize that result in the follow-
ing way. We introduce the important notion of separated series and show that
if we are given a bivariate separated series, then there is an algorithm which
computes its univariate diagonal (see Theorem 4.8).

Section 5 is devoted to bigraded Rees algebras; first we show (see Theorem
5.3) that knowledge of the bivariate HP-series of the Rees algebra associated
to a homogeneous ideal I allows one to construct a simple algorithm which
computes the HP-series of the powers of I directly in a uniform way.

Then, as a consequence of the results on separated and almost separated
HP-series, we prove that there is an algorithm which computes the HP-series
of some Blow-up algebras (see Theorem 5.10) and, for a very important sub-
class, we can derive an explicit formula (Theorem 5.11).

Finally Section 6 is devoted to the computation of some particular HP-
series. For instance we show that also in the non separated case it is some-
times possible to obtain the result by developing some computational tricks.
All the computations related to the paper were carried on with CoCoA (see
[CNR]).

The main conclusion is that the paper indicates a new approach to the com-
putation of some HP-series. Some solutions are given and many questions are
left open. We believe that the ideas presented here represent a first step;
hence they should be further investigated to yield a deeper insight into the
theoretical as well as computational problems related to graded algebras.

A detailed description and an implementation of the algorithms sketched
in the paper are described in [BCNR].

2. – Bigraded algebras and straight-line subalgebras.

In this section we introduce the notion of straight-line subalgebras of a bi-
graded algebra.

DEFINITION 2.1. – Let S be a N2-bigraded k-algebra. Let L be a straight
half-line in N2 . Then we denote by SL »4 5

(a , b) �L
S(a , b) and we call it the

straight-line submodule of S along L. In particular, if c and e are two positive
integers, we denote by D(c , e) »4 ](cs , es)Ns�N( and by SD(c , e) the corre-
sponding subalgebra. In the special case where c4e41 we get the diagonal
subalgebra of S, which we denote by SD .

It is clear that every finitely generated bigraded k-algebra S can be writ-
ten as a quotient S4k[X1 , R , Xn ] /J where deg (Xi ) 4 (ui , vi ) and J is a biho-
mogeneous ideal. In particular we have the following straightforward fact

LEMMA 2.2. – Let u1 , R , un , v1 , R , vn �N be two sets of weights which are
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linearly independent i.e. such that the matrix gu1 R un

v1 R vn
h has rank two. Let

R»4k[X1 , R , Xn ] with the bigrading defined by deg (Xi ) »4 (ui , vi ) and let

H»4mX AN !
i41

n

ui ai 4cs , !
i41

n

vi ai 4es , for some s�Nn. Then RD(c , e) 4kaHb,

the monoid k-algebra generated over k by the monoid H.

REMARK 2.3. – It is well-known that in the case described before RD(c , e) is a
normal Cohen-Macaulay domain with dim (RD(c , e) ) 4n21.

An important class of bigraded k-algebras is described below

DEFINITION 2.4. – Let R»4k[X1 , R , Xn , Y1 , R , Ym ] with the bigrading
which is defined by deg (Xi ) »4 (ui , 0 ), deg (Yi ) »4 (0 , vi ). Let J be a bihomo-
geneous ideal; then R/J is called a separated (bigraded) k-algebra. If more-
over all the ui’s and the vj’s are equal to 1, then R/J is said to be a separated
standard (bigraded) k-algebra

Now we introduce the Hilbert-Poincaré series of a bigraded algebra.

DEFINITION 2.5. – Let S»4 5
(i , j) �N2

S(i , j) be a finitely generated bigraded k-

algebra. Then we call Hilbert-Poincaré series (shortly HP-series) of S, the bi-
variate series

PS (a , b) »4 !
(i , j) �N2

dim (S(i , j) ) a i b j .

DEFINITION 2.6. – Let P(a , b) »4!
i , j

p(i , j) a i b j be a bivariate series; then we

define the univariate series D(c , e)(P)(z) »4 !
i�N

p(ic , ie) z i . We define
D(P)(z) »4D(1 , 1 )(P)(z) 4!

i
p(i , i) z i .

LEMMA 2.7. – Let P(a , b) be a bivariate series

1) If P (a , b) 4 A(a , b)1 B(a , b) then D(P)(z) 4D(A)(z)1D(B)(z).

2) If P (a , b) 4 A(ab) Q B(a , b) then D(P)(z) 4 A(z) QD(B)(z).

PROOF. – The easy proof is left to the reader. r

LEMMA 2.8. – Let S be a bigraded k-algebra. Then PSD(c , e)
4D(c , e)(PS ).

In particular PSD
4DPS .

PROOF. – It is an easy consequence of the definitions. r
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3. – Segre products and Hadamard products.

A special subclass of separated k-algebras comes from the tensor products
of graded k-algebras. More precisely we have

DEFINITION 3.1. – Let S1 and S2 be two N-graded k-algebras and S»4

S1 7S2 . It is naturally bigraded by Sij »4 (S1 )i 7 (S2 )j , from which we get
SD(c , e) 4 5

s�N
(S1 )cs7

k
(S2 )es . This is called the Segre product of S1 and S2 of or-

der (c , e). If c4e41, then the diagonal subalgebra SD is S1 * S2 , the ordinary
Segre product of S1 and S2 .

To see that S is a separated k-algebra, we argue as follows.
Let S1 »4k[X1 , R , Xn ]OI , S2 »4k[Y1 , R , Ym ]OJ , where deg (Xi ) 4ui and

deg (Yj ) 4vj . It follows that S`k[X1 , R , Xn , Y1 , R , Ym ]O(I , J), which is bi-
graded by deg (Xi ) 4 (ui , 0 ), deg (Yj ) 4 (0 , vj ). This yields the conclusion.

We show an interesting example of this class.

EXAMPLE 3.2. – Let S1 »4k[X] with deg (X) 4m , S2 »4k[Y0 , Y1 ] with
deg (Y0 ) 4 deg (Y1 ) »41 and let S»4S17

k
S2 . It is easy to see that its diago-

nal, i.e. the Segre product S1 * S2 , is generated by XY0
m , XY0

m21 Y1 , R , XY1
m ;

therefore S1 * S2 is isomorphic to the projective coordinate ring of the rational
normal curve of Pm .

We want to show how to compute the HP Series of the Segre product of two
standard k-algebras.

DEFINITION 3.3. – Let A(z) »4!
i

pi z i and B(z) »4!
i

qi z i be two power

series in Zezf . Then we define the Hadamard product of A and B and we de-
note it by Had (A , B) »4!

i
(pi qi ) z i .

LEMMA 3.4. – Let A(a) �Zeaf and B(b) �Zebf be two power series. Then the
product A(a) B(b) is a bivariate series such that

1) D(A(a) B(b) )4Had (A , B).

In particular, if S1 and S2 are two N-graded k-algebras, and S»4S1 7S2

then

2) PS (a , b) 4 PS1
(a) Q PS2

(b);

3) PS1 * S2
4Had (PS1

, PS2
).

PROOF. – The first and second assertion are easy consequences of the
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definitions. As for the third one, we see that PS1 * S2
4 PSD

4D(PS ) 4

D(PS1
(a) PS2

(b) )4Had (PS1
, PS2

). r

This Lemma implies that our task is completed if we are able to compute
the Hadamard product of the Hilbert-Poincaré series of the two algebras. We
recall:

DEFINITION 3.5. – Let A(z) be the HP-series of a standard k-algebra S.
Then we denote by ri (A) (or ri (S) ) the regularity index of A (or of S), i.e. the
first integer r such that for every sFr the Hilbert function of S takes the
same values as a polynomial, called the Hilbert polynomial of S. It is worth
mentioning that ri (S) 4a(S)11, where a(S) is the a-invariant of S as de-
fined in [BH], Definition 4.3.6.

PROPOSITION 3.6. – Let A(z) »4P(z)O(12z)a and B(z) »4Q(z)O(12z)b ,
where s»4 deg (P), t»4 deg (Q), P(1) c0, Q(1) c40, and assume that A(z)
and B(z) are the HP-series of standard k-algebras. Then

1) ri (A) 4s2a11 and ri (B) 4 t2b11;

2) ri (Had (A , B) )GMax (ri (A), ri (B) ) ;

3) Had (A , B) 4R(z)O(12z)a1b21 with R(1) c0;

4) deg (R) GMax (ri (A), ri (B) )1 (a1b21)21.

PROOF. – 1) is well-known (see for instance [BH], Theorem 4.3.5). It is clear
that the Hilbert polynomial of Had (A , B) is the product of the Hilbert polyno-
mial of A and the Hilbert polynomial of B . This proves 2). The assumption on
A(z) and B(z) is that there exist two standard k-algebras A and B, such that
A 4 PA and B 4 PB and such that dim (A) 4a and dim (B) 4b . We deduce
from Lemma 3.4 that Had (A , B) 4 PA * B , therefore to prove 3) it suffices to
show that dim (A * B) 4a1b21. Let P(A) be the Hilbert polynomial of A and
P(B) be the Hilbert polynomial of B. Then it is well-known that deg P(A) 4

a21, deg P(B) 4b21 and we have already observed that P(A * B) 4P(A) Q
P(B), hence deg P(A * B) 4a1b22 and dim (A * B) 4a1b21. To conclude,
we observe that 4) is a consequence of 1), 2) and 3). r

THEOREM 3.7. – Let S1 and S2 be two standard k-algebras and assume that
we know their HP-series, PS1

and PS2
. Then there is an algorithm which com-

putes PS1 * S2
without computing the equations of S1 * S2 .

PROOF. – By definition it is clear that S1 * S2 is a standard k-algebra. More-
over we know from Lemma 3.4 that PS1 * S2

4Had (PS1
, PS2

). Then we use
Proposition 3.6 to get the dimension and an upper bound for the regularity of
PS1 * S2

. We may say that PS1 * S2
has the shape R(z)O(12z)d where deg (R(z) )4d .
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If R(z) »4 !
i41

d

ri z i , then we need to find the coefficients ri’s. We know PS1
and

PS2
hence we may compute the first d11 values of PS1 * S2

. Then it suffices to
take the d th difference of these first d11 values and we get the required
ri’s. r

We show how the computation goes with an explicit example.

EXAMPLE 3.8. – Let S1 »4k[U , V , W] /(UV , UW), S2 »4k[A , B , C , D] /
(D 5 ). We want to compute PS1 * S2

i.e. Had (PS1
, PS1

).

We may compute a presentation of the algebra S1 * S2 in the following way.
Let R»4k[X1 R X12 , U , V , W , A , B , C , D] and let I»4Ideal (X1 2UA ,

X2 2UB , X3 2UC , X4 2UD , X5 2VA , X6 2VB , X7 2VC , X8 2VD , X9 2WA ,
X10 2WB , X11 2WC , X12 2WD , UV , UW , D 5 ). Then let J be the ideal ob-
tained by eliminating U , V , W , A , B , C , D from the ideal I. The ring S1 * S2

turns out to be isomorphic to k[X1 RX12 ] /J and its Hilbert Series is

PS1 * S2
(t) 4

(118 t22 t 2 18 t 3 13 t 4 23 t 5 )

(12 t)4
.

This is a non trivial computation. Let us see how to proceed in an efficient way
following Proposition 3.6. We have

PS1
(t) 4

(11 t2 t 2 )

(12 t)2
and PS2

(t) 4
(11 t1 t 2 1 t 3 1 t 4 )

(12 t)3
.

Consequently ri (PS1
) 422211 41 and ri (PS2

) 442311 42. Therefore
ri (PS1 * S2

) G2, by Proposition 3.6. If we represent the Hilbert Series of S1 * S2

as PS1 * S2
(t) 4R(t)O(12 t)4 , the degree d of R(t) has to satisfy ri (S1 * S2 ) 4

d2411, hence dG213 45.
We consider the values of the Hilbert Series of S1 and S2 up to degree 5.

Then we get the values of the Hilbert Series of S1 * S2 up to degree 5.

Degrees 0 1 2 3 4 5

HS1 (n)
HS2 (n)
HS1 * S2

(n)

1
1
1

3
4

12

4
10
40

5
20

100

6
35

210

7
55

385
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It is sufficient to compute the fourth difference of the first 6 values. We
get

Degrees 0 1 2 3 4 5

First
Second
Third
Fourth

1
1
1
1

11
10
9
8

28
17

7
22

60
32
15
8

110
50
18

3

175
65
15

23

In conclusion we get

PS1 * S2
(t) 4

(118 t22 t 2 18 t 3 13 t 4 23 t 5 )

(12 t)4

which is the correct result. r

REMARK 3.9. – It may happen that ri (Had (A , B) )EMax (ri (A), ri (B) ) as
the following examples show

EXAMPLE 3.10. – If A(z) »4zO(12z)2 , B(z) »41O(12z)3 then
ri (Had (A , B) )GMax (0 , 22). For 22 GnE0 the values of the function
associated to A are 0, hence ri (Had (A , B) )422.

EXAMPLE 3.11. – Let

S1 »4k[V , W]O(W 3 ), and B»4k[A , B , C , D]O(A 2 , AB , AC , BC) .

Then PS1
(z)4(11z1z 2 )O(12z) and PS2

(z)4(112z2z 2 )O(12z). Therefore
ri (PS1

) 422111 42 and ri (PS2
) 422111 42. By Proposition 3.6 we

have ri (Had (PS1
, PS2

) )G2. Now the first values of the Hilbert Series
of S1 are 1, 2, 3, 3 , R and the first values of the Hilbert Series of S2 are 1, 3, 2,
2 , R consequently the first values of the Hilbert Series of Had (PS1

, PS2
)

are 1, 6, 6, 6 , R , hence ri (Had (PS1
, PS2

) )41. The Hilbert Series of the
Segre product S1 * S2 is (115z)O(12z).

4. – Separated and almost separated series.

The algorithm sketched in Theorem 3.7 shows how to compute the diagonal
of the Hilbert-Poincaré series of a product. In this section we extend such
result to the separated and almost separated series.

DEFINITION 4.1. – Let A(z) »4! an z n and B(z) »4! bn z n and let r be an
integer. Then we define A(2r)(z) »4!an2r z n .

We also define Diff (A) »4! (an 2an21 ) z n
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LEMMA 4.2. – Let r, s be two integers; then

1) A(2r)(z) 4z r A(z),

2) Had (A(2r), B(2s) )4z r QHad (A , B(r2s) )4z s QHad (A(s2r), B) ,

3) Had (A , B) 4Had (A , B(21))1Had (A , Diff (B) ) ,

4) Diff (Had (A , B) )4Had (Diff (A), B)1Had (A(21), Diff (B) ) ,

5) Diff (Had (A , B) )4

Had (Diff (A), B)1Had (A , Diff (B) )2Had (Diff (A), Diff (B) ) .

PROOF. – It is an easy exercise. For instance 5) follows from the
identity

an bn2an21 bn214(an2an21 ) bn1an (bn2bn21 )2(an2an21 )(bn2bn21 ) . r

DEFINITION 4.3. – Let R»4k[X1 , R , Xn ] endowed with the natural
grading. Then we define Pn »4 PR 41O(12z)n . In particular we put P»4

P1 41O(12z).

Now we are ready to prove the following formula for the Hilbert-Poincarè
series of the Segre embedding of Pn 3Pm in P(n11)(m11)21 . The formula is
known, but we want to include it in the paper for the sake of completeness and
for later use.

PROPOSITION 4.4. – It holds

Had (Pn11 , Pm11 ) 4

!
i40

Q gn

i
hgm

i
h z i

(12z)n1m11
.

PROOF. – The formula is clearly true for n40, any m and it is symmetric
with respect to n and m . We make double induction. We know that both sides
of the desired formula represent Laurent series, hence it suffices to show
that

Diff (Had (Pn11 , Pm11 ) )4

!
i40

Q gn

i
hgm

i
h z i

(12z)n1m
.
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By Lemma 4.2 5) we have

Diff (Had (Pn11 , Pm11 ) )4

!
i40

Q gn21

i
hgm

i
h z i

(12z)n1m
1

!
i40

Q gn

i
hgm21

i
h z i

(12z)n1m
2

!
i40

Q gn21

i
hgm21

i
h z i

(12z)n1m21
4

!
i40

Q gn21

i
hgm

i
h z i

(12z)n1m
1

!
i40

Q gn

i
hgm21

i
h z i

(12z)n1m
2

!
i40

Q ygn21

i
hgm21

i
h2gn21

i21
hgm21

i21
hz z i

(12z)n1m21
.

We conclude by using the identity

gn

i
hgm

i
h4gn21

i
hgm

i
h1gn

i
hgm21

i
h2gn21

i
hgm21

i
h1gn21

i21
hgm21

i21
h .

which is a direct consequence of the Pascal triangle. r

LEMMA 4.5. – Let t be a positive integer; then

1) Pt 4 P t ,

2)
1

z
Q P 4 P 1

1

z
,

3)
1

z s
Q P 4 P 1 !

i41

s 1

z i
,

4)
1

z
Q Pt 4 !

k41

t

Pk 1
1

z
,

5)
1

z s
Q Pt ` !

k41

t gs1 t2k21

s21
hPk ,

where ` means equal modulo (1Oz QZ[1Oz] ).

PROOF. – 1) is obvious and 2) can be checked immediately. Let us prove 3).
Clearly

1

z s
Q P 4 P 1

1

z s
(P 2z s Q P) 4 P 1

1

z s
(11z1R z s21 ) ,

hence we conclude. To prove 4) we make induction on t. We know from 2) that
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the formula is true for t41. So

1

z
Q Pt 4 Pg 1

z
Q Pt21h4 Pg !

k41

t21

Pk 1
1

z
h 4

by 2)
!

k42

t

Pk 1 P 1
1

z
4 !

k41

t

Pk 1
1

z
.

Let us prove 5). The formula is true for s41, hence we make induction on s .
We have

1

z s
Q Pt 4

1

z
g 1

z s21
Q Pth`

1

z
Q !

i41

t gs1 t2 i22

s22
h Pi 4

by d)

!
i41

t gs1 t2 i22

s22
hQ g !

k41

i

Pih4 !
k41

t g!
i4k

t gs1 t2 i22

s22
hh Pk .

We make the change j»4 t2 i and get

4 !
k41

t g !
j4 t2k

0 gs1 j22

s22
hh Pk 4 !

k41

t gs1 t2k21

s21
h Pk .

DEFINITION 4.6. – Let P (a , b) be a bivariate series. We say that it is
separated standard if it can be expressed as

P(a , b) 4 (P(a , b) )O((12a)n Q (12b)t )

where P(a , b) is a polynomial.

The connection between Definition 4.6 and Definition 2.4 is explained below

PROPOSITION 4.7. – Let R»4k[X1 , R , Xn , Y1 , R , Ym ]OJ be a bigraded
separated standard k-algebra. Then PR (a , b) is a separated standard
bivariate series.

PROOF. – The easy proof is left to the reader. r

Now we are ready to generalize Theorem 3.7.

THEOREM 4.2. – Let P be a separated standard bivariate series. Then there
is an algorithm which computes D(P).
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PROOF. – We have seen in Proposition 4.4 that

Had (Pr , Ps ) 4g!
i40

Q gr21

i
hgs21

i
h z ihQ Pr1s21 .1)

Then we have seen in Lemma 4.5) that

1

z s
Q Pt ` !

i41

t gs1 t2 i21

s21
h Pi .2)

Let P(a , b) »4P(a , b)O((12a)n Q (12b)t ) . By the additivity of D (see Lemma
2.7), we may assume that P(a , b) 4a m b m 8 and there is no loss of generality in
assuming mFm 8 . Let s»4m2m 8. Then

P(a , b) 4 (ab)m O((12a)n Q (12b)t b s ) .

Again by Lemma 2.7 we have

D(P)(z) 4z m QDg 1

(12a)n Q (12b)t b s h4z m QHadgPn ,
1

b s
Q Pth

where we extend here the operations D and Had to Laurent series in an
obvious way. It is clearly true that if A ` B and C is a non negative series, then
Had (C , A) 4Had (C , B). So we apply Formula 2) and then Formula 1) and we
conclude. r

REMARK 4.9. – Theorem 4.8 says that there is an algorithm which
computes D(P). In fact it would be possible to write a formula. But what we
got was too complicated and useless in practice.

Now we want to generalize Theorem 4.8 and produce another result, which
will be useful in the subsequent section. We need the following

LEMMA 4.10. – Let P(a , b) and P8 (a , u) be bivariate series such that
the identity P (a , b) 4 P8 (a , a d b) holds for some positive integer d. Then
D(d11, 1 )(P) 4D(P8 ).

PROOF. – Let P(a , b) 4 !
(i , j)

c(i , j) a i b j and P8 (a , u) 4 !
(r , s)

d(r , s) a r u s . By

assumption for every (r , s) we have d(r , s) 4c(r1ds , s) . Hence by Definition
2.6 we get

D(d11, 1 )(P) 4!
i

c(i(d11), i) z i 4!
i

d(i , i) z i 4D(P8 ) . r

DEFINITION 4.11. – Let P(a , b) be a bivariate series. We say that
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it is almost separated (of type d) if there exists a separated series P8 (a , u)
such that P (a , b) 4 P8 (a , a d b).

COROLLARY 4.12. – Let P(a , b) be a bivariate almost separated series of
type d. Then there is an algorithm which computes D(d11, 1 )(P).

PROOF. – By the above Lemma D(d11, 1 )(P) 4D(P8 ) for some separated
series P8 . The conclusion follows from Theorem 4.8. r

5. – Bigraded Rees algebras.

Let R4k[X1 , R , Xn ] be a polynomial ring over a field k graded in the
standard way and I a homogeneous ideal in R . Consider the Rees algebra of I ,
namely the subalgebra of the polynomial ring R[T] defined by R(I) »4

R[IT] 4 5
jF0

I j T j . The bigrading on R[T] defined by R[T](i , j) »4Ri T j induces

on R(I) the bigrading R(I)(i , j) 4 (I j )i T j . It is then possible to consider its
straight-line subalgebras.

PROPOSITION 5.1. – Let R4k[X1 , R , Xn ], I»4 (F1 , R , Fr ) a homogeneous
ideal in R, where di »4 deg (Fi ) and let R(I) »4R[IT] be the associated
bigraded Rees algebra. Then

1) R(I)4k[X1 , R , Xn , Y1 , R , Yr ]OI , where deg (Xi )4(1 , 0 ), deg (Yi ) 4

(di , 1 ) and I is a bihomogeneous ideal.

2) PR(I) (a , b) »4
P(a , b)

(12a)n »
i41

r

(12a di b)
, where P(a , b) is a polynomial.

PROOF. – It follows from the definition. r

First we study a special straight-line submodule of R(I); namely, if we fix
an integer t�N and the horizontal half-line L»4 ](i , t)Ni�N(, then R(I)L 4

5
iF0

(I t )i T t 4I t T t . Therefore

LEMMA 5.2. – Let R4k[X1 , R , Xn ], I»4 (F1 , R , Fr ) a homogeneous ideal
in R, where di »4 deg (Fi ) and let R(I) »4R[IT] be the associated bigraded
Rees algebra. Then

1) PR/I t (a) 4
1

(12a)n
2 PI t (a),

2) PI t (a) is the coefficient of b t in PR(I) (a , b).

PROOF. – Assertion 1) is clear, while assertion 2) comes from the fact that if
L»4 ](i , t)Ni�N(, then R(I)L 4 5

iF0
(I t )i T t 4I t T t . r
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The next result is quite interesting from the computational point of view.

THEOREM 5.3. – Let I be an homogeneous ideal of the polynomial ring R4

k[X1 , R , Xn ] and t a positive integer. Then there is an algorithm which
computes PI t uniformly.

PROOF. – We know from Proposition 5.1, 2) that

PR(I) (a , b) »4
P(a , b)

(12a)n »
i41

r

(12a di b)

where d1 , R , dr are the degrees of a system of generators of I. Therefore PI t

can be represented as Q(a)O(12a)n , where Q(a) is the coefficient of b t in the

bivariate series P (a , b) Q »
i41

r

(11a di b1a 2di b 2 1R), hence in the polynomial

P (a , b) Q »
i41

r

(11a di b1a 2di b 2 1R1a tdi b t ). The conclusion follows. r

COROLLARY 5.4. – Let I be an homogeneous ideal of the polynomial ring
R4k[X1 , R , Xn ] and t a positive integer. If D is the maximum of the degrees
of a system of generators of I, then there exists a constant d such that

ri (R/I t ) GDt1d .

PROOF. – We use the notation of the above theorem. To prove the claim it
suffices to note that the degree of Q(a) is bounded above by Dt1d , where d is
the total degree of P(a , b). r

The bound given in the above Corollary can also be obtained from recent
results on upper bounds for the Castelnuovo-Mumford regularity of a
homogeneous ideals (see [CHT] and [K]).

We shall see at the beginning of the next section that under special
circumstances we can compute an explicit formula for PI t hence for PR/I t .

Now we are going to discuss another important class of straight-line
subalgebras of Rees algebras.

DEFINITION 5.5. – Let R»4k[X1 , R , Xn ] be a polynomial ring over a field
k graded in the standard way and I a homogeneous ideal in R. Let c�N . We
define

B(c , I) »4 R(I)D(c , 1 ) 4 5
sF0

R(I)(cs , s) 4 5
sF0

(I s )cs T s .

The strong interest in studying such algebras is explained by the following
facts
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LEMMA 5.6. – With the notation as above, assume that I is generated in
degree Gc . Then B(c , I) 4k[Ic ], the k-algebra generated by Ic and graded by
(k[Ic ] )s »4 (Ic )s . In this way B(c , I) is a standard k-algebra.

PROOF. – The degree s part of k[Ic ] is given by (Ic )s ; on the other hand I is
generated in degree Gc , hence (Ic )s is the degree cs part of I s . r

PROPOSITION 5.7. – Let R»4k[X1 , R , Xn ] be a polynomial ring over a field
k graded in the standard way and I a homogeneous ideal in R generated in
degree d. If ccd , then B(c , I) 4k[Ic ] is the coordinate ring of the Blow-up of
Pk

n21 along the projective scheme defined by I.

PROOF. – This is a classical fact, which is now considered as folklore;
however, we have not been able to find a reference in the literature. r

A very important class to study arises when I is a complete intersection i.e.
I is generated by a homogeneous regular sequence. Then we have

PROPOSITION 5.8. – Let F1 , R , Fr be a homogeneous regular sequence in R,
di »4 deg (Fi ) and I»4 (F1 , R , Fr ). Let Y1 , R , Yr be indeterminates and

M»4gY1

F1

Y2 R Yr

F2 R Fr
h. Then

1) R(I) 4k[X1 , R , Xn , Y1 , R , Yr ]OI2 (M), where I2 (M) is the
homogeneous ideal generated by the 232 minors of M.

2) The free resolution of R(I) is the Eagon-Northcott complex
associated to M.

PROOF. – These are also classical results (see [BH]). r

PROPOSITION 5.9. – Let F1 , R , Fr be a homogeneous regular sequence in R
of elements of the same degree d. Then the bivariate HP-series of R(I) is

PR(I) (a , b) »4

11 !
p42

r

(21)p21ggr

p
h a pd !

m41

p21

b mh
(12a)n (12a d b)r

.

PROOF. – We deduce from Proposition 5.8 that the minimal free resolution
of R(I) as a module over S»4k[X1 , R , Xn , Y1 , R , Yr ] is the Eagon-Northcott
complex

0 KDr21 KDr22 RKD1 KD0 4SK R(I) K0 .
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In [CHTV], Lemma 4.1. it has been observed that

Dj 4 5
m41

j g r

j11
h S(2d(j11), 2m) .

We deduce

PR(I) (a , b)4
11 !

j41

r21

(21) j PDj
(a , b)

(12a)n (12a d b)r
4

11 !
j41

r21

(21) jgg r

j11
h a d(j11) !

m41

j

b m h
(12a)n (12a d b)r

.

The conclusion follows. r

THEOREM 5.10. – Let F1 , R , Fr be a homogeneous regular sequence in R of
elements of the same degree d and I»4 (F1 , R , Fr ), Then there is an
algorithm which computes PB(d11, I) , without computing the equations of
B(d11, I).

PROOF. – By Definition 5.5 wee have to show how to compute
PR(I)D(d11, 1)

(a , b), which is D(d11, 1 ) (PR(I) (a , b) ) by Lemma 2.8. Now
Proposition 5.9 tells us that PR(I) (a , b) is an almost separated series of type d ,
hence the conclusion follows from Corollary 4.12. r

THEOREM 5.11. – Let R»4k[X1 , R , Xn ], ]Lij ( a set of d3 (d11)
homogeneous linear forms, i»41, R , d ; j»41, R , d11, M the matrix (Lij ).
Let It (M) be the ideal generated by the t3 t minors of M and assume that
ht (It (M) )Fd2 t12 for 1 G tGd . If I»4Id (M), then

1) PR(I) (a , b) 4
(12a d11 b)d

(12a)n (12a d b)d11
,

2 ) PB(d11, I) 4

!
i40

Q gn21

i
hgd

i
h z i

(12z)n
.

PROOF. – The condition about the height of It (M) implies, by a result of
Huneke (see [H] Theorem 1.1), that I is of linear type. This implies that

R(I) 4k[X1 , R , Xn ][T1 , R , Td11 ]O(F 1 , R , F d ) ,

where

F i »4 !
k41

d11

Lik Tk .
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We have dim (R(I) )4n11, hence codim (F 1 , R , F d )4n1d112(n11)4d .
This means that R(I) is a complete intersection of d forms of degree (d11, 1 ),
which proves 1).

If we consider the bivariate series

P8 (a , u) »4
(12au)d

(12a)n (12u)d

it is clear that P8 (a , u) is a separated bivariate series such that PR(I) (a , b) 4

P8 (a , a d b). Hence, according to Definition 4, PR(I) is a bivariate almost
separated series of type d. From this we get

PB(d11, I) 4 PR(I)D(d11, 1)
4D(d11, 1 )(PR(I) ) 4D(P8 ) 4

(12z)d Dg 1

(12a)n

1

(12u)d11 h4 (12z)d Had (Pn , Pd11 ) 4

(12z)d

!
i40

Q gn21

i
hgd

i
h z i

(12z)n1d
4

!
i40

Q gn21

i
hgd

i
h z i

(12z)n
.

The conclusion follows. r

REMARK 5.12. – We have seen in Proposition 5.7 that for c big enough
B(c , I) is the coordinate ring of the Blow-up of Pk

n21 along the projective
scheme defined by I. The importance of Theorem 5.10 and Theorem 5.11 relies
on the fact that in these cases, as well as in many other cases which are
relevant to Algebraic Geometry, c»4d11 is «big enough» for
blowing-up.

6. – Explicit computations.

In this section we carry on some explicit computations. As promised in Sec-
tion 5 we show the explicit computation of the HP-series of the powers of an
ideal.

EXAMPLE 6.1. – We compute the Hilbert Series of R/I t where I»4Id as
defined in Theorem 5.11.
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We have seen in Theorem 5.11 that

PR(I) (a , b)4
(12a d11 b)d

(12a)n (12a d b)d11
4

g!
j40

d

(21) jgd

j
h a (d11) j b jhg !

kF0
gd1k

k
h a dk b kh

(12a)n

and we know from Proposition 5.2, 2) that we have to compute the coefficient
of b t . It follows that

PI t (a) 4

!
j40

d

(21) jgd

j
h a (d11) jgd1 t2 j

t2 j
h a d(t2 j)

(12a)n

hence (by Proposition 5.2, 1))

PR/I t (z) 4

12 !
j40

d

(21) jgd

j
hgd1 t2 j

t2 j
h z dt1 j

(12z)n
.

Since R/I t has dimension n22 the h-vector of R/I t is the numerator of the
above fraction divided by (12z)2 . It follows that the leading coefficient of this

polynomial is (21)d11g t

d
h while the first non trivial coefficient, namely that of

z dt is dt112gd1 t

t
h which is equal to 2 !

j42

t gt

j
hgd

j
hE0. This proves that

R/I tis not Cohen-Macaulay for every tF2.
Now we consider a particular instance of Theorem 5.10, namely the case

r»42.

COROLLARY 6.2. – Let R»4k[X1 , R , Xn ] be a polynomial ring over a field
k. Let F1 , F2 be a homogeneous regular sequence in R with deg (F1 ) 4

deg (F2 ) »4d and I»4 (F1 , F2 ). Then

1) PB(d11, I) 4
11nz1R1nz d21 1 (n2d)z d

(12z)n
,

2) B(d11, I) is not Cohen-Macaulay if dDn.

PROOF. – We have PR(I) (a , u) 4
12a d u

(12a)n (12u)2
. Therefore we apply
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Theorem 4.8 and get

PB(d11, I) 4Had (Pn , P2 )2z d QHadgPn ,
1

(12z 2 ) z d21 h4

Had (Pn , P2 )2z d Q !
k41

2 gd2k

d22
h Had (Pn , Pk ) 4

(12z d ) QHad (Pn , P2 )2 (d21)z d QHad (Pn , P1 ) 4

(12z d )
11 (n21)z

(12z)n11
2 (d21) z d Q

1

(12z)n
4

(11z1R1z d21 ) (11 (n21) z)2 (d21) z d

(12z)n
4

11nz1R1nz d21 1 (n2d) z d

(12z)n
.

If dDn , the h-vector has a negative component. r

EXAMPLE 6.3. – Let R»4k[X1 , X2 , X3 ] be a polynomial ring over a field k.
Let F1 , F2 be a homogeneous regular sequence in R with deg (F1 ) 42,
deg (F2 ) 43 and I»4 (F1 , F2 ). Then

PB(4 , I) 4
116z13z 2

(12z)3
.

PROOF. – The Rees algebra R(I) is isomorphic to k[X1 , X2 , X3 , Y1 , Y2 ]O

(Y1 F2 2Y2 F1 ), with the bigrading given by deg (Xi ) 4 (1 , 0 ) for i»41, R , 3
and deg (Y1 ) 4 (2 , 1 ), deg (Y2 ) 4 (3 , 1 ). Then PR(I) (a , b) 4 (12a 5 b)ON(a , b),
where N(a , b) »4 (12a)3 (12a 2 b)(12a 3 b).

In this case we cannot apply the technique explained in Theorem 4.8, since
there is no way of transforming PR(I) (a , b) into a separated series.

We need to compute D(4 , 1 ) (PR(I) (a , b) ) . We get

D(4 , 1 ) (PR(I) (a , b) )4

D(4 , 1 )g 12a 5 b

N(a , b)
h4D(4 , 1 )g 1

N(a , b)
h2z QD(4 , 1 )g a

N(a , b)
h .
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Now
1

N(a , b)
4g!

iF0
gi12

2
h a ihg!

jF0
a 2 j b jhg !

kF0
a 3k b kh, hence we see that

the coefficients of a 4p b p correspond to the solutions of the system

.
/
´

i12 j13k44p

j1k4p
or equivalently

.
/
´

i12 j13(p2j)44p

0 G jGp
which is

.
/
´

0 G jGp

i4 j1p
. So we

have proved that

D(4 , 1 )g 1

D(a , b)
h4 !

pF0
ygp12

2
h1R1g2p12

2
hz z p 4

!
pF0

yg2p13

3
h2gp12

3
hz z p .

At this point we have the Hilbert polynomial, from which we deduce the
dimension and the regularity, which turn out to be 4 and 21 respectively.
Now

!
pF0

yg2p13

3
h2gp12

3
hz z p 4119z131z 2 mod (z 3 )

so that, by taking the 4th difference we get D(4, 1)(1OD(a , b))4 (115z1z 2 )O

(12z)4 .
To compute D(4 , 1 ) (aOD(a , b) ) we proceed as before and get

D(4 , 1 ) (aOD(a , b) )4 (4z13z 2 )O(12z)4 . Then the computation goes as
follows

D(4 , 1 ) (PR(I) (a , b) )4
115z1z 2

(12z)4
2z

4z13z 2

(12z)4
4

115z23z 2 23z 3

(12z)4
4

116z13z 2

(12z)3

as we wanted to show. r

REMARK 6.4. – The case n44 can be carried over in the same way and we
get

PB(4 , I) 4
1110z110z 2 1z 3

(12z)4
.

Since it can be proved that B(4 , I) is Cohen-Macaulay, the symmetry of the
h-vector tells us that it is Gorenstein.
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