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Bollettino U. M. 1.
(8) 1-B (1998), 501-519

The Ornstein-Uhlenbeck Generator Perturbed
by the Gradient of a Potential.

GIusepPPE DA Prato (V)

Sunto. — St considera, in uno spazio di Hilbert H [loperatore lineare Iy¢ =
1/2 Tr[D?¢] + {x, ADg) — (DU(x), Dg), dove A ¢ un operatore negative autoag-
griunto e U ¢ un potenziale che soddisfa a opportune condizioni di integrabilita. Si
dimostra con un metodo analitico che I, é essenzialmente autoaggiunto in uno
spazio L2(H, v) e si caratterizza il dominio della sua chiusura 9T come sottospazio
di W2 2(H, v). Si studia inoltre la, «spectral gap property» del semigruppo genera-
to da I

1. — Introduction and setting of the problem.

Let H be a separable Hilbert space, A: D(A) c H— H a self-adjoint nega-
tive operator such that A ~!is of trace class. We denote by u the Gaussian mea-
sure of mean 0 and covariance operator @ = —(1/2) A ~'. We are concerned
with the following linear operator on L2(H, u):

1
(1.1) Nye(x) = ETr[DZ(p] + (x, AD@) — (DU(x), D), @ess(H),

where U is a nonlinear real function in H, and §,(H) is the linear subspace of
L?*(H, u) spanned by all exponential functions

Wh(x)zew’x); OCEH,

where ke D(A). Notice that 8,(H) is dense in L%(H, u).

The goal of this paper is to show that, under suitable assumptions, 97, is es-
sentially self-adjoint on the space LZ(H,v), where v is the probability
measure

-1
v(dw) = ce 2V u(dx), c= [fe ‘ZU(”),u(dac)] .
i

This problem has a long story, see the recent paper [1] and the references
therein for an approach based on the theory of Dirichlet forms. Another ap-

() Partially supported by the Italian National Project MURST, Equazioni di Evolu-
zione e Applicazioni Fisico-Matematiche.
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proach consists in solving the differential stochastic equation
dX =(AX - DUX))dt + dW(t), X(0)==x,

where W is a cylindrical Wiener process on H, see e.g. [7], and then by identi-
fying the closure 9T of 97, with the infinitesimal generator of the transition
semigroup

P,p(x) = E[o(X(t, 2))], @eL*H, ).

In this paper we follow a purely analytic approach, different of that based on
Dirichlet forms. The advantage is that we require weaker assumptions on U
and that we are able to characterize the domain of 9T as a subspace of the
Sobolev space W2 2(H, v) instead of W 2(H, v), as in the case of Dirichlet
forms. Moreover we believe that similar ideas could be applied to more gener-
al situations when 97, is not symmetriec.

Let us briefly explain our method. We first consider the linear opera-
tor

1.2) Ao () = %Tr [D2@l+ (x, ADg), q@e8,s(H).

It well known see e.g. [7], that @, is essentially self-adjoint. Moreover the
domain of the closure @ of A, is given by, see [5] and § 2 below,

1.3) D(Q)={peW>2(H, w): [(—A)?Dp|ecL*(H; pn)}.
We first study the operator 97, under the assumption that U is of class C?

and DU and D?U are bounded, see § 3. In this case we prove that 97, is sym-
metric on L2(H, v) and the following identity holds for any ¢ e 8, (H),

1.4) %fTr[(nga)z]dv+f|(—A)1/2qu|2dv+f(D2UDgo,D(p)dvz
H H H

2 f(f)Zogo)2dV .
H

Finally, denoting by 9T the closure of 97,, we show, by a simple perturbation
argument that for 1, sufficiently large we have

(o= 90(DOV)>L*(H, ).
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Since L2(H, u) is dense on L2(H, v), it follows that It is m-dissipative see
e.g. [4, Corollaire 11.9.3], and so it is self-adjoint.
In § 4 we consider a more general case when

1.5) f |DU(x) |Pv(de) < + o .

H

This condition is similar to assumptions (5) and (6) in [1], that however are re-
quired to hold for all p. Under this assumption we can again show that 97, is
symmetric, that an estimate similar to identity (1.4) holds and that for all A >
0, (A —90)(D(97)) contains the closure on L2(H, v) of Wh2/?=2)(H | 4), that
is dense in L2(H, v). This implies, by the previous argument, that 97 is self-ad-
joint on L2(H, v). In order to prove the above inclusion we need some a-priori
estimates on W1 2P° =2 (H  u), that are proved in Appendix A.

Finally § 5 is devoted to ergodicity and spectral gap for the semigroup e".
Here we generalize to the situation when (1.5) holds, some previous results
due to [2], [1], and [7].

2. — Notation and preliminary results.

We are given a separable Hilbert space H, (norm |- |, inner product (-, -)),
and a linear operator A: D(A)c H— H. We assume

HypoTHESIS 2.1. — (i) A is self-adjoint and there exists w >0 such
that

2.1) (Az, x) < — w|x|?, wxeDA).

(i) A1 is of trace-class.

There exists a complete orthonormal system {e;} in H and a sequence of
positive numbers {u;} such that

(22) Aek= — UK€y kelN.

We denote by u the Gaussian measure on (H, B(H )) ®) with mean 0 and
covariance operator @ = — (1/2) A ~1 and we set 1, = 1/2uy, kelN.

() B(H) is the o-algebra of all Borel subsets of H.
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We consider the Ornstein-Uhlenbeck semigroup R;, t =0, defined by

23) Rio@) = [ oly) e e, Q)dy), gL H, u),
H

where

2.4) Qt=%A—1(eZtA—1), £>0.

One can show, see [7], that R;, t =0, is a strongly continuous contraction
semigroup on L?(H, u), having as infinitesimal generator @ the closure of the
linear operator @, defined as

1
(2.5) Qop(x) = ETI‘ [D? @(x)] + (90, ADg(x)), pedu(H),
where
(2.6) 84(H) = span{x—e"* heD(A)}.

We finally recall two identities, valid for any ¢, v € §4,(H), that we shall
use later, see [5] and the references therein

1
@7) f Ap(a) pla) pu(de) = ~ f | Do(z) |2 u(der),
H H

1
@8 - f Tr[(D2 ¢ )] u(dw) + f |(—A)2 Dgp() |? u(da) =2 f |Ag(x) |2 u(da) .
H H H

The following result is an easy consequence of estimates (2.7) and (2.8),
see [5].

ProposiTION 2.2. — We have
() D(—a)"*)=W"*(H, u) )
(i) D(Q) = {g e W *(H, u): |(~A)*Dg|eL*H; w)}®.
¢) WY 2(H, ) is the space of all ¢p e L2(H; i) such that E f | Dy () |? u(da) <
+ oo, where D, is the derivative in the direction e,.

(4) W?%2(H, u) is the space of all g e Wb 2(H; u) such that Z f|Dth(p(m) |2
u(dx) < + o0,
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Moreover, for all 1 >0, ¢ e D(A), we have, setting f=2lp —A,

1
2.9 lpll2, 0 < ;”f”LZ(H, W
2
(2.10) D@2z, 0 < IHf”LZ(H, 0
@2.11) ITr (D2 @, 0 < 4 f 2, s
(2.12) (= A2 Doz, ) < 2|2, -

In the following we shall write
D(a)=W**(H, u) N Wi *(H, u),
where

WisH,w) ={peL*H, u): [(—A)"Dg|eL*(H; u)}.

3. — The case when U is regular.
We are given here a mapping U: H—R such that

HypoTHESIS 3.1. — (i) U is nonnegative and twice Gateaux differen-
tiable.

(ii) There exists k>0 such that

sup |DU(x) | + sup|[D*U(x)| < k.
xeH rxeH

We define a linear operator
3.1) Nog = Ag — (DU), Dg),  @ess(H),
and a measure v on (H, B(H)), by setting
v(dw) = ce 2V y(du),
where ¢ = [er ‘ZU(@y(doc)]fl.

Our goal is to prove that 97, is essentially self-adjoint. To do this we will
prove that 97, is symmetric and that for some 1,> 0 the set

(1o =90 DOV) ,

where 91 is the closure of 9, is dense on LZ(H, u). This will imply that 9T is
m-dissipative, and thus self-adjoint, see [4].
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To carry out this program we need some preliminary results: an integra-
tion by parts formula, and some a-priori estimates.

LEMMA 3.2. — Assume that Hypotheses 2.1, and 3.1 hold. Let ¢, vy € §,(H),
and let he N. Then we have

f(f_” +2D,,U) owdv,

(3.2) f Dwoy +@Dyyldv =
H H h

where x), = (x, e,) and D, denotes the derivative in the direction e,.

Proor. — We recall a well known formula, see e.g. [3], [8],

f[DhaﬁJraDh[)’] dﬂ=f%aﬁdﬂ, a, Bes,(H).
H

H h

Using this formula we find

thQDw dv = Cth q)l/)e _ZUdlu =
H H

—0f¢Dh(1/)e “2U) du + f %we “Vdu =

H H h

—f(pthdezf(pzpDhwafﬂwdv. n
H H H A‘h

ProposITION 3.3. — Let ¢, v e §4(H). Then
(i) We have

1
(3.3) f Nogydv= = f (Dg, Dy)dv,
H

H

so that I, is symmetric.
(i) We have

(3.4) %fTr[(DZga)z]dv+f|(—A)1/2qu|2dv+f(D2UDgo,D(p)dvz
H H H

2 f(.‘JZOqJ)2dV .
J1
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ProOF. — We first compute, following [8],

1 0
f(Ax’D¢>de:_EZ f hDh de

H h=1 )‘h

By (38.19) we have

f(Am, Do) ypdv =
H

|
DO |
Ms
Te

[Dj ¢y + Dy, Dyl dv + hEl thUDhW/’dV =
=g

%f Tr[D%¢]lydv — —(D(p, Dy) dv+f(DU, Do) ydv.
H H

Now (3.3) follows easily. Let us prove (3.4). Set dg =f, and

]

@ 2 —;ﬂk%kaw _ngk UDyop=f.

Differentiating with respect to e, gives

NoDyp —u, Dy — kZthDk UD,op=D, f.

Multiplying both sides for D), ¢, integrating in H with respect to v, and taking
into account (3.19), we find

1 o]
Ef|DD,L¢|2dv+f/1h|Dh(p|2dv+k21 thDkUDhguDkgpdV:
H " H

H

—th ID,pdv = fo(Pde_fﬂDh@de_zthUDhﬁﬂde,
H H n A H

where we have used again the integration by parts formula (3.2). Summing up
on h gives (34). =

We are now able to prove the main result of this section.

THEOREM 3.4. — Assume that Hypotheses 2.1 and 3.1 hold. Then the opera-
tor 91, defined by (3.1) is essentially self-adjoint. Denoting by I its closure
we have

(3.5) D((—90)"*)=W"2(H, v),
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and

(3.6) D) = {@e W*2(H, v): |(~A)*Dg|eL*(H, v)}.
Moreover the measure v is invariant for the semigroup e"™.

Proor. — We first notice that, since I, is symmetric by (3.3), then it is clos-
able. Let us denote by It its closure. We now proceed in three steps.

STEP 1. — We have

3.7 D(@Q) =W*2(H, ) N Wi 2(H, u)c D),
and
(3.8) Ng =Aa¢e — (DU, Dg), peD(A).

Let in fact ¢ € D(A). Since §,(H) is a core for @ there exists a sequence
{®,} c84(H) such that

¢,—¢, Qg,—de in L%*H,u), and soin LZ(H,v).

Recalling the well known estimate see e.g. [5],
f |9”|2 | Dgp(x) |2ﬂ(d9ﬁ) S C”q)”%VZ’Z(H, 0 peW=2(H, u),
H

we see that
(DU, D¢ ,)— (DU, Dg) in L%*H,u), and so in L%(H,v).

Consequently 94, ¢, — Qe — (DU, Dg), and the claim is proved.

STEP 2. — There exists A, > 0 such that for all A=A, and all fe L2(H, u),
the equation

(3.9 Ap —Ng =g —Ag + (DU, D) =f,

has a unique solution ¢ e D(A).
In fact, setting 1¢ — Qg =y, equation (3.9) is equivalent to

(3.10) py-Ty=f,
where Ty = (DU, DR(A, @) ). Now, taking into account (2.7), we see

that
2
1Tyll2, 0 < & 1”1/)”1,2(14,”),

and the conclusion follows with A4, = 8x2.
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StEP 3. — Conclusion.
By step 2 we have

(o= 90(DOV)>L*(H, ).

Since L%(H, u) is dense in L2(H, v) it follows that It is m-dissipative and so
self-adjoint see e.g. [4, Corollaire 11.9.3]. Now it follows by approximation that
identities (3.3) and (3.4) hold for any ¢ € D(97). Then (3.5) and (3.6) follow
easily. m

4. — The general case.
We are given a mapping U: H—[0, + o] such that
HypoTHESIS 4.1. — (i) U is convex, lower semi-continuous, not identically
+ oo,
(ii)) There exists p > 2 such that

[ 1DU) | vde) < + o,
H

where DU(x) is the sub-differential of U(x), v(dx) = ce 2Y™ u(dx), and
c=| fe —ZU(x)‘u(dm)]—l'
H

(iii) There exists a sequence {U,} of functions fulfilling Hypothesis 3.1
such that U,(x) T U(x) and

Jim f |DU(x) — DU, (x) |Pv(dx) =0 .
H

We denote by v, the measure v,(dx)=c,e 2U"® u(dx), where ¢, =

[ fe 2U@u(dx)]"!. We have the following continuous and dense inclu-
gons
L*(H,u)cL?(H,v,)cL?(H, v), p>1,
and, for all p e L?(H, u),
4.1) f|cp|pdvs £f|¢7|pd1/n$cf|(p|pd,u.
H CnH H

We define a linear operator 97, on LZ(H,v) with domain &4(H) by
setting

4.2) Nop =Ag — (DU, Dp),  @ess(H).
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This definition is meaningful in virtue of Hypothesis 4.1-(ii). We also
set

(43) mo,iz¢:a¢_<DUn:D(p>r (pESA(H)a

and denote by Jt, the closure of 97, ,, on L%*(H, v,). Clearly for any ¢ € §,(H)
we have

(4.4) lim 9%, ,¢=9¢ in L*H,v).

n— o

PROPOSITION 4.2. — Let @, e 84(H). Then
(1) We have

1
f310¢wdv= - —f(Dco, Dy)dv,
H 25

so that I, is symmetric.
(i) We have

(4.6) %fTr[(Dz(p)z]dv—}—f|(—A)1/2D(p|2d1/$2f(f)(o(p)2dv.
H H H

ProoF. — Let us prove (4.5). For any ¢, y € §4,(H) we have by (3.3)

1
fszo,nqudvn = - = f(D(p’ DU)) an’
25

H

which is equivalent to

1
Cnffﬂo, wppe *du=—c, = f<D<o, Dy)e 2Vndu.
H 24

As n— o, (4.5) follows.
Let us finally prove (4.6). For any ¢, v € §,(H) we have by (3.4), recalling
that U, is convex

1
— fTr[(ngo)z] av, + f |(—A)1/qu0|2dvn <2 f(f)to,n(p)zdvn.
2y H H

As n— o, (4.6) follows. =

We need now a technical lemma whose proof is given in Appendix A.
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LEMMA 4.3. — Let o e §,(H), A> 0, p =2, and f= Ap — Iy @. The following
estimate holds

1
4.7 lpllw ez, v,y < E”f”Wl'p(H, v

Now we can prove the result

THEOREM 4.4. — Assume that Hypotheses 2.1 and 4.1 hold. Then the opera-
tor 9, defined by (4.3) is essentially self-adjoint. Denoting by IU its closure
we have

4.8) D((—90)"?)=Wh2(H, v),
and
4.9) D) c{peW*2(H, v): |(—A)1/2Dg0| eL*(H,v)}.

Moreover the measure v is invariant for the semigroup e'™.

Proor. — We set ¢ =2p/(p — 2). By proceding as in the proof of Step 1 of
Theorem 3.4 we see that W' 9(H, u) c D(9). Now let fe W' 9(H, u). Then for
any ne N there exists ¢, e D(J(,) such that

(4.10) Ap, — A, +(DU,, Dg,)=f.
Moreover, by Lemma 4.3 we have

cl/q
@ wllwrocer, v,y < = fllwr o, v,

A

It follows

c 1/
[ ol ez, vy < ( — ) o .o, v S

n

1 v 1
H(E) i< e W,
Thus we have proved that
¢l

(4.11) 0 0 w2 0cer, ) < T“f”Wl*"(H, 0
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Now we can conclude the proof. We have
(4.12) A, — e, =f+(DU—-DU,, Dg,).

But

f|(DU—DUn,D¢n>|2dvsf|DU—DUn|2|D(pn|2dvs
H H

2/p 2/q
(f|DU—DUn|”dV) (f|D(pn|qdv) <
H H

1 2p
Icl/p(leU_DUnV?dV) ”f”Wl"’(H,ﬂ)'
H

Consequently
nliir%o(DU—DU,l, D¢,)=0 in L*(H, ),

and so (1 — 90)(D(N)) contains the closure on L2(H, v) of WY 9(H, u). Since
W 49(H, u) is dense on L%(H, v). As in the proof of Theorem 3.4 this implies
that JC is self-adjoint. m

REMARK 4.5. — If D2 U(x) exists for v almost & € H and it is Borel, then we
have the following characterization of D(91):

(4.13) DY) =

{peW*2(H, v): |(—A)1/2D(p| eL*(H,v),(D*UDg¢, Dp)e L*(H, v)}.

ExXaMPLE 4.6. — Let H=L%*0,x), Av=DZx, xeD(A) =H?*(0, 7)N
H}(0, 7). Set moreover

ex(§) = \/zsinké, fi(8) = \/Ecoské, keN,
T T
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and denote by 7' the isometry on H:

T(Iélxkek) = (é“lxkfk)’ xeH, x,=(x,e.).

Let moreover @ be the trace class operator on H such that Qe = (1 /2k2) €ks
kelN, and let u =910, Q).
Let finally

1

—(x*, 1) if xeL*(0, n),
U)=4 4
+ oo if xe¢L*0, 7).
Then we have

DU@x) = —x® if xeL%0, n).
It is easy to check that for all xe H,
m(&):<Q71/2x’ T*X[0’§J>7 SE[O’ ﬂ]-

For any m =1 there exists a constant C,, > 0 such that

S 1pU@) 127 i) = [ (f EG |6md§) w(der) =
H H 0

=f[f|<Q“2x, T*x.o,§.>|6mu(dm>] de=C, [ |T* 5100 |3 de=C,, [ €9 de |
0 H 0 0

Thus all assumptions of Theorem 4.4 are fulfilled.

5. — Ergodicity and spectral gap.

We set P,g =e" ¢, for all o e L%(H, v), where I is the self-adjoint opera-
tor defined in Theorem 4.4. We first prove that v is ergodic and strongly
mixing.

For this we need a lemma.

LEMMA 5.1. — For any ¢ e WY2(H, v) we have

(5.1) IDP@lizir,) < € 2" [Depllizcr, 1))

(®) Recall that (Ax, x) < — w|x|?, xeD(A).
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ProoF. — It is enough to show (5.1) for all ¢ € §4(H). In this case we
have

d o
—Duult, ) = XDyt ) = i Dyuct, ) + > D,D.UD,u(t, x),
k=1
from which

1 1
—if|Dhu(t, x) |Pdv = ——f|DDhu(t, x) |Pdv —
2 dty 2y

_ﬂh,f | Dyult, x) |*dv + > th,Dk U(x) Dyult, x) dv .
H =1y

Summing up on £ it follows

14d

1
— — | |Du(t, x) 2dv+—fTr D2u(t, x))?] dv <
> d | Du( | 2] [( (t, ©))]

—a)f | Du(t, x) |*dv + f{DzU(ac) u(t, x), u(t, x)) dv,
H

H

and the conclusion follows. =

THEOREM b5.2. — Assume that Hypotheses 2.1 and 4.1 hold. Then we
have

52) Tim (@) = [ o) v(dy).
H

Proor. - It is enough to prove (5.2) for ¢ € §,(H). In this case, setting
u(t, x) = P;@p(x) we have

(5.3) w(t, x) = e gp(x) — fe(t’s)a(DU(ac), Du(s, x)) ds .
it

In virtue of (5.1) we can pass to the limit as t— + o in (5.3). Recalling
that

Jim e o) = fcﬂ(y)#(dy),
H

we find

tim a(t, ) = [ ¢ utdy) ~ [ ds [DU), Duts, ) utay).
H 0 H
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Now the conclusion follows from the Von Neumann ergodic theorem. ™
To prove spectral gap we need a Poincaré inequality.

PROPOSITION 5.3. — For any ¢ e WY 2(H, v) we have

1
(5.4) flca—des —lecalzdv,
H 20
where

@ = ffp(y) v(dy) .
H

Proor. — It is enough to prove (5.2) for e §,4(H). In this case we
have

1d

> d f |Pg|? dv—f‘)ZPt(thgadV— ——f|DPt(p| dv .

By Lemma 5.1 it follows

1 d 1
|Pp|*dv= — = 2“’tf|Dg0| dv .

Integrating in ¢ we have

1
f|Pt(p|2d1/> f(pzdv— —(1 —e_ZWt)f |Dg|?dv .
H 20 H

H

Letting n tend to oo it follows by Theorem 5.3
—\2 2 1 2
@r= )¢ dv—— | |Dg|*dv,
H 205

that it is equivalent to (5.4). =
We can now prove the result

THEOREM b5.4. — Assume that Hypotheses 2.1 and 4.1 hold. Then we
have

(5.5) [1Pg@ -7 2dv<ce 2 [ |o2av.
H H
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Proor. — By (5.4) it follows

1
f|Pt(p—¢|2de —f|DPtg0|2dv.
H 20

Moreover by (5.1) we have

e —2wt

flPt(p_¢|2dVS | Dop|*dv .
H

20 g
Thus for any &> 0 it follows

e 2wt e—2wt

f|DP£g0|2dv$ f|Dq0|2dv,

f|Pmcp—c—0|2dv<
" 0 g ewe g

since

2
f|DP8(p|2dv=2f|(—3?)1/2P5(P|2d1’$ —lewlde-

The conclusion follows. =

A. — L? estimates.

We assume here that Hypotheses 2.1 and 3.1 hold, and consider the
equation

(A1) Ap —Ng=Ap —Ag + (DU, Dg) =f,

where 9T is defined by (8.1), A >0, and fe L%(H, v).

ProposITION A.l. — For all o e 84(H) and p =2, the following identity
holds.

-1
(A.2) if |@|?dv + p—f|D(p|2 |@|? 2dv = ff|§0|p*2§0dv.
H 2 5 H
Movreover

1
(A3) Il rar, vy < I”f”LP(H, V).
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Proor. — We have

1< [
f(Ax,D¢)|(p|p_2(PdV= - E fTD}L¢|¢|p Ppdv =
=1y

H

h=1

1 < B p—1x _
> fD;?rplcol" ZdV—T > f|Dh¢|2|¢|P dv +
H H

> thUDhcp|cp|P*2fpdv=
H

h=1

1
f r[D2g0]|g0|” 2g0dv——f|Dg0|2|g0|p 2dv +
2H 2

f(DU, Do) |o|P 2@ dv
H
Now the conclusion follows easily. =

LEMMA A2. — Let ¢, Y+, ..., Y, €84(H). Then we have

1
(A4) fm§0¢%,,¢?de=_—f|D(P|zw%,JP%dV—
H 2H

3 [0, Dy et oo v v vha
=lg
Proor. — We have

1 oo
f<A90,D§0>§01/}%,~~,1/)3LdV=_—z —hDMDW/)%,,U)idV_
P 2n=15 4,

fD;?,ww%, Wk pRdy—
fDmlzrpw%,...,w%w%,...,w%dv—

,;1 > [DigeDiviivi o vtk pii s

h=

=

D, UD, gey%, ..., y5dv. =

—

Te



518 G. DA PRATO

PROPOSITION A.8. — Let ¢ € §4(H), A >0, Ap — 9lp =f. Then the following
identity holds

1
(A5) lf|Dq0|2de+ —fTr[(D2¢)2]|Dq)|2m’2dv+
H 2H
(m 1) [((D2¢)Dg, Dp) | D |*"~dv + [ |(— AV2Dg|? | Dg |2~ 2dv +
" H

f |(D2UD(p, Dg) |Dq0|2m_2dv = f(D(p, Dy) |D(p|2m_2dv .
H H

Movreover

1
(A.6) 1Dl 1y < 7 DA\, -

Proor. — For any heIN we have
ADy @ = Dy @ + Dy + ;21Dth UD,¢ =D, ¢ .

Multiplying both sides for

Dlz¢(Da1¢)2"'(Damflq))za
and using Lemma A.2 we obtain
1
llehf/)lz|17al</)|2---IDa,,,lfﬂlzolwrgfIDDh,fplz|Dal€0|2---IDam1<ﬂ|20lwr
H H

m—1

2 f<DDh(p’ DD(Lj(p>Dh ()‘DD(IJ'QD(DCLI (;0)2 M (D(l_,',l(p)z(DajJrqu)z b (Da”171 q))z dV“F
=1 g

ﬂhlewllealqolz---IDa,,,Y,,lfplde
H

m—1
z thDkUDk(/)Dh§0|Dal§0|2--- |Dum,1¢|2d1}:

k=1 p

thth(p|Da1§0|2"' |Dam71¢|2dv :
H

Now identity (A.4) follows summing up on h, a4, ..., a,,_;. Finally (A.5)
follows from the Holder estimate. m
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