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Bollettino U. M. I.
(8) 1-B (1998), 479-500

Imbedding Theorems of Sobolev Spaces into Lorentz Spaces.

LUC TARTAR

Dedicated to Jacques-Louis Lions

Sunto. – In questo articolo vengono date alcune varianti del teorema di immersione di
Sobolev in spazi di Lorentz. In particolare si dimostra un teorema di immersione
per spazi di Sobolev anisotropi supponendo che le derivate parziali appartengono a
spazi di Lorentz diversi, anche nel caso limite, corrispondente all’estensione di
Brezis-Wainger del teorema di Trudinger per W 1, N (R N ).

When I was a student at Ecole Polytechnique, which was still in Paris on
the «Montagne Sainte Geneviève» at the time (1965 to 1967), I had the chance
of having two great teachers in Mathematics, Laurent Schwartz and Jacques-
Louis Lions. Apart from a lecture on Calculus of Variations that he taught in
place of Laurent Schwartz, Jacques-Louis Lions taught the Numerical Analy-
sis course, which then meant mostly classical algorithms; partial differential
equations only occured in one dimension, and were treated by finite difference
schemes, and it was only in a seminar for interested students that I first heard
about Sobolev spaces. Later, I heard Jacques-Louis Lions teach about various
technical properties of Sobolev spaces, but although he often used Sobolev’s
imbedding theorem, I do not remember hearing him give a proof. I had read
the original proof of Sobolev [So], which I had first seen mentioned in Laurent
Schwartz’s book on distributions [Sc], and the proof that Jacques-Louis Lions
had taught in Montréal [Li], based on the ideas of Emilio Gagliardo [Ga].

While I was working for my thesis under the guidance of Jacques-Louis
Lions, I had the pleasure of being invited a few times in a restaurant near the
«Halles aux Vins» (the term «Jussieu» was not yet in use). These dinners usu-
ally followed talks by famous mathematicians at the seminar which Jacques-
Louis Lions and Laurent Schwartz were organizing every Friday at the Insti-
tut Henri Poincaré (abbreviated as IHP). The restaurant, «Chez Moisson-
nier», had a room which Laurent Schwartz had once described as a concrete
example of a barreled space, and it was there that I first met Sergei Sobolev,
although I had not been aware that he had given a talk. My understanding of
English was too poor at the time to converse with visitors, but fortunately
Sergei Sobolev spoke French, perfectly.
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Shortly after, I noticed that u�W 1, p (R N ) implies uOr�L p (R N ) if 1 GpE

N (Appendix I), a result which is not a consequence of Sobolev’s imbedding
theorem; Jacques-Louis Lions did not know this result, but it had been found
before, as we learned a few weeks after when Pierre Grisvard mentioned it in
a talk at the Lions-Schwartz seminar; as Jacques-Louis Lions had mentioned
to him that I had just proved that result, Pierre Grisvard did put my name in a
reference of an article that he wrote soon after, with an unusual indication, my
phone number (I have moved and changed phone number at least six times
since, and I do not remember which one I had at that time; I wonder if anyone
ever called this number to ask what my proof was).

When I met Sergei Sobolev for the second time, at the International
Congress of Mathematicians in Nice in 1970, I did not mention my result be-
cause I had already noticed that it followed from an improvement by Jaak Pee-
tre, using imbedding theorems in Lorentz spaces [Pe]. I met Sergei Sobolev a
third time, when I traveled to Novosibirsk with a group from INRIA in 1976;
he was working on completely different questions, and at that time I did not
know yet about the various improvements of his imbedding theorem that I am
going to describe below.

In the Fall of 1984, in relation with studying functional spaces adapted to
the Fokker-Planck equation, I was trying to use an example of a general hy-
poellipticity result of Lars Hörmander, which I had heard of around 1969 in
the Lions-Schwartz seminar (the talks were not given by Lars Hörmander,
whom I only met in 1976): as an example of a much more general theorem, the
space V of functions f (x , v , t) on R N3R N 3R satisfying f�L 2 , ¯fO¯t1

!
j41

N

vj (¯fO¯xj ) �L 2 and ¯fO¯vk �L 2 for k41, R , N , is continuously imbedded

in H 1/2
loc (in all its 2N11 variables); I had easily found a direct proof of that

particular example, using a partial Fourier transform; much later I had
learned that Rothschild and Stein had obtained an L p version of Lars Hör-
mander’s result. In 1984 my concern was that if one uses the fact that H 1/2 is
imbedded in some L q space with qDp , the value of q would probably not be
the largest possible for the space V , as one had not used entirely the informa-
tion that the functions considered had one full derivative in each of the vk vari-
ables. I was then led to develop a method which could use a non optimal
imbedding result and transform it into a better imbedding theorem into
Lorentz spaces, giving in particular the largest exponent q for which V is con-
tinuously imbedded into L q . When applied to the classical Sobolev’s imbed-
ding, my method actually gives the imbedding theorem of W 1, p into the
Lorentz space L p *, p for 1 GpEN , as had been noticed by Jaak Peetre [Pe],
and for p4N it gives the improvement by Neil Trudinger [Tru] of a classical
result that Fritz John and Louis Nirenberg had derived in their pioneering
study of BMO [Jo&Ni]. My method also gives a result for functions having
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their first derivatives in different L p spaces, a result which I had first heard in
a talk of A. Kufner in Trento in 1978, before I learned from Carlo Sbordone
that it had been obtained earlier by M. Troisi [Tro]. Until a few years ago, I
could not find how to derive in the same way the generalization of Neil
Trudinger’s result that Haïm Brézis and Stephen Wainger had obtained for
functions having their derivatives in the Lorentz space L N , p [Br&Wa]. A few
years ago, during a meeting in Cortona, I finally understood how to derive
their result from a simple variant of my method, and I could then even treat
the case of functions having their first derivatives in different Lorentz spaces,
a result that seems inaccessible by any of the methods of proofs that I had
heard of before.

The results that I present here, which are related to the work of Sergei
Sobolev, will use simple ideas from the general theory of interpolation spaces
developped by Jacques-Louis Lions and Jaak Peetre [Li and Pe], which in the
particular case of interpolation between L 1 and L Q makes the Lorentz spaces
appear, and truncation does appear in a natural way in many constructions. It is
then with great pleasure that I dedicate these results to Jacques-Louis Lions.

1. – Why use Lorentz spaces?

For 1 GpEN , Sobolev’s imbedding theorem states that W 1, p (R N ) is con-
tinuously imbedded in L p * (R N ) where p *4NpO(N2p), or 1Op *41Op2

1ON . In order to prove it, Sergei Sobolev started from the identity u4

!
j41

N

(¯EO¯xj x ¯uO¯xj ) for an elementary solution E of D , he noticed that the

derivatives of E behave like 1Or N21 and he generalized then the classical
Young’s inequality for convolution when one function is a power of 1Or , using
radial rearrangements. As Sergei Sobolev was only using L q spaces, he could
not find the more precise theorem using the family of spaces L q , r introduced by
Lorentz, which appeared later to be interpolation spaces between L 1 and L Q .
I will define them in a moment, but here I only need to know that these spaces
are defined for 1 EqEQ , 1 GrGQ , that L q , r %L q , s whenever rGs , that
L q , q 4L q , and that L q , Q is the weak L q space of Marcinkiewicz, defined as

{ f : s
v

N fNdxGcNvN(q21) /q for every measurable set v} (NvN denotes the mea-

sure of v); one can actually also use the spaces L q , r with 1 EqEQ , but 0 E

rE1. Multiplication and convolution act in this family of spaces in the follow-
ing way: if f�L a , b and g�L c , d then fg�L q , r while f x g�L s , r where 1Oq4

1Oa11Oc , 1Or41Ob11Od and 1Os41Oa11Oc21, assuming that 1 E

a , cEQ , 1 Gb , dGQ , and that 1Oa11ObD1 in the convolution case (of
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course some limiting cases are true: for 1 EpEQ , L p , q 3L p 8 , r is mapped
into L 1 by multiplication and into L Q by convolution if 1Oq11OrF1). I knew
this from an application of a bilinear interpolation theorem that Jacques-Louis
Lions had taught me, but a classical reference for that result is R.
O’Neil [O’Ne]. I believe that Jacques-Louis Lions’s result is unpublished, as I
mentioned in my thesis when I extended it to a nonlinear setting, but O’Neil’s
method is the same method in disguise, although the clear underlying idea of
Jacques-Louis Lions’s proof does not appear well in his treatment. O’Neil was
interested in obtaining precise estimates, but did not mention much about in-
terpolation, an omission which seems general among specialists of singular in-
tegrals! As noticed by Jaak Peetre [Pe], one can improve Sergei Sobolev’s
proof by applying the convolution theorem for Lorentz spaces, and one finds
that W 1, p (R N ) is not only continuously imbedded in L p * (R N ), but in the
smaller space L p *, p (R N ), for 1 GpEN of course.

There are some situations where it is useful to know this refined imbed-
ding theorem. Soon after I had found that for ND2, u�H 1 (R N ) implies uOr�
L 2 (R N ), a fact that cannot be deduced from Sobolev’s imbedding theorem, I
noticed that it can be deduced from Jaak Peetre’s refined version W 1, p (R N ) %
L p *, p (R N ) for 1 GpEN , showing that u�W 1, p (R N ) implies uOr�L p (R N ):
indeed, 1Or�L N , Q (R N ) and u�L p *, p (R N ) imply uOr�L p , p (R N ) 4L p (R N ).
This result is useful for proving that functions which are 0 in a neighbourhood
of 0 are dense in W 1, p (R N ), by approaching a given u�W 1, p (R N ) by
u(x) v(nr) where v(s) 40 for 0 GsG1 and v(s) 41 for sF2, and the proof fol-
lows easily from applying Lebesgue’s dominated convergence theorem if one
uses the fact that uOr�L p (R N ) in order to bound terms like nu(x) v 8 (nr) 4

(u(x)Or) nrv 8 (nr). The case p4N is more technical as it is not uOr which be-
longs to L p (R N ).

The use of Lorentz spaces may appear then useful to those who know them,
but their use is not crucial for the particular example shown above as one can
obtain the same result by a direct proof (Appendix I). However, as we will see
later, the use of Lorentz spaces is crucial in other situations.

2. – Equivalent definitions for Lorentz spaces.

The various definitions of the Lorentz space L p , q (V) consider (equivalence
classes of measurable) functions f and use the nonincreasing rearrangement
f * of N fN , which is the nonnegative function defined on the interval (0 , NVN)
which is nonincreasing and equimeasurable to N fN .

DEFINITION 1. – For 1 EpEQ and 1 GqGQ , L p , q (V) is the space of
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functions f such that

.
/
´

u s
0

NVN

Nt 1/p f *(t)Nq dt

t
v1/q

4V f VL p , q (V) EQ if 1 GqEQ ,

sup
0 E tEQ

Nt 1/p f *(t)N4V f VL p , Q (V) EQ .

(2.1)

One could extend the definition to the case p41, giving L 1 (V) for q41
and L 1, w (V), the weak L 1 space for q4Q , but for p4Q only q4Q would
make sense and give L Q (V).

A second definition, consists in considering Lorentz spaces as interpolation
spaces between L 1 (V) and L Q(V). For f�L 1 (V)1L Q(V) one defines K(t , f ) by

K(t , f ) 4s
0

t

f *(s) ds ,(2.2)

and the relation with the K-method of interpolation of Jaak Peetre (which sim-
plifies some of his earlier work with Jacques-Louis Lions) comes from the
equivalent definition

K(t , f ) 4 inf ]VgVL 1 (V) 1 tVhVL Q (V) : f4g1h( ,(2.3)

and truncation appears in this context because an optimal decomposition of f
consists in truncating it at some level l so that h(x) 4 f (x) when N f (x)NGl and
h(x) 4l sign ( f (x) ) when N f (x)NDl , with l� [ f *(t10), f *(t20) ].

Most properties of Lorentz spaces can be derived from general interpola-
tion theorems.

DEFINITION 2. – For 1 EpEQ and 1 GqGQ , L p , q (V) is the space of
functions f�L 1 (V)1L Q (V) such that

t 2u K(t , f ) �L qg0, Q ;
dt

t
h with u4

1

p 8
412

1

p
,(2.4)

i.e. the interpolation space (L 1 (V), L Q (V) )u , q with the norm

.
/
´

us
0

Q

Nt 21/p 8 K(t , f )Nq dt

t
v1/q

4NNN fNNNL p , q (V) EQ for 1 GqEQ ,

sup
0 E tEQ

Nt 21/p 8 K(t , f )N4NNN fNNNL p , Q (V) EQ .

(2.5)

The norms V f VL p , q (V) and NNN fNNNL p , q (V) are equivalent for 1 EpEQ ; as f * is
nonincreasing, one has K(t , f ) F tf *(t) and therefore NNN fNNNFV f V ; Hardy’s in-
equality gives a reversed inequality. More precisely, let u be a nonnegative
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smooth function with compact support in (0 , Q), denote U(t) 4s
0

t

u(s) ds and
assume that 1 Em q . Then

04s
0

Q

d(t 2m q11 U(t)q )42(m q21)s
0

Q

t 2mq U(t)q dt1qs
0

Q

t 2m q11 U(t)q21 u(t) dt ,

so that (m q21)Vt 2m UVL q (0 , Q) GqVt 2m11 uVL q (0 , Q) by Hölder inequality, and
by density this inequality is valid for t 2m11 u�L q (0 , Q) if 2m11 E12

1Oq41Oq 8 . One applies it here to 2m11 41Op21Oq , which is allowed if
pD1, and one obtains

1

p 8
NNN fNNNL p , q (V) GV f VL p , q (V) GNNN fNNNL p , q (V) .(2.6)

Extending the definitions to p41 gives different spaces, as it is now q4Q

which corresponds to L 1 (V). As the interpolation framework only considers
functions belonging to L 1 (V)1L Q (V), L 1, w does not appear naturally in this
context.

The third definition contained in the following Proposition appeared natu-
rally in the method for generalizing Sobolev’s imbedding theorem that I de-
vised in 1984. Let kD1 be chosen, and for any function v defined on V and
satisfying

meas ]x�V : Nv(x)NDl( EQ , for every lD0 ,(2.7)

one chooses the levels an F0, n�Z , such that

an � [v *(k 2n 10), v *(k 2n 20) ] , n�Z ,(2.8)

where v * is the nonincreasing rearrangement of NvN , or equivalently, as it will
be used in later applications, such that

meas ]x�V : Nv(x)NDan ( Gk 2n Gmeas ]x�V : Nv(x)NFan ( .(2.9)

If the function NvN avoids an interval, it may well happen that many choices of
an are possible, so in order to be more precise in some inequalities, one defines
an

2 and an
1 by

an
14v *(k 2n 20) ; an

24v *(k 2n 10) .(2.10)

PROPOSITION 3. – For 1 EpEQ and 1 GqGQ , and v satisfying (2.7) and
extended by 0 outside V , one has

v�L p , q (R N ) is equivalent to k 2n/p (an11 2an ) � l q .(2.11)

PROOF. – Using the fact that all the intervals (k 2(n11) , k 2n ) have the same
measure log (k) for dtOt , that v * is nonincreasing and therefore an

2Gan Gan
1
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for all n , one deduces

.
/
´

log (k) !
n�Z

Nk 2(n11) /p an Nq G log (k) !
n�Z

Nk 2(n11) /p an
1 Nq GVvVL p , q (V)

q ,

VvVL p , q (V)
q G log (k) !

n�Z
Nk 2n/p an

2 Nq G log (k) !
n�Z

Nk 2n/p an Nq .
(2.12)

As an11 2an Gan11
1 for all n , (2.12) shows that v�L p , q (V) implies

k 2n/p (an11 2an ) � l q (Z).
Conversely, defining bn4Nan2an21 N and assuming that k 2n/p bn� l q(Z), one

wants to deduce that k 2n/p an� l q(Z). Indeed, as an4 !
m42Q

n

bm because amK0

as m tends to 2Q as a consequence of (2.7), one finds that k 2n/p an G

!
m42Q

n

k (m2n) /p (k 2m/p bm ), and by using a classical convolution inequality, one

deduces that

g !
n�Z

Nk 2n/p an Nqh1/q

Gg !
mG0

k m/phg !
n�Z

Nk 2n/p (an 2an21 )Nqh1/q

.(2.13)

3. – Old and new variants of the imbedding theorem of Sergei Sobolev.

In 1984, dealing with a question that I describe in Appendix II, I was led to
consider the following situation, connected to imbedding theorems for Sobolev
spaces. Suppose that for 1 GpEQ , one has found an imbedding theorem of
the type W 1, p (R N ) %L q (R N ) with qDp , i.e. one has proved an inequality

(3.1) g s
R N

Nv(x)Nq dxh1/q

GC1g s
R N

Ngrad (v)Np dxh1/p

1C2g s
R N

Nv(x)Np dxh1/p

for all v� D(R N ) .

Although mathematicians often write inequalities of this kind, physicists tend
to question the unnatural habit of adding terms like

g s
R N

Ngrad (v)Np dxh1/p

and g s
R N

Nv(x)Np dxh1/p

,

which are not expressed in the same unit. In order to correct this small defect,
one applies (3.1) to the rescaled function w defined by w(x) 4v(lx) with lc0,
and (3.1) becomes

(3.2) l2N/qg s
R N

Nv(x)Nq dxh1/q

G

C1 l 12 (N/p)g s
R N

Ngrad (v)Np dxh1/p

1C2 l2N/pg s
R N

Nv(x)Np dxh1/p

,
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and then one chooses the best value of l , in order to deduce the following in-
equality, which is now invariant by scaling:

(2.3) g s
R N

Nv(x)Nq dxh1/q

GC3g s
R N

Ngrad (v)Np dxhu/pg s
R N

Nv(x)Np dxh(12u) /p

for all v� D(R N )

with u defined by

1

q
4

u

p *
1

12u

p
4

1

p
2

u

N
and

1

p *
4

1

p
2

1

N
.(2.4)

One has 0 EuG1, because in the case 1 GpEN , one must have qGp *,
where p * is the so-called Sobolev’s exponent of p , as the case qDp * leads to a
contradiction by letting l tend to Q .

After having taken advantage of rescaling in x�R N , I wondered about the
effect of rescaling in v�R , but as changing v into k v has no effect on (3.3), I
considered a nonlinear rescaling, replacing v by W(v) for a list of suitable func-
tions W . As both the norms of W(v) in L p (R N ) and in L q (R N ) appear in (3.3), I
had to use functions W for which these norms could be compared, and I was led
to introduce the particular sequence of functions W n defined by

W n (v) 4
.
/
´

0

NvN2an

an11 2an

if 0 GNvNGan ,

if an GNvNGan11 ,

if NvNFan11 ,

(3.5)

with the levels an defined for n�Z as in (2.8). As W n (v) F (an11 2an )x n11
1

where x n11
1 is the characteristic function of the set where NvNFan11 and

W n (v) G (an11 2an )x n
2 where x n

2 is the characteristic function of the set
where NvNDan , one finds by using (2.9) that

(2.6) k 2(n11) /r (an11 2an ) Gg s
R N

NW n (v)Nr dxh1/r

Gk 2n/r (an11 2an )

for 0 ErEQ .

Using W n (v) in (3.3), and defining p * as in (3.4) even for NGpEQ (in which
case p *G0), leads to the following improvement of Sobolev’s imbedding
theorem.

PROPOSITION 4. – For 1 GpEQ and v�W 1, p (R N ), one has

(an11 2an )k 2n/p * GC(k , p , N)g s
anENvNEan11

Ngrad (v)Np dxh1/p

� l p .(3.7)
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REMARK 5. – In the case 1 GpEN , Proposition 4 gives the variant of Jaak
Peetre, W 1, p (R N ) %L p *, p (R N ), because (3.7) implies v�L p *, p (R N ) by Propo-
sition 3.

In the case NEpEQ , Proposition 4 gives W 1, p (R N ) %L Q (R N ) as an11 2

an is bounded by a convergent geometric series for nF0 and a0 can be esti-
mated from the norm of v in L p (R N ). It is then easy to deduce that
W 1, p (R N ) %C 0, a (R N ) for a412NOp by applying the result to v(x2h)2

v(x) for h�R N , and noticing that one has Vv(Q2h)2v(Q)VL p GNhNVgrad (v)VL p .

In the case p4N , one has p *40 and Proposition 4 gives an11 2an �
l N (Z), from which one can deduce the theorem of Neil Trudinger: for v�
W 1, N (R N ) and for every lD0 one has e lv N 8

�L 1
loc (R N ), where N 8 is the conju-

gate exponent of N [Tru]. Indeed, as an11 2an � l N (Z), one deduces that for
every eD0 one has an

N 8Gen1Ce (v) for all nF0 by applying Hölder’s in-
equality to the sequence an11 2an for nFm with m large enough (and this
choice depends upon v). On the set where NvNEan , which has measure Gk 2n ,
one has e lv N 8

Ge l(en1Ce (v) ) , and by choosing e such that e leEk one finds that
e lv N 8

is integrable on any set where vFaD0.
The improved version (3.7) of Sobolev’s imbedding theorem follows then

from any crude imbedding theorem (3.1), but one may even start from
Sobolev’s imbedding theorem itself to deduce the improvement of Jaak Pee-
tre, i.e. q4p * if 1 GpEN , NEqEQ if p4N and q4Q if pDN . For more
general cases like those described in the following Remark or in Appendix II,
a crude estimate can be obtained by the method of Appendix III.

REMARK 6. – The method extends to spaces of functions v satisfying

v�L p0 (R N ) ;
¯v

¯xj

�L pj (R N ) for j41, R , N ,(3.8)

where 1GpjGQ , j40, R , N . If one knows an analog of (3.1), i.e. an inequality

VvVL q GCuVvVL p0 1 !
j40

N

NN ¯v

¯xj
NNL pj

v for all v� D(R N ) ,(3.9)

for some qDp0 , one applies (3.9) to the rescaled function w defined by

w(x) 4v(l 1 x1 , R , l N xN ) ,(3.10)

where l 1 , R , l N , are positive parameters. Defining m by

m4 (l 1 Rl N )1/N ,(3.11)
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the best choice of l for a given m corresponds to

(3.12) l j m
2N/pjNN ¯v

¯xj
NNL pj

4m 12 (N/p)u»
k41

N

NN ¯v

¯xk
NNL pk

v1/N

, j41, R , N ,

which produces the inequality

(3.13) m2N/q
VvVL q GCum2N/p0

VvVL p0 1Nm 12 (N/p)u»
k40

N

NN ¯v

¯xk
NNL pk

v1/Nv
for all v� D(R N ) ,

and the best choice of m gives

VvVL q GC 8u»
k40

N

NN ¯v

¯xk
NNL pk

vu/N

VvVL p0
12u for all v� D(R N ) ,(3.14)

where p , u (and p *) are defined by

1

p
4

1

N
!
j41

N 1

pj

;
1

p *
4

1

p
2

1

N
;

1

q
4

u

p *
1

12u

p
.(3.15)

Then the application to W n (v) of (3.14) gives

(an11 2an ) k 2n/p * GC 9p »
j41

N u s
anENvNEan11

N ¯v

¯xj
N

pj

dxv1/Npj

� l p (Z) ,(3.16)

and therefore v�L p *, p (R N ) if pEN and u�L Q (R N ) if pDN in particular,
generalizing a result of M. Troisi [Tro].

The original method of proof of Sergei Sobolev is not adapted to situations
where derivatives belong to different spaces. The previous proof that I had
heard in 1978 from A. Kufner relied on a classical method which, I was told,
was introduced independently by Emilio Gagliardo and by Louis Nirenberg; I
have also heard Jacques-Louis Lions use a similar argument to prove a result
that he attributed to Olga Ladyzhenskaya, and I describe a different way to
obtain this type of result in Appendix IV.

The preceding result is a particular case of a more general one where one
considers functions having their partial derivatives in various Lorentz spaces,
but I was not able to prove the theorem that I expected in this general case by
using my original argument. I had noticed that (3.7) was a direct consequence
of Sobolev’s imbedding theorem for W 1, q with 1 GqGp , and therefore the
case for q41 implied all the other known results by Sergei Sobolev, Jaak Pee-
tre, Neil Trudinger, but not that of Haïm Brézis and Stephen Wainger, and
this discrepancy bothered me for a long time.
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Sergei Sobolev certainly knew that his imbedding theorem for p41 was
related to the isoperimetric inequality (which had been known for quite a
while, and is equivalent to it if one uses the imbedding theorem with the best
constant), and I wonder if it was known that one can deduce Sobolev’s imbed-
ding theorem for W 1, p and the improvements that I have mentioned above
from it: as I do not read much, I hope that someone will give me a reference if
it had been done before.

When inspiration came a few years ago, during a meeting in Cortona, it
gave me the way not only to prove the result of Haïm Brézis and Stephen
Wainger but the more general case where the derivatives may belong to dif-
ferent Lorentz spaces, and I did not need to change much my original argu-
ment. The simple trick which had escaped my attention for so long was that in-
stead of an additive form of the imbedding theorem for W 1, 1 (or the isoperi-
metric inequality), I should have used the following multiplicative form.

LEMMA 7. – There exists a constant C such that for every v�W 1, 1 (R N ) one
has

VvVL 1* GCu»
j41

N

NN ¯v

¯xj
NN

L 1
v1/N

.(3.17)

PROOF. – As in Remark 6, one starts from the classical Sobolev’s imbedding
theorem for p41,

VvVL 1* GC !
j41

N

NN ¯v

¯xj
NN

L 1
,(3.18)

and one applies it to the function w defined by (3.10), and (3.17) results from
the choice

l i 4»
jc iNN

¯v

¯xj
NN

L 1
.(3.19)

The best constant in (3.17) is N times the best constant in (3.18), which is relat-
ed to the classical isoperimetric inequality.

In the case where all the derivatives belong to the same Lorentz space
L N , p (R N ), Haïm Brézis and Stephen Wainger [Br and Wa] had shown
that

e CNvNp 8

�L 1
loc (R N ) for every CD0 ,(3.20)

in the case 1 EpEQ , extending the result of Neil Trudinger who had consid-
ered the case p4N [Tru], and their proof followed the method introduced by
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Sergei Sobolev, but they based their estimate of the convolution product on
O’Neil’s formula [O’Ne], which they had to analyze in detail for this limiting
case. For p41 one has v�C0 (R N ), and for p4Q one has v�BMO(R N ) and
therefore by a classical result of Fritz John and Louis Nirenberg [Jo and Ni],
e eNvN�L 1

loc (R N ) for eD0 small enough. The following Theorem will extend
these results to the more general situation of functions v satisfying (2.7)
and

¯v

¯xj

�L pj , qj (R N ) , for j41, R , N .(3.21)

THEOREM 8. – Assume that v satisfies (2.7) and (3.21) with 1 Gpj , qj GQ

for j41, R , N (and qj 4pj if pj 41 or pj 4Q), then one has

(an11 2an )k 2n/p * � l q (Z) ,(3.22)

where

1

p
4

1

N
!
j41

N 1

pj

;
1

q
4

1

N
!
j41

N 1

qj

;
1

p *
4

1

p
2

1

N
.(3.23)

In particular, v�L p *, q (R N ) if pEN , v�L Q (R N ) if pDN or if p4N and
q41, e CNvNq 8

�L 1
loc (R N ) for every CD0 if p4N and 1 EqEQ , e eNvN�L 1

loc (R N )
for eD0 small enough if p4N and q4Q .

PROOF. – One applies Lemma 7 to the sequence of functions W n (v). If one
denotes

fj 4
¯v

¯xj

for j41, R , N ,(3.24)

one has

NN ¯W n (v)

¯xj
NN1

G s
0

k 2n

fj*(t) dt for j41, R , N ,(3.25)

where fj* is the nonincreasing rearrangement of fj , by a classical result of
Hardy and Littlewood [Ha&Li&Po], as W n8 (v) is different from 0 on a subset of
measure at most k 2n . (3.17) applied to W n (v) implies then

(an11 2an ) k 2n/1* GCu»
j41

N

s
0

k 2n

fj*(t) dtv
1/N

.(3.26)

As fj �L pj , qj (R N ) means t 2u js
0

t

fj*(s) ds�L qj (0 , Q ; dtOt), or equivalently
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k nu j s
0

k 2n

fj*(s) ds� l qj (Z), where u j 4121Opj , one deduces that

k nuu»
j41

N

s
0

k 2n

fj*(t) dtv
1/N

� l q (Z) with u4
1

N
!
j41

N

u j 412
1

p
,

and as k 2n/1* k nu4k 2n/p * , (3.26) implies (3.22).

REMARK 9. – In the case p4N and q41 (with all pj EQ), one has actually
v�C0 (R N ). As an11 2an � l 1 (Z) and an tends to 0 as n tends to 2Q because of
the condition (2.7), one has proved an inequality of the form

(3.27) VvVL Q GC !
j41

N

NN ¯v

¯xj
NN

L pj , 1
or VvVL Q GC 8u»

j41

N

NN ¯v

¯xj
NNL pj , 1v1/N

if v satisfies (2.7) and (3.21), in the case !
j41

N 1

pj

41. Notice that the hypothesis

(2.7) does not allow to add a nonzero constant to v . As the difference of two
functions satisfying (2.7) also satisfies (2.7), one can apply the preceding in-
equality to v(Q1h)2v(Q), whose derivative in xj is fj (Q1h)2 fj (Q) and has a
small norm in L pj , 1 when NhN is small (as pj EQ implies that smooth functions
with compact support are dense in L pj , 1 ). Therefore (3.27) shows that v is uni-
formly continuous, and as (2.7) holds v must tend to 0 at infinity, so that
v�C0 (R N ).

In the case pDN , v is Hölder continuous, but with different orders accord-
ing to the directions if the pj are distinct. If v satisfies (3.21) and v�L r , s with 1 G

rEQ and s41 if r41, one has a0 GCVvVL r , s and therefore an inequality of
the form

VvVL Q GCuVvVL r , s 1!
j41

N

NN ¯v

¯xj
NNL pj , qj

v ,(3.28)

which after using the rescaling (3.10) as in Remark 6 gives

VvVL Q GCVvVL r , s
12uu»

j41

N

NN ¯v

¯xj
NNL pj , qj

vu/N

,(3.29)

and u , which depends upon r , is the only value which makes both sides vary in
the same way under rescaling, i.e.

12u

r
1u!

j41

N 1

pj

21v u

N
40 , or

12u

r
1

u

p *
40 ,

noticing that p *E0. In order to find the Hölder exponent in the direction xi

of a function v satisfying (3.21) and (2.7), one applies the preceding inequality to
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v(Q1 t ei )2v(Q), whose norm in L pi , qi is bounded by NtNV fi VL pi , qi , and therefore
(3.29) with r4pi implies

(3.30)

.
`
`
/
`
`
´

Nv(x1 t ei )2v(x)NGCNtNa iNN ¯v

¯xi
NNL pi , qi

a i u»
j41

N

NN ¯v

¯xj
NNL pj , qj

v(12a i ) /N

for i41, R , N ,

a ig12
N

p
1

N

pi
h412

N

p

for i41, R , N , in the case pDN , i.e. !
j41

N 1

pj

E1 .

Appendix I.

For p42 EN , a standard method, which I learned in Hardy, Littlewood
and Polya [Ha&Li&Po], consists in developping the inequality

s
R N

!
j41

N

N ¯u

¯xj

2a(r)
xj

r N
2

dxF0 ,(A.I.1)

for a smooth function u having compact support, where the function a(r) must
be chosen. After integrating by parts the terms in u(¯uO¯xj ), one obtains

(A.I.2) s
R N

u!
j41

N

N ¯u

¯xj
N

2v dxF s
R N

NuN2u2a(r)2 2!
j41

N
¯

¯xj
ga(r)

xj

r
hv dx .

Choosing a(r) 4KOr gives for the coefficient of NuN2 :

2a 2 2a 82
(N21)a

r
4

2K 2 1 (22N)K

r 2

and for N D 2 the best choice is K 4 (22N)O2 (for N 4 2 one can choose
a(r) 41O(2r Log (r/r0 ) ) and one must use an open set where rcr0 ) .

For pc2 and pEN , one can follow the same idea with a suitable convexity
inequality: from the convexity of the function z O (!

j
Nzj N

2 )p/2 on R N , applied
at the point a(r) u(xOr), one obtains

(A.I.3) u!
j41

N

N ¯u

¯xj
N

2vpO2

FNa(r) uN21!
j41

N

Na(r) uNp22 a(r)
xj

r
uu ¯u

¯xj

2a(r)
xj

r
v ,
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which, after integration by parts, gives

(A.I.4) s
R N

u!
j41

N

N ¯u

¯xj
N

2vp/2

dxF

s
R N

NuNpu(12p)NaNp 2!
j41

N
¯

¯xj
gNaNp22 pa

xj

r
hv dx ,

and the choice a(r) 4aOr gives the coefficient of NuNp equal to bOr p with b4

(12p)NaNp 2 (N2p)NaNp22 a , so the best choice is a4 (p2N)Op . The pre-
ceding computations actually give the best constants in the desired
inequalities.

Appendix II.

In 1984, I had developed the method of paragraph III for an academic
question related to the Fokker-Planck equation, and a classical imbedding
theorem was not available in that case: I assumed that a function f defined on
R N 3R N 3R (with arguments x , v , t corresponding to position, velocity and
time) satisfied

f ,
¯f

¯t
1!

j41

N

vj
¯f

¯xj

,
¯f

¯vk

�L p (R N 3R N 3R) , k41, R , N ,(A.II.1)

and I wanted to deduce that f belongs to L q (R N 3R N 3R) for the best
possible value of q . I assumed then that for some qDp one already knew an
imbedding theorem

(A.II.2) V f Vq GCuNN ¯f

¯t
1!

j41

N

vj
¯f

¯xj
NNp

1 !
k41

N

NN ¯f

¯vk
NNp

1V f Vpv
for f� D(R N 3R N 3R) ,

where V QVr denotes the norm in L r (R N 3R N 3R). One uses then the rescaled
function g defined by g(x , v , t) 4 f (a x , b v , c t) with the relation a4b c
because the units for length, velocity and time are dependent, and (A.II.2)
applied to g gives

(A.II.3) b 22N/q c 2(N11) /q
V f Vq GC ub 22N/p c (p2N21) /pNN ¯f

¯t
1!

j41

N

vj
¯f

¯xj
NNp

1

b (p22N) /p c 2(N11) /p !
k41

N

NN ¯f

¯vk
NNp

1b 22N/p c 2(N11) /p
V f Vp

v ,
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where one must then choose the best values of b , c in order to deduce an
inequality which is invariant by scaling; (A.II.3) has the form

(A.II.4) V f Vq G

Cub 2a c 12bNN ¯f

¯t
1!

j41

N

vj
¯f

¯xj
NNp

1b 12a c 2b !
k41

N

NN ¯f

¯vk
NNp

1b 2a c 2b
V f Vpv ,

with a42NOp22NOq , b4 (N11)Op2 (N11)Oq , and qDp implies a , bD

0, but one must also have a1bG1, as a1bD1 would imply V f Vq 40 by
letting b4c tend to Q . Defining u4a1b , one has 0 EuG1 and

1

q
4

1

p
2

u

3N11
,(A.II.5)

and if pE3N11 one has pEqGp ** , where

1

p **
4

1

p
2

1

3N11
.(A.II.6)

The choice

b4
V f Vp

NN ¯f

¯t
1 !

j41

N

vj
¯f

¯xj
NN

, c4
V f Vp

!
k41

N

NN ¯f

¯vk
NN

gives

V f Vq GCNN ¯f

¯t
1!

j41

N

vj
¯f

¯xj
NN

(N11)u/(3N11)

p
u!

k41

N

NN ¯f

¯vk
NN

2Nu/(3N11)

p
v

V f V

12u
p ,(A.II.7)

and applying (A.II.7) to the sequence of functions W n (f) with W n defined as in
(II.6), one obtains

(A.II.8) (an11 2an )k 2n/p **
G

CNNW n8 ( f )u ¯f

¯t
1!

j41

N

vj
¯f

¯xj

vNN
(N11) /(3N11)

p
u!

k41

N

NNW n8 ( f )
¯f

¯vk
NN

2N/(3N11)

p
v ,

with p ** defined by (A.II.6) (even for 3N11Gp , in which case p **G0).
Of course, (A.II.8) means that the space of functions defined by (A.II.1) is

imbedded in L p **, p (R N 3R N 3R) if 1 GpE3N11, in L Q (R N 3R N 3R) if
pD3N11; in the case p43N11 it is imbedded in L r (R N 3R N 3R) for any
r such that pGrEQ , and moreover for every lD0 one has e lN f Np 8

�L 1
loc ,

where p 8 is the conjugate exponent of 3N11.
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Appendix III.

The first method described in Section 3 requires a crude imbedding
estimate like (3.1) or (3.10) (or (A.II.2) in Appendix II), while the second
method for proving the more general Theorem 8 only uses the classical
imbedding theorem for W 1, 1 (R N ). I show here a simple method for obtaining
the crude estimates needed. Actually, Lorentz spaces will also appear
naturally, at least the Marcinkiewicz spaces L q , Q , but one can easily use a
crude estimate involving L q , Q norms, as these norms scale like L q norms, and
the L q , Q norm of a characteristic function coincides with its L q norm.

Let u�W 1, p (R N ). One would like to decompose u4u0 1u1 , with u0 �L 1

and u1 �L Q , and obtain precise bounds for the norms of u0 , u1 , but when one
uses the natural idea of defining the terms u1 by convolution with a smoothing
sequence, it will be the L p norm of the corresponding term u0 that will be easy
to bound. Let r be a bounded function with compact support having integral 1,
and for eD0 let r e be defined as

r e (x) 4
1

e N
rg x

e
h , x�R N ,(A.III.1)

and consider the decomposition

u4u0 1u1 with u0 4u2r e x u , u1 4r e x u .(A.III.2)

Denoting by V f Vq the norm of a function f in L q , 1 GqG1Q , Hölder’s
inequality gives

Vu1 VQGVuVp Vr e Vp 84VuVp VrVp 8 e
2N/p .(A.III.3)

In order to bound Vu0 Vp , one uses the fact that

(A.III.4) Vu2t a uVp G!
j41

N

Naj NNN ¯u

¯xj
NNp for a�R N and u�W 1, p (R N ) ,

where t a f (x) 4 f (x2a), and from

Vu2r e x uVp G s
R N

Nr e (y)NVu2t y uVp dy(A.III.5)
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one deduces that

(A.III.6) Vu0 Vp G!
j41

N

NN ¯u

¯xj
NNp

s
R N

Nr e (y)NNyjNdy4

e!
j41

N

NN ¯u

¯xj
NNp

s
R N

Nr(y)NNyjNdy .

These estimates show that u belongs to an interpolation space between L p

and L Q , which is actually a Marcinkiewicz space L q , Q . This can be seen by
either using the interpolation theory and the reiteration theorem of
Jacques-Louis Lions and Jaak Peetre [Li&Pe], or by estimating the integral
of NuN on an arbitrary set v

(A.III.7) s
v

NuN dxGs
v

Nu0 N dx1s
v

Nu1 N dxGVu0 Vp NvN1/p 81Vu1 VQ NvNG

eNvN1/p 8!
j41

N

NN ¯u

¯xj
NNp

s
R N

Nr(y)NNyjN dy1e2N/p NvNVuVp VrVp 8 ,

where NvN denotes the measure of v . Choosing e4NvN1/(N1p) , one
deduces

s
v

NuN dxGCuVuVp 1!
j41

N

NN ¯u

¯xj
NNp

vNvN1/q 8 ,(A.III.8)

i.e.

u�L q , Q with
1

q
4

1

N1p

N

p
.(A.III.9)

Notice that the crude imbedding theorem obtained by this method is never
optimal.

The same idea can be applied to obtain a crude imbedding theorem in the
case of functions having derivatives in different L p spaces,

u�L p (R N ) and
¯u

¯xj

�L pj (R N ) for j41, R , N .(A.III.10)

One decomposes u2t a u into a sum of N functions vj , j41, R , N , with vj(x) =
u(x1 , R , xj , xj11 2 aj11 , R , xN - aN) 2 u(x1 , R , xj21 , xj 2 aj , R , xN 2 aN)
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(and obvious changes of notation for j41 or j4N), from which one deduces
that

(A.III.11) u2r x u4!
j41

N

wj with Vwj Vpj
GNN ¯u

¯xj
NNpj

s
R N

Nr(y)NNyjN dy ,

for any function r having integral 1. One deduces

(A.III.12) s
v

NuN dxGs
v

Nr x uN dx1!
j41

N

s
v

Nwj N dxG

NvNVuVp VrVp 81!
j41

N

NvN1/p 8j NN ¯u

¯xj
NNpj

s
R N

Nr(y)NNyj N dy ,

so that for having all the powers of NvN equal, one needs to rescale r in a
different manner than (A.III.1). A natural choice is then to replace r by

re (x) 4
1

e 1 R e N

rg x1

e 1

, R ,
xN

e N
h , x�R N ,(A.III.13)

so that (A.III.12) becomes

(A.III.14) s
v

NuN dxG (e 1 R e N )21/p NvNVuVp VrVp 81

!
j41

N

e j NvN1/p 8j NN ¯u

¯xj
NN

pj

s
R N

Nr(y)NNyj N dy .

Choosing

e j 4NvNmj with mj 4
1

pj

2
1

N1p
!
k41

N 1

pk

,(A.III.15)

one obtains

s
v

NuN dxGCuVuVp 1!
j41

N

NN ¯u

¯xj
NNpj

vNvN1/r 8 ,(A.III.16)

i.e.

u�L r , Q with
1

r
4

1

N1p
!
j41

N 1

pj

.(A.III.17)

I describe quickly now the case related to the Fokker-Planck equation
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described in Appendix 3. Assuming that u satisfies

(A.III.18) u ,
¯u

¯t
1!

j41

N

vj
¯u

¯xj

,
¯u

¯vk

�L p (R N3R N3R) , k41, R , N ,

a crude imbedding theorem is obtained by the preceding method by using the
flows generated by the first order differential operators of the list in
(A.III.18). Like for Lars Hörmander’s hypoellipticity result, the key point is

that the commutator of ¯O¯t1 !
j41

N

vj (¯O¯xj ) and ¯O¯vk is ¯O¯xk . One defines

the group of operators Sa by

Sa u(x , v , t) 4u(x2v a , v , t2a)(A.III.19)

so that g¯O¯a1¯O¯t1 !
j41

N

vj (¯O¯xj )h Sa u40. This gives the estimate

VSa u2uVp GNaNNN ¯u

¯t
1!

j41

N

vj
¯u

¯xj
NNp

.(A.III.20)

For an index k , one defines the group of operators Tb by

Tb u(x , v , t) 4u(x , v1 , R , vk21 , vk 2b , vk11 , R , vN , t)(A.III.21)

so that (¯O¯b1¯O¯vk ) Tb u40, and this gives the estimate

VTb u2uVp GNbNNN ¯u

¯xk
NNp

.(A.III.22)

The commutation relation quoted above consists in noticing that the operator
T2b S2a Tb Sa is given by

(A.III.23) T2b S2a Tb Sa u(x , v , t)4u(x1 , R , xk21 , xk 2a b , xk11 , R , xN , v , t) .

In order to simplify the notations, the end of the argument is shown for N41.
One can estimate the L p norm of u(x , v , t)2u(x2a v , v , t2a) by NaN , the
norm of u(x , v , t)2u(x , v2b , t) by NbN and the norm of u(x , v , t)2u(x2

c , v , t) by NcN1/2 , so the norm of u(x , v , t)2u(x2a v2c , v2b , t2a) is
estimated by NaN1NbN1NcN1/2 . One decomposes u into u0 1u1 , with u0

defined by

(A.III.24) u0 (x , v , t) 4sr(a , b , c) u(x2a v2c , v2b , t2a) da db dc ,

where r has integral 1. Then the norm in L Q of u0 is bounded by VuVp VrVp 8 and
the norm in L p of u1 is bounded by CsNr(a , b , c)N(NaN1NbN1NcN1/2 ) da db dc ,
and one concludes as before.
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Appendix IV.

In some situations involving L 2 , one can deduce imbedding theorems using
Lorentz spaces for the Fourier transform, and this can be done even if only
some fractional derivatives of u are in L 2 . If

u�L 2 (R N ) , g ¯

¯xj
ha j

u�L 2 (R N ) , j41, R , N(A.IV.1)

with a j D0 for j41, R , N , it is equivalent that the Fourier transform Fu of u
belongs to a weighted L 2 space

Fu W(j) �L 2 (R N ) , with W(j) 4g11 !
j41

N

Nj j N
a jh1/2

.(A.IV.2)

A direct computation shows that the weight W is such that 1OW belongs to the

Marcinkiewicz space L q , Q , with q4 !
j41

N

1Oa j , and also to L Q of course. If

qD2 for example, one deduces that Fu�L r , 2 and therefore u�L r 8 , 2 , with
1Or41Oq11O2, 1Or 841O221Oq .

This argument is similar in nature to that of Jack Peetre using convolution
by powers of 1Or , which shows for example that H 1/2 (R 2 ) %L 4, 2 (R 2 ), and his
argument follows Sergei Sobolev’s original idea, while the argument of Olga
Ladyzhenskaya which I learned from Jacques-Louis Lions shows that
H 1/2 (R 2 ) %L 4 (R 2 ) by an argument similar to that of Emilio Gagliardo and
Louis Nirenberg.

I have derived another proof, which I find more natural. As was pointed
out by Jacques-Louis Lions, there would not be much to prove if the limiting
Sobolev’s imbedding theorem was true, i.e. if H 1 (R 2 ) was a subset of L Q (R 2 ),
because the imbedding theorem for H 1/2 would then be deduced by a simple
interpolation result. I observe then that

X4 (H 2 (R 2 ), L 2 (R 2 ) )1/2 , 1 %L Q (R 2 ) ,(A.IV.3)

and then, using the reiteration theorem of Jacques-Louis Lions and Jaak
Peetre [Li&Pe],

H 1/2 (R 2 ) 4 (X , L 2 (R 2 ) )1/2 , 2 % (L Q (R 2 ), L 2 (R 2 ) )1/2 , 2 4L 4, 2 (R 2 ) .(A.IV.4)

Of course, (A.IV.3) follows also from another important observation of
Jacques-Louis Lions and Jaak Peetre [Li&Pe], as it is equivalent to

VuVL Q GCVuVH 2
1 /2

VuVL 2
1 /2 for all u�H 2 (R 2 ) ,(A.IV.5)

which in turn follows from the fact that H 2 (R 2 ) %L Q (R 2 ) by a scaling
argument.
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I have then only added a simple argument of scaling to the power of the
theory of interpolation of Banach spaces developed by Jacques-Louis Lions
and Jaak Peetre [Li&Pe], and the same method shows that if 1 GpEQ and
0 EsENOp , then W s , p (R N ) %L q , p (R N ) with 1Oq41Op2sON .
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