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Bollettino U. M. 1.
(8) 1-B (1998), 407-428

Abelian Surfaces and Products of Elliptic Curves.

MARINA ROSANNA MARCHISIO (%)

Sunto. — Si da una nuova e completa dimostrazione del risultato cruciale del metodo di
Ruppert che consente di stabilire in maniera effettiva quando una superficie abe-
liana € isomorfa o isogena a un prodotto di curve ellittiche.

Introduction.

In this paper we study the relationship between abelian surfaces and prod-
ucts of elliptic curves. In particular we study the problem to decide, with rela-
tively simple calculations, whether an abelian surface, given its period matrix,
is isomorphic or isogenous to a product of elliptic curves.

This problem was solved by Ruppert in [R] and its method was successively
explained in [LLB]. However in these two expositions the proof of the crucial
proposition (see (2.11) below) is only outlined, whilst all details, even the es-
sential ones, are left to the reader.

We thought that it would have been useful to give a new proof of (2.11),
complete of all details, and to illustrate the method in all possible cases in or-
der to show its effectiveness. Finally we apply it to an example.

1. — Preliminaries

(1.1) DEFINITION. — A complex torus X = V/A, with V vector space over C of
dimension g, A lattice of V with a hermitian defined positive form H:V X
V—C and such that H(A X A)cZ, is called abelian variety of dimension g.

(1.2) DEFINITION. — An abelian variety of dimension 2 is called abelian
surface; a complex torus X = V/A of dimension 1 1s called elliptic curve and it
18 always an abelian variety (see [K]).

(*) I would like to thank Prof. Bert van Geemen for having pointed out to me this
problem and for the useful suggestions.



408 MARINA ROSANNA MARCHISIO

(1.3) DEFINITION. — Let X =V/A be an abelian variety with dimV =g,

choose bases ey, ..., e, of V.and Ay, ..., Ay, of the lattice A. Write A; in terms
of the basis ey, ..., e;:
g
Ai= 2 Ajie
i=1
The matrix:
A1p j~1,2g
nm=\ : : : i |eM(g x2¢g, C)
’19,1 19729

is called a period matrix for X.

The period matrix 7T determines the complex torus X completely, but cer-
tainly it depends on the choice of the bases for V and A.

We consider products of elliptic curves E,, E; which are, as is easily seen,
abelian surfaces:

ElXEZZC/AIXC/AQZCZ/(AIXAz):Cz//l .

Recall that a homomorphism f: X — X' corresponds to a unique C-linear map
F: V=V’ with F(A)cA' inducing the homomorphism f.

(1.4) DEFINITION. — Let @: X—X' be a homomorphism between two
abelian varieties of equal dimension. If @ 1is surjective, @ is called
isogeny.

X and X' are called isogenous if there exists an isogeny @: X—X'.

Let @: X— X' be a homomorphism between abelian varieties of equal di-
mension; then

@ surjective < ker @ finite .

2. — Ruppert’s method.

The aim of this method is to see when an abelian surface is isomorphic or
isogenous to a product of elliptic curves.
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Let A =Z*cC” be a lattice. We consider an alternating form:
a: AXA—=C
defined by
alu, v) =det (u, v) =u vy —usvy  (u = (uy, us), v=(vy, v,) €C?),

so that « is bilinear and a(v,v)=0 for all veA, hence a(v,u)= —
o(u, v).

(2.1) DEFINITION. — The form a is called hyperbolic if there is a decomposi-
tion of A:

/1:/11@/12

mto submodules A, and A, which are isotropic with respect to a.
In other words:

a hyperbolic < 3 basis Ay, Ao, wy, s of Ast. aldi, As)=alu, us)=0.

By abuse of notation we denote the extension of a to 41 ®@Q also by a.

(2.2) DEFINITION. — The form
a:(A®Q;—C
is called hyperbolic over @ if there is a decomposition:
ARQ=V,8V,

wmito 2 subvector spaces which are isotropic with respect to a.
In other words:

a hyperbolic over @ < 3 a basis A, Ag, t1, s of 1QQ
s.t. aldy, Az) =aluy, us) =0.

Both notions are independent of the choice of the coordinates of C? since a
coordinate transformation A in C? changes a by a multiplicative constant; in
fact a(Au, Av) = det(A)a(u, v) because:

det (Au, Av) = det (A- (”1 vl)) — det (A)-det((ul ”1)) .

) Uz Vo
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(2.3) PROPOSITION. — For an abelian surface X = C%/A the following condi-
tions are equivalent:

(i) X 1s isomorphic (respectively isogenous) to a product of elliptic
curves;

(ii) the form o is hyperbolic (respectively hyperbolic over Q). ™
See [LB], p. 313, for the proof.

(2.4) REMARK. — Consider A = (A, ..., 1,); where 1, 15, A3, 4, is a basis
of A. Call a;=a(4;, 4;); then we have, with u = >nA;and v= 2 m;A; e A:

alw, v) = 2nym;al;, A;) =
! eZ

(M1 My — NaMy) A gp + (N Mg — MMy ) gz + (Mg My — NgMy) Cyg +
(N Mg — Ny My) Aoy + (Na My — Ny M) oy + (Mg My — NgMg) Agy .

This proves that a(A X A)CZ-a+Z-a3+... +Z-as.

Let M=(..., aj,...); be the Z-submodule of C generated by the values
of o on A X A.

Note that a(A X A), in general, is not a Z-module (in C) (on the contrary of
what is written in the book [LB], p. 314).

In fact consider

VA AN Z5~ N2Z*
Nn N N N
Ctx ! ¢ Co= N2(C*

where ¢ (=«a») is the Pliicker embedding, see [G], p. 211. If we consider
w=¢eyNe,+eNes then we AZ'cC* but we¢ Im(gpe) (w has py =1,
P23 =1 and other p;=0=pyps=1#0=w¢ Im(g¢)).

(2.5) DEFINITION. — The rank of an alterning form a: A X A—C 1is the
rank of the free Z-submodule M (cC) so M =Z".
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If y,, ..., ¥, is a basis of the Z-module M, we can write:

alu, v) =a(u, v) Yy, +... +a,(u, v)y,
N N
eZ eZ

with a;: A X A—Z alternating forms.

Note that the forms a4, ..., a, are necessarily linearly independent over Z.

Moreover it is clear that o is hyperbolic (over @) if and only if a4, ..., a,
are hyperbolic (over @) all with the same decomposition of A (respectively
AQQ).

In fact if A1, A5, u1, uo is a basis of A such that 0 = a(4, A5) = alu, us),
we have:

0=a(dy, Ag) =a(Ay, A) i +... ta,(Ay, 42) ¥,
0=auy, uo) =ar(uy, u2) yr+... +a,(p, t2) Y,
<:>al(/,{17 z'2) = ... :(17.(/11, )“2) :al(ll'tl’ll/tz) = ... :a/r(/’tl? /u2) :07

because ¥, ..., ¥, are linearly independent.

(2.6) LEMMA. — Let a be hyperbolic (respectively hyperbolic over Q) of rank
r. Then 2 <r<A4.

PROOF. — =1 since a is nondegenerate, i.e. Vve A, v # 0, there exists we
A such that a(v, w) # 0; moreover r = 2. In fact note that rky(..., a;, ...) =
rky(..., det(A4;, A4)), ...) =1ky(...,(detA)-a;, ...) =2 for any invertible
matrix A. Take a basis of A such that 4, 1, are linearly independent over C
(this is possible because if A5, 15, A4€41-C then A ¢ C). Choose A such that A-
Air=e; and A-1,=e,. We obtain

(1 0 2z wl)
Il =
0 1 9 Wy

and
ap=1,
1= —0g3,
W= — Aoy,
Rg =03,
Wo = Oy -

If » = 1 then z; and w; with 1 =1, 2eZ and A would not be a lattice.
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Moreover r<6 for what we have seen before; finally a(i, ;) =
a(As, A4) =0 with 1, 15, 45, 44 Z-basis of A, therefore:

ImaC_ZZ'alg +Z-a14 +Z-a23+Z-a24

ie.r<s4. =
We start to consider the case » =2, the «happiest» case.

(2.7) PROPOSITION. — Any alternating form a: A X A—C of rank 2 is
hyperbolic. m

See [R] for the proof.
An immediate consequence is the following theorem of Shioda and Mitani,
see [Sh].

(2.8) COROLLARY. — An abelian surface which is isogenous to a product of
isogenous elliptic curves with complex multiplication is isomorphic to a
product of elliptic curves. =

There exists a generalization of this corollary for abelian varieties of arbit-
rary dimension given by C. Schoen, see [S], p. 115-123, which says:

(2.9) PROPOSITION. — If X is an abelian variety of dimension g, isogenous
to a product xY_,E with E an elliptic curve with complex multiplication,
then X is isomorphic to a product of elliptic curves. M

It remains to consider forms of rank 3 and 4.

(2.10) REMARK. — We first recall some properties of the well known Pliicker
quadric (also called Klein quadric).

Let K be a field. Let x; with 0 <¢ <j <3 be the coordinates of P5=P(A
2K*). The Pliicker quadric is defined by the equation:

X1 Loz — Lop X1g + LogL12 =0 .

The 2-dimensional subvector spaces of the vector space K* (points of the
grassmannian of the lines of P?) correspond bijectively to the points of the
Pliicker quadrie.

For any 2-dimensional subvector space U = (u, v)x = {hu + kv: h, ke K}
with ‘u = (u, ..., u3) and ‘v = (v, ..., v3) e K* the elements:

Dij = UiV — U ;
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are the Plicker coordinates of U and

p(U) = (Po1: Poz: Pos: Piz: Piz: Pos)

is the corresponding point on the quadric Q.
If V is another 2-dimensional subvector space of K* then

K*=U®V<the line p(U)P(V) is not contained in @ .
Given a skew symmetric matrix A, we define an alternating form

A: K'xK'*—>K
3
A(u,v):: Elayuﬂyz Elaﬁpﬁ (with i = —@ﬁE}C
=0 i<j

and a hyperplane of P®>=P(A?K*) by
H(A) = { > = 0}.

0<i<j<3
Then a 2-dimensional subvector space U of K* is isotropic with respect to A
(A(u, v) = 0 where U = (u, v)g) if and only if its corresponding point p(U) € @
lies on H(A).
Let a=a y; + ... + a,¥y, be the alternating form associated to the abelian
surface X = C?/A as above. Since the forms o, ..., a, are linearly indepen-
dent over Z, the intersection

E(a)=H(a;)N...NH(a,)

is a (5 — r)-plane in P°.

(2.11) PROPOSITION. — a) a s hyperbolic if and only if there are distinct ra-
tional points q; and qq, i.e. ;e P(A2Q%), in Q@ N E(a) such that the following
conditions hold:

1) the line joining the distinct rational points q, and g, is not con-
tained 1 Q;

2) for every prime p statement 1) holds modulo p.

b) a s hyperbolic over Q if and only if there are distinct rational points
q; and gy in Q N E(a) such that 1) holds.

PRrROOF. — @) a is hyperbolic if there are two Z-submodules A; and A, of
rank 2 of A such that A =4, A, and A, and A, are isotropic with respect to
a, for v=1,..,7r. A=ABAN=>AQF =(N,QF)PD (A,QF) for F=Q
and F = F, for every prime p. By what we have said above this means that the
line joining p(A; @ F) and p(A, X F) is not contained in the Pliicker quadric
over F', for F =@Q and F =F, for all primes p.

The other implication is less obvious than this.
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By hypothesis we have that 3q;, ¢, @ N E(a), distinet rational points,
such that:

1) the line (q;, ¢;) with q;, ¢, distinct rational points is not contained in
Q/Q (= over Q);

2) @1, ¢z (images of ¢; in P(A\*F,) are distinct points and the line (g;, Gz)
is not contained in Q/F,.

The statement 1) implies that there exist V;=Q%*cQ* and V,=Q*c@Q*,
(q1, ¢2) £Q hence Q* =V, @V, (V; and V, are isotropic).
We define:

A12=Vlﬂ/1 and /122=V2ﬂ/1.

Since V=4®Q and the V; are isotropic with respect to a, we have already
a(A;xA;) =0. Now we have to show:

A=A,®A,.

We give an easy example to show that this does not follow from V=
Vi®V,.

Consider V=Q% V; =((1, 1))g, Va={(1, —1))g and A =Z*cQ*.

Then V=V, &V, and we have:

A1=AN0((1,1))g=((1,1));, Az=AN(1, —1))g=((1, =1))z.
But Z2 = ((1, 1))z {(1, —1)); because for example
Z*3(1,0)#(a+b,a—0b) for any a,beZ.

Also modulo 2 it isn’t true that

(Z/ 2Z)2 = (T, T)(z/zz) Y d, __1)(Z/2Z)

(modulo 2 we have that —1 =1 because —1 =1 mod 2).
We could also use the fact that

22 = ((a, b), (¢, d))ye> det(“ C) _ a1,
b d

a c
In the previous example however det( ) =—-2= +1,
We continue the proof. Note that d

A:Al‘i‘/lz:/l:/ll@/lg.

Infactif e A, N A,it follows that ZAc A, N A,=QLcV N Vo=V =V, DV,
a contradiction. Hence A =4+ A, implies 4 =4,H A, and we must show
A=A+ A,.

Consider the exact sequence A;+ Ay—=>A—=T—0, T=A/(A;+ A5). We
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want to show that 7' =0 because then 4 =4, + A,. Tensorizing with F,, we
find

Fi+F.—>F,—TQ,F,—0.
The condition 2) implies that for every p prime
A/pA = A1/pA @ Ay/pAsy;
so for every p prime
F.+F,=F,.

In fact the ¢;e Q@ N E(a) /F,, corresponding to A;®,F,, are distinct and
the line (qi, q2)¢Q/F,. Then T®,F,=0 Vp prime = T/pT =0 Vp prime.
(Note that in this point we have used in essential way the condition 2) of the
hypothesis.)

Since T is a finitely generated abelian group we have

T=2"®ZleZDZ/ex ZD. .. BZle,Z

with e; |es. .. |e.
By condition 1)

T®Q=Q4/(V1@V2)=0
On the other hand:
TRQR=(Z"QQ)D (Z/e1ZD..)QQ=Q"D (Z/e;ZRQD...).

Thus T®Q =0 gives r=0 so T is a finite group.

We know that T/pT = 0Vp prime. Suppose for absurd that e, = 0, i.e. that
there is torsion. Choose p such that p|e,=e;,=p-m. Then we have the
absurdity

0 =T/pT2(Z/e, Z) QF), = (Z/pmZ)/p(Z/pmZ) = Z/pZ # 0

in fact M ®,F, = M/pM and the last isomorphism follows from the theorem of
isomorphism of the quotient group of a quotient group, see [B], p. 121.
Hence, in conclusion, T/pT=0Vp=T=0=>A=A;+A=>A=1,BA=a
hyperbolic. This proves a).
Assertion b) follows similarly. m

(2.12) REMARK. — What we have seen above in the proof of the Prop. (2.11)
can be applied in an interesting way in the study of the degree of an
isogeny.

Consider A+ AycA, V=V,®V, and ¢: C/A; X C/Ay—>C?*/A.
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Now we study the following diagram which has exact rows:

N =kerg

0 - 4,84;=C, — COC=D;, = C/A,DC/IA,=Y, — 0
3Cl/= anl = aE\LQD
0 - 4=C — C*=D, —  ¥YA=Y, — 0

We can apply the zig-zag lemma, see [M], p. 136, and obtain the long exact se-
quence in homology:

.. = H (D)= H,(Y) = Hy(C) = H,(D)

ie.
.. > ker(3p)/Im(Dy) >N — A/Im (A, D A,) — C*/(CBHC)
—_— — [N
0 0 AL+ Ay 0
0 T
ie.
0>N—-T—0

from which N=T.
Thus if 4 # A, A, then there exists an isogeny £; X E,— A and we ob-
tain the exact sequence

0> N —ExE—A—0
N
AA1+ Ag)

and

N/pN #0<T/pT #0< mod. p the points q;, g» are equal

or the line q;¢; isn’t contained in @ .
We have that

(degree isogeny E; X E;—A) = #N

and p|#N < N/pN # 0 («essential» primes for the condition 2) of the Proposi-
tion (2.11)). Let’s see an example.

Assume that @ N E(a) has equation xZ + 27 — x2 = 0 (conic in P?). Let ¢, =
(1,0,1) and ¢, = (0, 1, 1) (so q; # g, for any p). Only modulo 2 this conic is
singular (double line), so N has only elements of order powers of 2.

(2.13) REMARK. — The Prop. (2.11) holds also for r» =2, so the Proposition
(2.7) can be deduced from this.

(2.14) REMARK. — We discuss separately the cases when the rank 7 of « is 2,
3, 4 (see Lemma (2.6)).
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Case r=2.

Then E(a) is a 3-plane in P A%2Q* given by 2 linear equations and @ N E(a)
is a quadric in P? given by a symmetric matrix F € M,(Z). The rank of F can
be 0, 1, 2, 3 or 4, but the cases 0, 1 do not occur (see below), and @ N E(a) will
be respectively:

- vk F' =2, two distinct planes,
- rk F' =3, quadric cone,

— vk F' =4, smooth quadric.

We have proved above that « is always hyperbolic (see Prop. (2.7)). We can
prove easily that o is hyperbolic over @ directly.

If rk F' is different from 0, 1, then there exist two distinct rational points, ¢;
and ¢, such that the line joining ¢; and g, is not contained in @ and this also
holds modulo p for all primes p. In fact we note that @ ¢ P? is the Grassmanni-
an of the line of P and on it there are two rulings of 2-planes corresponding to
all lines throught a point p € P? and to all lines contained in a 2-plane 7 ¢ P?,
see [H], p. 291. Moreover in P® we have that (P%/Q) N (P3/Q) = a point e
P5/Q, so on @ N E(a) there are a lot of distinet rational points that aren’t all
contained in a line. We conclude that a is hyperbolic over Q.

Now we exclude the case that rk F' = 1, that is, E(a) N P? is a double plane.
We know that @ is smooth and all smooth quadrics of P® are isomorphic to it.
Note that @ N E(a), with E(a) = P? linear space of dim. 2, is different from
2PZ (double plane). If in fact, for example, @ N E(a) is the double plane & with
equation x, = x5 = 0, the equation of @ will be of the type:

x4l(900, ey 905) +x5l(900, ey 905) =0.

linear linear

The matrix associated to @ would be of the type

0 0 0 0% *
0 0 0 0= *
0 0 0 0= *
M=
0 0 0 0= *
L3 K & £ £ £
L>l< £ ES % 3k £

hence det M = 0. But this isn’t possible because ) is a smooth quadric and so
the determinant of the matrix associated to it is different from 0. Obviously
also rk ¥ # 0 and then vk F' = 2 or 3 or 4.
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Case r=3.

E(a) is a 2-plane given by 3 linear equations, thus @ N E(a) is a conic in P?
given by a symmetric matrix F'e M3(Z).
The rank of F' can be 0, 1, 2 or 3.

a) TkF=0=Q N E(a) is also P? (that is, E(a)cQ.)

There exist no q;, ¢, € @ N E(a) such that the line joining ¢; and g, is not
contained in Q. We can conclude that « is not hyperbolic.

b) rkF=1=Q N E(a) is a line [ counted twice.

There exist no ¢;, ;€ @ N E(a) =1 such that the line joining ¢; and g,
(which is again [) is not contained in Q. We can concude that o is not
hyperbolic.

¢) TkF =2=0 N E(a) consists of two different lines /; and l, and the
point §; N[, is the singular point of @ N E(a).

Either the singular point of @ N E(a) is the unique rational point and so a
is not hyperbolic.
For example if E(a) has equations:

L3 = Xo1 » 22=0, L12 = Loz

then @ N E(a) has equation xd + & =0 ie. (g + 12Xy — i) =0 and
(0:0:1) is the unique rational point.

Or we have that @ N E(a) is defined by the product of two linear forms
with coefficients in @. Now we have:

a is hyperbolic<>the 2 lines [;, I, of @ N E(a) are distinet modulo p(Vp prime).

The implication = is obvious. We have to show the other implication. It is not
sufficient to say take a point g; on [; (not on [,) and a point g, on I, (not on [;) as
it is stated in Ruppert’s paper because if, for example, E(a) has equation xg, =
2oz = %12 = 0 and we take the points (g;: a3t 213) = (0:2:1),(2:0:1), l1: & =
0, l: y=0 and p =2, then mod p the points are not distinct.

Consider two lines with equations

ax+by +cz=0,
a'x+b'y+c'z=0.

We will simplify these equations. In case a =0, b#0 let a=da’ and b=db’
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where g.e.d. (@',b')=1=qa’ +7rb’'=1. We can consider the transforma-

tion
(.
-b'" a’
q r . .
where y , e GL,(Z) with determinant 1.
- a
The equations of the two lines become
de+cz=0,
la'x+b'y+c'z2=0.

We may assume g.c.d. (d, ¢) =1 and, with an analogous tranformation, we
obtain

=0,
la'x+b'y+c'z2=0.

With the same trick we obtain

=0,
a'x+d'y=0.

By the assumption, for all primes p, modulo p: Z(x =0) # Z(a'x +d'y =0).
Thus Ap, st. p|d'=d’' = +1.

Now we have, with " = +a'

)

=0,
a"v+y=0.

If we substitute: ¥y = —a”"x + y then we obtain

=0,
y=0.
Let g;=(0:1:0)inx=0 (notiny=0),and g, =(1:0:0) in ¥y =0 (not in x =

0), then the line z = 0 joining ¢; and g, is not contained in Z(ay = 0) modulo p
for any p.

d) TkF =3=Q N E(a) is a smooth conic in P2.

It can happen that @ N E(a) has no rational points. In this case a
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is not hyperbolic. For example if E(a) has equations
Lo3 = Xo1 » Loz = X13 » Y12 = Xo3 »

then E(a) N Q has equation x& + 28 + x5 = 0.
If the condition 1) of the Prop. (2.11) is satisfied then using the Hasse-
Minkowski theorem we have (see [R], p. 298, for the proof.)

a hyperboliceV p divisor of det F',
3 a rat. not sing. point on @ N E(a) mod p.

Case r=4.

E(a) is a 1-plane given by four linear equations and @ N E(«) is a quadric
in P! given by a symmetric matrix F e M,(Z).
The rank of F' can be 0, 1 or 2.
a) TkF =0=Q N E(a) = P'=a is not hyperbolic.
b) tkF=1=Q N E(a) is a point counted twice = a is not hyperbolic.
¢) Tk F =2=0 N E(a) =2 different points.

If q; e g, are rational the condition 1) of the Prop. (2.11) holds. Then we
want the condition 2) so we have:

a hyperbolic < the quadric @ N E(a) is two distinct rat. points
which are different mod p, V prime p.

The hyperbolicity of a over @ can be characterized similarly.

3. — Applications.

From what we have explained above it follows that Ruppert’s method to
see when an abelian surface is isomorphic or isogenous to a product of curves,
is effective. Given a period matrix of X it’s relatively simple to apply it. There
is an example in [R], we give another example following an exercise suggested
by [LBI.

(3.1) ExamPLE. — Let C be a projective curve of genus 2 with non trivial re-
duced automorphism group. Recall that to every smooth projective curve C
over C of genus g we can associate an abelian variety J(C) of dimension g
called the Jacobian of C.
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According to O. Bolza, see [Bo], the curve C is isomorphic to one of the fol-
lowing 6 types of curves:

Type Equation Aut C n=(,1)
red. aut. Period Mat. of J(C)
gr. of C
1
° 2
I y?=@?—a®)(x?-b2)?-1) Z)2Z 7 = )
p— z/
2
1
° 2
I y2=(x?—a?)(x?—a?) D, 7= )
- 2z
2
2 3 3V 3 -3 2z =z
111 ye=a(x’>—a’)x®—a ") Dy 7 =
z 2z
21 7
v yi=x6-1 Dy Z= \/§ 3
) 21
V3 VB
-1+1iV/2 1
2 2
A y2=n(x*-1) o 7 =
! 1 —1+iV2
2 2
1—gt g2t
VI yl=a@®-1) Z/5Z Z:( Lo, 8)
—&E — & &

We can see that all types, except VI, are a specialization of type I.
Using Ruppert’s method we want to show that:

a) If C is of type I, its Jacobian J is isogenous to a product of elliptic
curves. In general, for example if 1, z, z’, 2z’ are linearly independent over @,
J is not isomorphic to a product of elliptic curves.
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b) If C is of type 11, its Jacobian J is isogenous to a product of elliptic
curves if and only if z is contained in some imaginary quadratic field.

c¢) If C'is of type III, IV or V its Jacobian J is isomorphic to a product of
elliptic curves.

d) If C is of type VI, its Jacobian J is a simple abelian surface.

@)

Do | =

If we call the columns of IT 1, 15, A5, 44, basis of A in function of e;, e, basis
of C?, we have that:

1
a(ll,iz): _Z +ZZ,, a(lz, 13): _Z’,
1 1
a(dy, As) = —E , a(Asg, Ay) = E
a(Ay, 24) =z, al(dg, 24)=1.

They generate
1 1
Z-E +Z-z +Z~(—z’)+Z~(—Z +zz’)

=rka<4.
If 1/2,2, —2', —1/4+ 22" are linearly independent over @ then r=4.
Consider the decomposition of a:
a=ay;-1/24+as 2 tag(—2')ta,(—1/4+22").
—— ¥

Y1 Y2 Y3 Ya

To obtain the equations of E(a) we write:
a(u, 7)) = a(nl/ll + %2},2 + ’n3/13 + ﬂ4l4, mlll + leg + 7’}’23/13 + 77?/4),4) =

(nymg —ngmy) a(d, Ag) +(nymg —ngm;) a(dy, 1) +
Ya it

(nymy — ngmy) aldy, Ay) +(Ragmg — ngmy) alls, A3) +
Y2 Y3

(memy — ngmy) a(do, Ay) +(ngmy —nymg) a(ds, 14),
Y1 211
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from which
a(u, v) = (—nymg + ngmy + NgMy — NgMy + 203My — 20M3) Yp +
+ (N My — Ny My) Yo + (e Mg — Mg M) Y3+ (N My — Ny My) Yy =

(—=p13+ Pos + 2p34) Y1 + PraYz + PasYs + PraYs -
Note that the indices are 1, 2, 3, 4 instead of 0, 1, 2, 3.
@ N E(a) has equations:
13 = Loy + 203,
Lo =Xy =23 =0,
L1p X34 — L13Xoy + L1y X3 =0,
from which 22s, @ + 54 = 0 which is a quadric in P.
In char 2 it is 2% = 0 i.e. a double point then a is not hyperbolic. But « is
hyperbolic over @ then X is isogeneous to a product of elliptic curves.
We note that if 1/2,2, —2’,1/4 -2z’ are linearly independent over @

then also 1, 2z, 2’, 2z’ are linearly independent over @ hence, in general, X is
not isomorphic to a product of elliptic curves.

b)

1

z - 1 0
2

I =

1

— z 01

2

Using what we have seen in @) and putting z =z’ we find:

1
a(/ll,/,iz)z_z +2'2, a(/’lz,/lg):z,

1 1
a(lly A3): _E ) a(127l4)25 y
a(/lla)“4):zy a(/13,14):]..

If1/2,2, -1/4+ z? are linearly independent over @, then =3 and we can
consider the decomposition:

a=a;-1/2+ay () +ay(—1/4+22).

If Ae M,(Z) is the matrix associated to a, to obtain the equations of E(a) we
write:

alu, v) =a(u, v) Yy + as(u, v) ys + as(u, v) ys,

alu, v) = udv = (ud,v) y, + (udyv) yo + (uldyv) ys ,
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a(u, 'U) = a(/ﬂlll + 7’L2/12 + 77/3/13 + n4/14, mllll + 777/2/12 + M313 + WL4/14) =

(nymy — ngmy) aldy, Ag) +(nymg —ngmy) alldy, A3) +
Y3 ~Y

(nymy —nygmy) a(dy, Ay) +(ngmg —nzmy) a(ly, As) +
Y2 Y2

(ngmy — ngmy) a(lo, Ay) +(ngmy — nyms) al(ds, 1y)
Y1 29

from which

a(u, v) = (—nymg + ngmy + Ny My — NygMy + 203My — 20M3) Yp +
(ny My — My + NaMg — Ny Ma) Yo + (N Mg — NaMy) Y =

(= P13+ P2s + 2P3s) Y1 + (Prg + P23) Yo + P12 Ys -
Q N E(a) is a quadric in P? with equations:
Lig = — W3,
x2=0,
Ly = Xpq + 2234,
L1p X3y — X13&ag T X143 =0 .
= 24 + 20300 + 5 =0 (rgF =3).

In char 2 we have a2 + x5 = (X + ¥23)? double line.

= X is isogenous to a product of elliptic curves, but X is not isomorphic to a
product of elliptic curves.

Moreover z is contained in a imaginary quadratic field < z=x+y\/—d
with d >0, x, y e Q <z is a root of an equation of degree 2 with coefficients
over Q irreducible in Q.

az®+bz+c=0 with a, b, ceQ and ¢ # 0 < 2*+ (b/a)z + (d/a) =0 if and
only if —1/4+2%= —(b/a)z—c/a—1/4 < —1/4+2%is a linear combination
of 1 and z < rka = 2 < « is hyperbolic <> X is isomorphic to a product of elliptic
curves.

¢) We consider the type III, types IV and V are analogous.

Consider z=a + b with b=0 1i. e. zeC.

(Zz z 1 0)
1= ,
z 2z 0 1

ally, Ap) = —2°+42° =382, ally, A) = —2z,
a(/ll,/lg):—z, a(iz,l4)=z’
a(hy, Ay) =22, alAg, Ay =1.
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If 1, z, 2% are linearly independent over @ then rka = 3.
We can consider the decomposition of a:

a=a1+a, () +as22.
1%‘ 2 3%,-/
n s us

IfA € M,(Z)is the matrix associated to a to obtain the equations of E(a) we
write:

a(u, v) =a(u, v) Yy, + as(u, v) Yy, + as(u, v) ys,
a(u, v) ="udv = (ud,v) y, + (udyv) yo + (udyv) ys ,
a(u, 7)) = a(nl/ll +n212 +7’L3/13 +n4l4, mlll +lez +WL3/13+’WL4)L4) =

(nymg —ngmy) a(dy, Ag) +(mymg —ngmy) aldq, A3) +
3y3 —Y2

(nymy — ngmy) aldy, Ay) +(namg — ngms) alls, A3) +
| —; | S —
2y -2y
(ngmy — ngmy) a(dg, Ay) +(mgmy —nyms) alls, A4)
Y2 Y1

from which

a(u, v) = (ngmy — nymz)y; +
(—n1m3 + Mg My + 2n1m4 - 2%47)@1 - 2%27713 + 27?/37”/2 + No My — n4m2) Y2 +

(311 Mg — 3M9M1) Y3 = PasYr + (— P13+ 2P1g — 2Pog + Pos) Y2 + 3Pr12Ys -
Q NE(a) is a quadric in P? of equations:
Py =% =0,
P13 =2X14 — 2093 + oy,
K12 %34 — T3 Loy + L1423 =10 .

= — 2014 Xy + 20y oy — Xy + X34 X3 = 0 (rk F' = 3 always).

=> o is hyperbolic = X is isomorphic to a product of elliptic curves.

Moreover if 1,z,z% are linearly independent over @ (i.e. z? linear
combination of 1 and z) = rka =2=>a is hyperbolic = X is isomorphic to a
product of elliptic curves.

d)

with & = e(27i/5) = ¢>™/°.
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Note that
€5= (62311/5)5:62:11': 1
from which
—1=(e—1)e*'+e2+e?+e+1)=0.

Since ¢ —1 #0 we have that ¢*+ &3+ e?+ e+ 1 =0 from which e2= —¢* —
ed—e—1.

a(/’{17/12):_g4_83_8_1:€27 C((j,z,/l:g):—é‘,

aldy, Ag) = e+ ¢, a(dg, Ay) = —e®—&*,

a(Ay, A =1—¢et=—(e2+eH)+e2+1, allz, A,)=1.

If 1, ¢, €2, e2 + &* are linearly independent over @ then rka = 4.
We can consider the decomposition of a:

a=a;'1+aye+agei+a,(e?+et).
& v <~

h Y2 Y3 Ya

To obtain the equations of E(a) we write

a(u, 'U) = a(nlll + 7’1/212 + 77/3/13 + 7l4/14, mllll + mglz + '}’ngig + WL4/14) =

(nymg —ngmy) a(d, Ag) +(nymg —ngm;) a(dy, 1) +
Y3 Y4

(mymy —ngmy) a(dy, 1y) +(memg —ngmy) alls, A3) +
N N

Y1+ Ys—Ya —Y2

(nemy — nymy) a(dg, Ay) +(ngmy —nymy) alls, Ay)
| —; | S —;

Y Y1

from which

a(u, v) = (nymy — nyMmy + ngMmy — NyM3) Y +
(_nzmg + ngmg) Yo + (7&17)7/2 — NoMq + Ny My — n4m1) Ys +
(nl'ﬂ’lg — N3z My — Ny Ny + My My — NNy + n47n@) Ys =

(P1a+ P30 Y1 + (—Po3) Y2 + (P12 + P1a)Ys + (P13 — Pra — P2a) Ya -
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@ N E(a) has equations:

(0= —ay,
9623:0,
1 Y12 = —¥14,
X13 =14 + Toq
| %1224 — L13%ag + L14 o3 =0,

from which %% — 24 %24 — ¥4 = 0 which is a quadric in P'.

If we call 4 =, ¥,y =9 and t = y/x we find the equation —t2—t+1=0
with coefficients over @ which doesn’t have roots in @ = the quadric @ N E(a)
doesn’t have rational points = « is not hyperbolic and a is not hyperbolic over
@)= X is not isomorphic to a product of elliptic curves and X is not isogenous to
a product of elliptic curves, but X is a simple abelian surface.
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