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Bollettino U. M. I.
(8) 1-B (1998), 407-428

Abelian Surfaces and Products of Elliptic Curves.

MARINA ROSANNA MARCHISIO (*)

Sunto. – Si dà una nuova e completa dimostrazione del risultato cruciale del metodo di
Ruppert che consente di stabilire in maniera effettiva quando una superficie abe-
liana è isomorfa o isogena a un prodotto di curve ellittiche.

Introduction.

In this paper we study the relationship between abelian surfaces and prod-
ucts of elliptic curves. In particular we study the problem to decide, with rela-
tively simple calculations, whether an abelian surface, given its period matrix,
is isomorphic or isogenous to a product of elliptic curves.

This problem was solved by Ruppert in [R] and its method was successively
explained in [LB]. However in these two expositions the proof of the crucial
proposition (see (2.11) below) is only outlined, whilst all details, even the es-
sential ones, are left to the reader.

We thought that it would have been useful to give a new proof of (2.11),
complete of all details, and to illustrate the method in all possible cases in or-
der to show its effectiveness. Finally we apply it to an example.

1. – Preliminaries

(1.1) DEFINITION. – A complex torus X4V/L , with V vector space over C of
dimension g, L lattice of V with a hermitian defined positive form H : V3

VKC and such that H(L3L) ’Z , is called abelian variety of dimension g.

(1.2) DEFINITION. – An abelian variety of dimension 2 is called abelian
surface; a complex torus X4V/L of dimension 1 is called elliptic curve and it
is always an abelian variety (see [K]).

(*) I would like to thank Prof. Bert van Geemen for having pointed out to me this
problem and for the useful suggestions.
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(1.3) DEFINITION. – Let X4V/L be an abelian variety with dim V4g ,
choose bases e1 , R , eg of V and l 1 , R , l 2g of the lattice L. Write l i in terms
of the basis e1 , R , eg :

l i 4 !
j41

g

l ji ej .

The matrix:

P4u l 11

÷

l g , 1

R

÷

R

R

÷

R

l 1, 2g

÷

l g , 2g

v�M(g32g , C)

is called a period matrix for X .

The period matrix P determines the complex torus X completely, but cer-
tainly it depends on the choice of the bases for V and L .

We consider products of elliptic curves E1 , E2 which are, as is easily seen,
abelian surfaces:

E1 3E2 4C/L 1 3C/L 2 CC 2 /(L 1 3L 2 ) 4C 2 /L .

Recall that a homomorphism f : XKX 8 corresponds to a unique C-linear map
F : VKV 8 with F(L) ’L 8 inducing the homomorphism f .

(1.4) DEFINITION. – Let F : XKX 8 be a homomorphism between two
abelian varieties of equal dimension. If F is surjective, F is called
isogeny.

X and X 8 are called isogenous if there exists an isogeny F : XKX 8.
Let F : XKX 8 be a homomorphism between abelian varieties of equal di-

mension; then

F surjective ` ker F finite .

2. – Ruppert’s method.

The aim of this method is to see when an abelian surface is isomorphic or
isogenous to a product of elliptic curves.
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Let L`Z 4 ’C 2 be a lattice. We consider an alternating form:

a : L3LKC

defined by

a(u , v) 4det (u , v) 4u1 v2 2u2 v1 (u4 (u1 , u2 ), v4 (v1 , v2 ) �C 2 ) ,

so that a is bilinear and a(v , v) 40 for all v�L, hence a(v , u) 42

a(u , v).

(2.1) DEFINITION. – The form a is called hyperbolic if there is a decomposi-
tion of L:

L4L 1 5L 2

into submodules L 1 and L 2 which are isotropic with respect to a.
In other words:

a hyperbolic ` ) basis l 1 , l 2 , m 1 , m 2 of L s.t. a(l 1 , l 2 )4a(m 1 , m 2 )40.

By abuse of notation we denote the extension of a to L7Q also by a .

(2.2) DEFINITION. – The form

a : (L7Q)2 KC

is called hyperbolic over Q if there is a decomposition:

L7Q4V1 5V2

into 2 subvector spaces which are isotropic with respect to a .
In other words:

a hyperbolic over Q ` ) a basis l 1 , l 2 , m 1 , m 2 of L7Q

s . t . a(l 1 , l 2 ) 4a( m 1 , m 2 ) 40 .

Both notions are independent of the choice of the coordinates of C 2 since a
coordinate transformation A in C 2 changes a by a multiplicative constant; in
fact a(Au , Av) 4det(A)a(u , v) because:

det (Au , Av) 4detgA Q gu1

u2

v1

v2
hh4det (A) Qdetggu1

u2

v1

v2
hh .
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(2.3) PROPOSITION. – For an abelian surface X4C 2 /L the following condi-
tions are equivalent:

(i) X is isomorphic (respectively isogenous) to a product of elliptic
curves;

(ii) the form a is hyperbolic (respectively hyperbolic over Q). r

See [LB], p. 313, for the proof.

(2.4) REMARK. – Consider L4 al 1 , . . . , l 4 bZ where l 1 , l 2 , l 3 , l 4 is a basis
of L. Call a ij 4a(l i , l j ); then we have, with u4!ni l i and v4!mi l i �L:

a(u , v) 4!
ij

ni mj
���

�Z

a(l i , l j ) 4

(n1 m2 2n2 m1 ) a 12 1 (n1 m3 2n3 m1 ) a 13 1 (n1 m4 2n4 m1 ) a 14 1

(n2 m3 2n3 m2 ) a 23 1 (n2 m4 2n4 m2 ) a 24 1 (n3 m4 2n4 m3 ) a 34 .

This proves that a(L3L) ’Z Qa 12 1Z Qa 13 1. . . 1Z Qa 34 .

Let M4 a. . . , a ij , . . . bZ be the Z-submodule of C generated by the values
of a on L3L.

Note that a(L3L), in general, is not a Z-module (in C) (on the contrary of
what is written in the book [LB], p. 314).

In fact consider

Z 4 3Z 4

O O

C 4 3C 4

K
W

K
W C

Z 6 CR2 Z 4

O O

C 6 CR2 C 4

where W C (4«a») is the Plücker embedding, see [G], p. 211. If we consider
v4e0 Re1 1e2 Re3 then v�RZ 4 ’C 4 but v� Im (W C ) (v has p01 41,
p23 41 and other pij 40 ¨p01 p23 41 c0 ¨v� Im (W C ) ) .

(2.5) DEFINITION. – The rank of an alterning form a : L3LKC is the
rank of the free Z-submodule M (’C) so M`Z r .
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If y1 , R , yr is a basis of the Z-module M, we can write:

a(u , v) 4 a 1 (u , v)
���

�Z

y1 1. . . 1a r (u , v)
���

�Z

yr

with a i : L3LKZ alternating forms.
Note that the forms a 1 , R , a r are necessarily linearly independent over Z .
Moreover it is clear that a is hyperbolic (over Q) if and only if a 1 , . . . , a r

are hyperbolic (over Q) all with the same decomposition of L (respectively
L7Q).

In fact if l 1 , l 2 , m 1 , m 2 is a basis of L such that 0 4a(l 1 , l 2 ) 4a(m 1 , m 2 ),
we have:

0 4a(l 1 , l 2 ) 4a 1 (l 1 , l 2 ) y1 1. . . 1a r (l 1 , l 2 ) yr ,

0 4a(m 1 , m 2 ) 4a 1 (m 1 , m 2 ) y1 1. . . 1a r ( m 1 , m 2 ) yr

`a 1 (l 1 , l 2 ) 4R4a r (l 1 , l 2 ) 4a 1 ( m 1 , m 2 ) 4R4a r ( m 1 , m 2 ) 40 ,

because y1 , . . . , yr are linearly independent.

(2.6) LEMMA. – Let a be hyperbolic (respectively hyperbolic over Q) of rank
r. Then 2 GrG4.

PROOF. – rF1 since a is nondegenerate, i.e. (v�L , vc0, there exists w�
L such that a(v , w) c0; moreover rF2. In fact note that rkZ (R , a ij , R) 4

rkZ (R , det (Al i , Al j ), R) 4rkZ (R , (det A) Qa ij , R) F2 for any invertible
matrix A. Take a basis of L such that l 1 , l 2 are linearly independent over C
(this is possible because if l 2 , l 3 , l 4 �l 1 QC then L’C). Choose A such that A Q
l 1 4e1 and A Ql 2 4e2 . We obtain

P4g1

0

0

1

z1

z2

w1

w2
h

and

a 12 41 ,

z1 42a 23 ,

w1 42a 24 ,

z2 4a 13 ,

w2 4a 14 .

If r = 1 then zi and wi with i41, 2 �Z and L would not be a lattice.
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Moreover rG6 for what we have seen before; finally a(l 1 , l 2 ) 4

a(l 3 , l 4 ) 40 with l 1 , l 2 , l 3 , l 4 Z-basis of L , therefore:

Im a’Z Qa 13 1Z Qa 14 1Z Qa 23 1Z Qa 24

i.e. rG4. r

We start to consider the case r42, the «happiest» case.

(2.7) PROPOSITION. – Any alternating form a : L3LKC of rank 2 is
hyperbolic. r

See [R] for the proof.
An immediate consequence is the following theorem of Shioda and Mitani,

see [Sh].

(2.8) COROLLARY. – An abelian surface which is isogenous to a product of
isogenous elliptic curves with complex multiplication is isomorphic to a
product of elliptic curves. r

There exists a generalization of this corollary for abelian varieties of arbit-
rary dimension given by C. Schoen, see [S], p. 115-123, which says:

(2.9) PROPOSITION. – If X is an abelian variety of dimension g , isogenous
to a product 3g

i41 E with E an elliptic curve with complex multiplication,
then X is isomorphic to a product of elliptic curves. r

It remains to consider forms of rank 3 and 4.

(2.10) REMARK. – We first recall some properties of the well known Plücker
quadric (also called Klein quadric).

Let K be a field. Let xij with 0 G iE jG3 be the coordinates of P 5 4P(R
2 K 4 ). The Plücker quadric is defined by the equation:

x01 x23 2x02 x13 1x03 x12 40 .

The 2-dimensional subvector spaces of the vector space K 4 (points of the
grassmannian of the lines of P 3 ) correspond bijectively to the points of the
Plücker quadric.

For any 2-dimensional subvector space U4 au , vbK 4 ]hu1kv : h , k�K(

with t u4 (u0 , R , u3 ) and t v4 (v0 , R , v3 ) �K 4 the elements:

pij »4ui vj 2uj vi
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are the Plücker coordinates of U and

p(U) »4 (p01 : p02 : p03 : p12 : p13 : p23 )

is the corresponding point on the quadric Q .
If V is another 2-dimensional subvector space of K 4 then

K 4 4U5V` the line p(U)P(V) is not contained in Q .

Given a skew symmetric matrix A, we define an alternating form

A : K 4 3K 4 KK

A(u , v) »4 !
ij40

3

aij ui vj 4 !
iE j

aij pij ( with aij 42aji �K)

and a hyperplane of P 5 4P(R2 K 4 ) by

H(A) 4 m !
0 G iE jG3

aij xij 40n .

Then a 2-dimensional subvector space U of K 4 is isotropic with respect to A
(A(u , v) 40 where U4 au , vbK ) if and only if its corresponding point p(U) �Q
lies on H(A).

Let a4a 1 y1 1R1a r yr be the alternating form associated to the abelian
surface X4C2 /L as above. Since the forms a 1 , R , a r are linearly indepen-
dent over Z, the intersection

E(a) 4H(a 1 )OROH(a r )

is a (52r)-plane in P 5 .

(2.11) PROPOSITION. – a) a is hyperbolic if and only if there are distinct ra-
tional points q1 and q2 , i.e. qi �P(R2 Q 4 ), in QOE(a) such that the following
conditions hold:

1) the line joining the distinct rational points q1 and q2 is not con-
tained in Q;

2) for every prime p statement 1) holds modulo p.

b) a is hyperbolic over Q if and only if there are distinct rational points
q1 and q2 in QOE(a) such that 1) holds.

PROOF. – a) a is hyperbolic if there are two Z-submodules L 1 and L 2 of
rank 2 of L such that L4L 1 5L 2 and L 1 and L 2 are isotropic with respect to
a n for n41, R , r . L4L 1 5L 2 `L7F4 (L 1 7F)5 (L 2 7F) for F4Q
and F4Fp for every prime p. By what we have said above this means that the
line joining p(L 1 7F) and p(L 2 7F) is not contained in the Plücker quadric Q
over F , for F4Q and F4Fp for all primes p.

The other implication is less obvious than this.
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By hypothesis we have that )q1 , q2 �QOE(a), distinct rational points,
such that:

1) the line aq1 , q2 b with q1 , q2 distinct rational points is not contained in
Q/Q (4over Q);

2) q1, q2 (images of qi in P(R2 Fp ) are distinct points and the line aq1, q2b
is not contained in Q/Fp .

The statement 1) implies that there exist V1 `Q 2 ’Q 4 and V2 `Q 2 ’Q 4 ,
aq1 , q2 b ’OQ hence Q 4 4V1 5V2 (V1 and V2 are isotropic).

We define:

L 1 »4V1 OL and L 2 »4V2 OL .

Since V4L7Q and the Vi are isotropic with respect to a, we have already
a(L i 3L i ) 40. Now we have to show:

L4L 1 5L 2 .

We give an easy example to show that this does not follow from V4

V1 5V2 .
Consider V4Q 2 , V1 4 a(1 , 1 )bQ , V2 4 a(1 , 21)bQ and L4Z 2 ’Q 2 .
Then V4V1 5V2 and we have:

L 1 4LO a(1 , 1 )bQ 4 a(1 , 1 )bZ , L 2 4LO a(1 , 21)bQ 4 a(1 , 21)bZ .

But Z 2
c a(1 , 1 )bZ 5 a(1 , 21)bZ because for example

Z 2 � (1 , 0 ) c (a1b , a2b) for any a , b�Z .

Also modulo 2 it isn’t true that

(Z/2Z)2
4 (1, 1)(Z/2Z) 5 (1, 21)(Z/2Z)

(modulo 2 we have that 21 4 1 because 21 f1 mod 2).
We could also use the fact that

Z 2 4 a(a , b), (c , d)bZ ` detga

b

c

d
h461 .

In the previous example however detga

b

c

d
h422 c61.

We continue the proof. Note that

L4L 1 1L 2 ¨L4L 1 5L 2 .

In fact if l�L 1 OL 2 it follows that Zl’L 1 OL 2 ¨Ql’V1 OV2 ¨VcV1 5V2,
a contradiction. Hence L4L 1 1L 2 implies L4L 1 5L 2 and we must show
L4L 1 1L 2 .

Consider the exact sequence L 1 1L 2 KLKTK0, T4L/(L 1 1L 2 ). We
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want to show that T40 because then L4L 1 1L 2 . Tensorizing with Fp , we
find

F 2
p 1F 2

p KF 4
p KT7Z Fp K0 .

The condition 2) implies that for every p prime

L/pL4L 1 /pL 1 5L 2 /pL 2 ;

so for every p prime

F 2
p 1F 2

p 4F 4
p .

In fact the qi �QOE(a) /Fp , corresponding to L i 7Z Fp , are distinct and
the line aq1 , q2 b ’OQ/Fp . Then T7Z Fp 40 (p prime ¨ T/pT40 (p prime.
(Note that in this point we have used in essential way the condition 2) of the
hypothesis.)

Since T is a finitely generated abelian group we have

T`Z r 5Z/e1 Z5Z/e2 Z5. . . 5Z/ek Z

with e1 Ne2 . . . Nek .
By condition 1)

T7Q4Q 4 /(V1 5V2 ) 40 .

On the other hand:

T7QC (Z r 7Q)5 (Z/e1 Z5R)7Q4Q r 5 (Z/e1 Z7Q5R) .

Thus T7Q40 gives r40 so T is a finite group.
We know that T/pT40(p prime. Suppose for absurd that ek c0, i.e. that

there is torsion. Choose p such that pNek ¨ek 4p Qm . Then we have the
absurdity

0 4T/pT* (Z/ek Z)7Fp C (Z/pmZ) /p(Z/pmZ) CZ/pZc0;

in fact M7Z Fp CM/pM and the last isomorphism follows from the theorem of
isomorphism of the quotient group of a quotient group, see [B], p. 121.

Hence, in conclusion, T/pT40(p¨T40¨L4L 11L 2¨L4L 15L 2¨a
hyperbolic. This proves a).

Assertion b) follows similarly. r

(2.12) REMARK. – What we have seen above in the proof of the Prop. (2.11)
can be applied in an interesting way in the study of the degree of an
isogeny.

Consider L 1 1L 2 ’L , V4V1 5V2 and W : C/L 1 3C/L 2 KC 2 /L .
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Now we study the following diagram which has exact rows:

0

0

K

K

L 1 5L 2 4C1

¯C IC

L4C0

K

K

C5C4D1

¯D IC

C 2 4D0

K

K

N4ker W
I

C/L 1 5C/L 2 4Y1

¯E IW

C 2 /L4Y0

K

K

0

0

We can apply the zig-zag lemma, see [M], p. 136, and obtain the long exact se-
quence in homology:

R KH1 (D) KH1 (Y) KH0 (C) KH0 (D)

i.e.

R K ker (¯D )
���

0

/Im (D2 )
���

0
���

0

KNK L/Im (L 1 5L 2 )
���

L 11L 2
���

T

K C 2 /(C5C)
���

0

i.e.

0 KNKTK0
from which NCT .

Thus if LcL 1 5L 2 then there exists an isogeny E1 3E2 KA and we ob-
tain the exact sequence

0 K N
���

L/(L 11L 2 )

KE1 3E2 KAK0

and

N/pNc0 `T/pTc0 ` mod. p the points q1 , q2 are equal

or the line q1 q2 isn8 t contained in Q .

We have that

( degree isogeny E1 3E2 KA) 4JN

and pNJN`N/pNc0 («essential» primes for the condition 2) of the Proposi-
tion (2.11)). Let’s see an example.

Assume that QOE(a) has equation x 2
1 1x 2

2 2x 2
3 40 (conic in P 2 ). Let q1 4

(1 , 0 , 1 ) and q2 4 (0 , 1 , 1 ) (so q1 cq2 for any p). Only modulo 2 this conic is
singular (double line), so N has only elements of order powers of 2.

(2.13) REMARK. – The Prop. (2.11) holds also for r42, so the Proposition
(2.7) can be deduced from this.

(2.14) REMARK. – We discuss separately the cases when the rank r of a is 2,
3, 4 (see Lemma (2.6)).
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Case r42.

Then E(a) is a 3-plane in PR2 Q 4 given by 2 linear equations and QOE(a)
is a quadric in P 3 given by a symmetric matrix F � M4 (Z). The rank of F can
be 0, 1, 2, 3 or 4, but the cases 0, 1 do not occur (see below), and QOE(a) will
be respectively:

– rk F42, two distinct planes,

– rk F43, quadric cone,

– rk F44, smooth quadric.

We have proved above that a is always hyperbolic (see Prop. (2.7)). We can
prove easily that a is hyperbolic over Q directly.

If rk F is different from 0, 1, then there exist two distinct rational points, q1

and q2 , such that the line joining q1 and q2 is not contained in Q and this also
holds modulo p for all primes p . In fact we note that Q’P 5 is the Grassmanni-
an of the line of P 3 and on it there are two rulings of 2-planes corresponding to
all lines throught a point p�P 3 and to all lines contained in a 2-plane p’P 3,
see [H], p. 291. Moreover in P 5 we have that (P 2 /Q)O (P 3 /Q) 4 a point �
P 5 /Q , so on QOE(a) there are a lot of distinct rational points that aren’t all
contained in a line. We conclude that a is hyperbolic over Q .

Now we exclude the case that rk F41, that is, E(a)OP 5 is a double plane.
We know that Q is smooth and all smooth quadrics of P 5 are isomorphic to it.
Note that QOE(a), with E(a) `P 2 linear space of dim. 2, is different from
2P 2 (double plane). If in fact, for example, QOE(a) is the double plane p with
equation x4 4x5 40, the equation of Q will be of the type:

x4 l(x0 , . . . , x5 )
���

linear

1x5 l(x0 , . . . , x5 )
���

linear

40 .

The matrix associated to Q would be of the type

M4

.
`
`
`
´

0

0

0

0

*

*

0

0

0

0

*

*

0

0

0

0

*

*

0

0

0

0

*

*

*

*

*

*

*

*

*

*

*

*

*

*

ˆ
`
`
`
˜

hence det M40. But this isn’t possible because Q is a smooth quadric and so
the determinant of the matrix associated to it is different from 0. Obviously
also rk Fc0 and then rk F = 2 or 3 or 4.
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Case r43.

E(a) is a 2-plane given by 3 linear equations, thus QOE(a) is a conic in P 2

given by a symmetric matrix F�M3 (Z).
The rank of F can be 0, 1, 2 or 3.

a) rk F40 ¨QOE(a) is also P 2 (that is, E(a) ’Q . )

There exist no q1 , q2 �QOE(a) such that the line joining q1 and q2 is not
contained in Q. We can conclude that a is not hyperbolic.

b) rk F41 ¨QOE(a) is a line l counted twice.

There exist no q1 , q2 �QOE(a) 4 l such that the line joining q1 and q2

(which is again l) is not contained in Q. We can concude that a is not
hyperbolic.

c) rk F42 ¨QOE(a) consists of two different lines l1 and l2 and the
point l1 O l2 is the singular point of QOE(a).

Either the singular point of QOE(a) is the unique rational point and so a
is not hyperbolic.

For example if E(a) has equations:

x23 4x01 , x02 40 , x12 4x03

then QOE(a) has equation x 2
01 1x 2

03 40 i.e. (x01 1 ix03 )(x01 2 ix03 ) 40 and
(0:0:1) is the unique rational point.

Or we have that QOE(a) is defined by the product of two linear forms
with coefficients in Q. Now we have:

a is hyperbolic` the 2 lines l1 , l2 of QOE(a) are distinct modulo p((p prime ) .

The implication ¨ is obvious. We have to show the other implication. It is not
sufficient to say take a point q1 on l1 (not on l2 ) and a point q2 on l2 (not on l1 ) as
it is stated in Ruppert’s paper because if, for example, E(a) has equation x02 4

x03 4x12 40 and we take the points (x01 : x23 : x13 ) 4 (0»2»1), (2»0»1), l1 : x4

0, l2 : y40 and p42, then mod p the points are not distinct.
Consider two lines with equations

.
/
´

ax1by1cz40 ,

a 8 x1b 8 y1c 8 z40 .

We will simplify these equations. In case ac0, bc0 let a4da 8 and b4db 8
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where g.c.d. (a 8 , b 8 ) 41 ¨qa 81rb 841. We can consider the transforma-
tion

g q

2b 8

r

a 8
h

where g q

2b 8

r

a 8
h�GL2 (Z) with determinant 1.

The equations of the two lines become

.
/
´

dx1cz40 ,

a 8 x1b 8 y1c 8 z40 .

We may assume g.c.d. (d , c) 41 and, with an analogous tranformation, we
obtain

.
/
´

x40 ,

a 8 x1b 8 y1c 8 z40 .

With the same trick we obtain

.
/
´

x40 ,

a 8 x1d 8 y40 .

By the assumption, for all primes p, modulo p : Z(x40) cZ(a 8 x1d 8 y40).
Thus )Op , s.t. pNd 8¨ d 8461.

Now we have, with a 946a 8 ,

.
/
´

x40 ,

a 9 x1y40 .

If we substitute: y42a 9 x1y then we obtain

.
/
´

x40 ,

y40 .

Let q1 4 (0»1»0) in x40 (not in y40), and q2 4 (1»0»0) in y40 (not in x4

0), then the line z40 joining q1 and q2 is not contained in Z(xy40) modulo p
for any p.

d) rk F43 ¨QOE(a) is a smooth conic in P 2 .

It can happen that QOE(a) has no rational points. In this case a
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is not hyperbolic. For example if E(a) has equations

x23 4x01 , x02 4x13 , x12 4x03 ,

then E(a)OQ has equation x 2
01 1x 2

02 1x 2
03 40.

If the condition 1) of the Prop. (2.11) is satisfied then using the Hasse-
Minkowski theorem we have (see [R], p. 298, for the proof.)

a hyperbolic`( p divisor of det F ,

) a rat . not sing. point on QOE(a) mod p .

Case r44.

E(a) is a 1-plane given by four linear equations and QOE(a) is a quadric
in P1 given by a symmetric matrix F�M2 (Z).

The rank of F can be 0, 1 or 2.

a) rk F40 ¨QOE(a) 4P1 ¨a is not hyperbolic.

b) rk F41 ¨QOE(a) is a point counted twice ¨ a is not hyperbolic.

c) rk F42 ¨QOE(a) 42 different points.

If q1 e q2 are rational the condition 1) of the Prop. (2.11) holds. Then we
want the condition 2) so we have:

a hyperbolic ` the quadric QOE(a) is two distinct rat . points

which are different mod p , ( prime p .

The hyperbolicity of a over Q can be characterized similarly.

3. – Applications.

From what we have explained above it follows that Ruppert’s method to
see when an abelian surface is isomorphic or isogenous to a product of curves,
is effective. Given a period matrix of X it’s relatively simple to apply it. There
is an example in [R], we give another example following an exercise suggested
by [LB].

(3.1) EXAMPLE. – Let C be a projective curve of genus 2 with non trivial re-
duced automorphism group. Recall that to every smooth projective curve C
over C of genus g we can associate an abelian variety J(C) of dimension g
called the Jacobian of C.
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According to O. Bolza, see [Bo], the curve C is isomorphic to one of the fol-
lowing 6 types of curves:

Type Equation Aut C
red. aut.
gr. of C

P4 (Z , 1 )
Period Mat. of J(C)

I y 24 (x 22a 2 )(x 22b 2 )(x 221) ZO2Z Z4u z

1

2

1

2

z 8

v
II y 24 (x 22a 2 )(x 22a 22 ) D2 Z4u z

1

2

1

2

z
v

III y 24x(x 32a 3 )(x 32a 23 ) D3 Z4g2z
z

z
2z
h

IV y 24x 621 D6 Z4u 2 i

k3
i

k3

i

k3
2 i

k3

v
V y 24x(x 421) s 4 Z4u 211 i k2

2

1

2

1

2

211 i k2

2

v
VI y 24x(x 521) ZO5Z Z4g 12e 4

2e 22e 4

2e 22e 4

e
h

con e4eg 2pi

5
h

We can see that all types, except VI, are a specialization of type I .
Using Ruppert’s method we want to show that:

a) If C is of type I, its Jacobian J is isogenous to a product of elliptic
curves. In general, for example if 1 , z , z 8 , zz 8 are linearly independent over Q,
J is not isomorphic to a product of elliptic curves.
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b) If C is of type II, its Jacobian J is isogenous to a product of elliptic
curves if and only if z is contained in some imaginary quadratic field.

c) If C is of type III, IV or V its Jacobian J is isomorphic to a product of
elliptic curves.

d) If C is of type VI, its Jacobian J is a simple abelian surface.

a)

P4u z

1

2

1

2

z 8

1

0

0

1
v .

If we call the columns of P l 1 , l 2 , l 3 , l 4, basis of L in function of e1 , e2 basis
of C 2, we have that:

a(l 1 , l 2 ) 42
1

4
1zz 8 ,

a(l 1 , l 3 ) 42
1

2
,

a(l 1 , l 4 ) 4z ,

a(l 2 , l 3 ) 42z 8 ,

a(l 2 , l 4 ) 4
1

2

a(l 3 , l 4 ) 41 .

They generate

Z Q
1

2
1Z Qz1Z Q (2z 8 )1Z Q g2

1

4
1zz 8h

¨ rk aG4.
If 1O2, z , 2z 8 , 21O41zz 8 are linearly independent over Q then r44.

Consider the decomposition of a:

a4a 1 Q1O2
���

y1

1a 2 Q z
ȳ2

1a 3 Q (2z 8 )
���

y3

1a 4 Q (21O41zz 8 )
���

y4

.

To obtain the equations of E(a) we write:

a(u , v) 4a(n1 l 1 1n2 l 2 1n3 l 3 1n4 l 4 , m1 l 1 1m2 l 2 1m3 l 3 1m4 l 4 ) 4

(n1 m2 2n2 m1 ) a(l 1 , l 2 )
���

y4

1(n1 m3 2n3 m1 ) a(l 1 , l 3 )
���

2y1

1

(n1 m4 2n4 m1 ) a(l 1 , l 4 )
���

y2

1(n2 m3 2n3 m2 ) a(l 2 , l 3 )
���

y3

1

(n2 m4 2n4 m2 ) a(l 2 , l 4 )
���

y1

1(n3 m4 2n4 m3 ) a(l 3 , l 4 )
���

2y1

,
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from which

a(u , v) 4 (2n1 m3 1n3 m1 1n2 m4 2n4 m2 12n3 m4 22n4 m3 ) y1 1

1(n1 m4 2n4 m1 ) y2 1 (n2 m3 2n3 m2 ) y3 1 (n1 m2 2n2 m1 ) y4 4

(2p13 1p24 12p34 ) y1 1p14 y2 1p23 y3 1p12 y4 .

Note that the indices are 1, 2, 3, 4 instead of 0, 1, 2, 3.
QOE(a) has equations:

.
/
´

x13 4x24 12x34 ,

x12 4x14 4x23 40 ,

x12 x34 2x13 x24 1x14 x23 40 ,

from which 2x34 x24 1x 2
24 40 which is a quadric in P1 .

In char 2 it is x 2
24 40 i.e. a double point then a is not hyperbolic. But a is

hyperbolic over Q then X is isogeneous to a product of elliptic curves.
We note that if 1O2, z , 2z 8 , 1O42zz 8 are linearly independent over Q

then also 1 , z , z 8 , zz 8 are linearly independent over Q hence, in general, X is
not isomorphic to a product of elliptic curves.

b)

P4u z

1

2

1

2

z

1

0

0

1
v .

Using what we have seen in a) and putting z4z 8 we find:

a(l 1 , l 2 ) 42
1

4
1z 2 ,

a(l 1 , l 3 ) 42
1

2
,

a(l 1 , l 4 ) 4z ,

a(l 2 , l 3 ) 4z ,

a(l 2 , l 4 ) 4
1

2
,

a(l 3 , l 4 ) 41 .

If 1O2, z , 21O41z 2 are linearly independent over Q, then r43 and we can
consider the decomposition:

a4a 1 Q1O2
���

y1

1a2 Q (z)
ȳ2

1a 3 Q (21O41z 2 )
���

y3

.

If A�M4 (Z) is the matrix associated to a , to obtain the equations of E(a) we
write:

a(u , v) 4a 1 (u , v) y1 1a 2 (u , v) y2 1a 3 (u , v) y3 ,

a(u , v) 4 tuAv4 (tuA1 v) y1 1 (tuA2 v) y2 1 (tuA3 v) y3 ,



MARINA ROSANNA MARCHISIO424

a(u , v) 4a(n1 l 1 1n2 l 2 1n3 l 3 1n4 l 4 , m1 l 1 1m2 l 2 1m3 l 3 1m4 l 4 ) 4

(n1 m2 2n2 m1 ) a(l 1 , l 2 )
���

y3

1(n1 m3 2n3 m1 ) a(l 1 , l 3 )
���

2y1

1

(n1 m4 2n4 m1 ) a(l 1 , l 4 )
���

y2

1(n2 m3 2n3 m2 ) a(l 2 , l 3 )
���

y2

1

(n2 m4 2n4 m2 ) a(l 2 , l 4 )
���

y1

1(n3 m4 2n4 m3 ) a(l 3 , l 4 )
���

2y1

from which

a(u , v) 4 (2n1 m3 1n3 m1 1n2 m4 2n4 m2 12n3 m4 22n4 m3 ) y1 1

(n1 m4 2n4 m1 1n2 m3 2n3 m2 ) y2 1 (n1 m2 2n2 m1 ) y3 4

(2p13 1p24 12p34 ) y1 1 (p14 1p23 ) y2 1p12 y3 .
QOE(a) is a quadric in P 2 with equations:

.
`
/
`
´

x14 42x23 ,

x12 40 ,

x13 4x24 12x34 ,

x12 x34 2x13 x24 1x14 x23 40 .

¨ x 2
24 12x34 x24 1x 2

23 40 (rg F43).
In char 2 we have x 2

24 1x 2
23 4 (x24 1x23 )2 double line.

¨ X is isogenous to a product of elliptic curves, but X is not isomorphic to a
product of elliptic curves.

Moreover z is contained in a imaginary quadratic field ` z4x1y k2d
with dD0, x , y�Q `z is a root of an equation of degree 2 with coefficients
over Q irreducible in Q .

az 21bz1c40 with a , b , c�Q and ac0 ` z 21 (bOa)z1 (dOa) 40 if and
only if 21O41z 242(bOa) z2cOa21O4 ` 21O41z 2 is a linear combination
of 1 and z ` rk a42 ` a is hyperbolic ` X is isomorphic to a product of elliptic
curves.

c) We consider the type III, types IV and V are analogous.

Consider z4a1 ib with bc0 i. e. z�C .

P4g2z

z

z

2z

1

0

0

1
h ,

.
/
´

a(l 1 , l 2 ) 42z 2 14z 2 43z 2 ,

a(l 1 , l 3 ) 42z ,

a(l 1 , l 4 ) 42z ,

a(l 2 , l 3 ) 422z ,

a(l 2 , l 4 ) 4z ,

a(l 3 , l 4 ) 41 .
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If 1 , z , z 2 are linearly independent over Q then rk a43.
We can consider the decomposition of a:

a4a 1 Q 1
ȳ1

1a 2 Q (z)
ȳ2

1a 3 Qz 2

ȳ3

.

If A � M4 (Z) is the matrix associated to a to obtain the equations of E(a) we
write:

a(u , v) 4a 1 (u , v) y1 1a 2 (u , v) y2 1a 3 (u , v) y3 ,

a(u , v) 4 tuAv4 (tuA1 v) y1 1 (tuA2 v) y2 1 (tuA3 v) y3 ,

a(u , v) 4a(n1 l 1 1n2 l 2 1n3 l 3 1n4 l 4 , m1 l 1 1m2 l 2 1m3 l 3 1m4 l 4 ) 4

(n1 m2 2n2 m1 ) a(l 1 , l 2 )
���

3y3

1(n1 m3 2n3 m1 ) a(l 1 , l 3 )
���

2y2

1

(n1 m4 2n4 m1 ) a(l 1 , l 4 )
���

2y2

1(n2 m3 2n3 m2 ) a(l 2 , l 3 )
���

22y2

1

(n2 m4 2n4 m2 ) a(l 2 , l 4 )
���

y2

1(n3 m4 2n4 m3 ) a(l 3 , l 4 )
���

y1

from which

a(u , v) 4 (n3 m4 2n4 m3 )y1 1

(2n1 m3 1n3 m1 12n1 m4 22n4 m1 22n2 m3 12n3 m2 1n2 m4 2n4 m2 ) y2 1

(3n1 m2 23n2 m1 ) y3 4p34 y1 1 (2p13 12p14 22p23 1p24 ) y2 13p12 y3 .

QOE(a) is a quadric in P 2 of equations:

.
/
´

x34 4x12 40 ,

x13 42x14 22x23 1x24 ,

x12 x34 2x13 x24 1x14 x23 40 .

¨ 22x14 x24 12x23 x24 2x 2
24 1x14 x23 40 (rk F43 always).

¨ a is hyperbolic ¨ X is isomorphic to a product of elliptic curves.
Moreover if 1 , z , z 2 are linearly independent over Q (i.e. z 2 linear

combination of 1 and z) ¨ rk a42 ¨a is hyperbolic ¨ X is isomorphic to a
product of elliptic curves.

d)

P4g 12e 4

2e 2 2e 4

2e 2 2e 4

e

1

0

0

1
h

with e4e(2piO5) 4e 2piO5 .
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Note that

e 5 4 (e 2piO5 )5 4e 2pi 41

from which

e 5 21 4 (e21)(e 4 1e 3 1e 2 1e11) 40 .

Since e21 c0 we have that e 4 1e 3 1e 2 1e11 40 from which e 2 42e 4 2

e 3 2e21.

a(l 1 , l 2 ) 42e 4 2e 3 2e21 4e 2 ,

a(l 1 , l 3 ) 4e 2 1e 4 ,

a(l 1 , l 4 ) 412e 4 42(e 2 1e 4 )1e 2 11 ,

a(l 2 , l 3 ) 42e ,

a(l 2 , l 4 ) 42e 2 2e 4 ,

a(l 3 , l 4 ) 41 .

If 1 , e , e 2 , e 2 1e 4 are linearly independent over Q then rk a44.
We can consider the decomposition of a:

a4a 1 Q 1
ȳ1

1a 2 Q e
ȳ2

1a 3 Qe 2

ȳ3

1a 4 Q (e 2 1e 4 )
���

y4

.

To obtain the equations of E(a) we write

a(u , v) 4a(n1 l 1 1n2 l 2 1n3 l 3 1n4 l 4 , m1 l 1 1m2 l 2 1m3 l 3 1m4 l 4 ) 4

(n1 m2 2n2 m1 ) a(l 1 , l 2 )
���

y3

1(n1 m3 2n3 m1 ) a(l 1 , l 3 )
���

y4

1

(n1 m4 2n4 m1 ) a(l 1 , l 4 )
���

y11y32y4

1(n2 m3 2n3 m2 ) a(l 2 , l 3 )
���

2y2

1

(n2 m4 2n4 m2 ) a(l 2 , l 4 )
���

2y4

1(n3 m4 2n4 m3 ) a(l 3 , l 4 )
���

y1

from which

a(u , v) 4 (n1 m4 2n4 m1 1n3 m4 2n4 m3 ) y1 1

(2n2 m3 1n3 m2 ) y2 1 (n1 m2 2n2 m1 1n1 m4 2n4 m1 ) y3 1

(n1 m3 2n3 m1 2n1 m4 1n4 m1 2n2 m4 1n4 m2 ) y4 4

(p14 1p34 )y1 1 (2p23 )y2 1 (p12 1p14 )y3 1 (p13 2p14 2p24 )y4 .
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QOE(a) has equations:

.
`
/
`
´

x14 42x34 ,

x23 40 ,

x12 42x14 ,

x13 4x14 1x24 ,

x12 x34 2x13 x24 1x14 x23 40 ,

from which x 2
14 2x14 x24 2x 2

24 40 which is a quadric in P1 .
If we call x14 4x , x24 4y and t4yOx we find the equation 2t 2 2 t11 40

with coefficients over Q which doesn’t have roots in Q ¨ the quadric QOE(a)
doesn’t have rational points ¨ a is not hyperbolic and a is not hyperbolic over
Q¨ X is not isomorphic to a product of elliptic curves and X is not isogenous to
a product of elliptic curves, but X is a simple abelian surface.
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