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DMF-Algebras: Representation
and Topological Characterization.

MAURIZIO NEGRI

Sunto. – Gli insiemi parziali sono coppie (A , B) di sottoinsiemi di X , dove AOBc0.
Gli insiemi parziali su X costituiscono una DMF-algebra, ossia un’algebra di De
Morgan in cui la negazione ha un solo punto fisso. Dimostriamo che ogni DMF-al-
gebra è isomorfa a un campo di insiemi parziali. Utilizzando gli insiemi parziali
su X come aperti, introduciamo il concetto di spazio topologico parziale su X . Infi-
ne associamo ad ogni DMF-algebra A uno spazio topologico parziale i cui clopen
compatti costituiscono un campo d’insiemi parziali isomorfo ad A..

1. – Partial sets.

The classical conception of property (of individuals of a given domain X) is
characterized by the following aspects that we would underline: 1) from any
property P we can obtain the opposite property not-P by an operation called
negation, 2) for any property P and any individual a, if P does not hold for a,
then the property not-P holds for a. From an extensional point of view, classi-
cal properties can be identified with subsets of X and the usual operations of
conjunction, disjunction and negation can be represented by the operations of
intersection, union and complement. For any set X we denote with P (X) the al-
gebra of signature L BA 4 ]R , S , T , 0 , 1( whose domain is the power set
P(X) and whose operations and constants RB SB TB, 0B, 1B are respectively
O, N, 2, ¯ and X. Any algebra A ’ P (X) is called a field of sets on X, whereas
P (X) is the field of all sets on X. The concept of a ring of sets on X is defined in
the same way for the signature ]R , S , 0 , 1(, dropping the interpretation of
T . We denote with R (X) the ring of all sets on X .

The concept of partial property retains the first and rejects the second
point above: there are properties P and individuals x�X such that neither P
nor not-P holds for x. (A study of the concept of partial predicate is contained
in [3, 7.7], where the locution ’inexact predicate’ is preferred.) From an exten-
sional point of view partial properties can be identified with partial sets. We
define a partial set on X as an ordered couple (A , B) of subsets of X such that
AOB4¯. If we identify P with (A , B), we say that P holds for x iff x�A. The
first element A contains the elements of X definitely enjoying P and B con-
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tains the elements of X definitely not-enjoying P. So not-P, the negation of P,
is simply obtained by exchanging A with B. As we suppose that AOB4¯,
there is no x such that P and not-P simultaneously hold for x. However we do
not require ANB4X, so when ANB is strictly included in X, there is some
x�X2ANB such that neither P nor not-P holds for x : tertium non datur is
no longer a logical truth. When x�X2ANB we say that P is undefined for x.
Classical properties arise when A is exactly the complement of B and in this
case the information carried by the couple (A , B) is the same of the single A or
B. If P and Q are properties represented by partial sets (A , B) and (C , D),
then the conjunction «P and Q» can be represented by (AOC , BND). If P is
«red» and Q is «hot», then the partial predicate «P and Q» has a positive part
containing individuals being simultaneously red and hot, the intersection AO
C of the positive parts of P and Q, and a negative part containing individuals
failing to be red or failing to be hot or failing to be «red and hot», the union of
the negative parts of P and Q. So a logical operation «and» is interpreted by
two different operations on positive and negative parts that are reciprocally
dual. The same can be said about the operation «or».

As an analog to the classical notion of field of sets we introduce the concept
of partial field of sets on X. Firstly we define D(X) 4 ](A , B): A , B’X ,
AOB4¯(, then for any set X we denote with D (X) the algebra of signature
LDMF 4 ]R , S , T , 0 , n , 1( whose domain is D(X) and whose operations and
constants are defined as follows:

(A , B)RD (A 8 , B 8 ) 4 (AOA 8 , BNB 8 ),

(A , B)SD (A 8 , B 8 ) 4 (ANA 8 , BOB 8 ),

TD (A , B) 4 (B , A),

0D 4 (¯ , X),

1D 4 (X , ¯),

n D 4 (¯ , ¯).

One can easily see that D(X) is closed with respect to these operations We say
that an algebra A of signature LDMF is a field of partial sets on X if A ’ D (X).
In particular, D (X) is the field of all partial sets on X.

To simplify notation we shall write O instead of RD , being clear that in a con-
text like (A , B)O (A 8 , B 8) the symbol O stands for RD , whereas in a context
like AOB it denotes the usual intersection. The same holds for the other opera-
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tions. We introduce as usual a partial order relation on partial sets setting

(A , B) ’ (A 8 , B 8 ) iff (A , B)O (A 8 , B 8 ) 4 (A , B).

It can be easily verified that (A , B) ’ (A 8 , B 8 ) iff A’B and B 8’A 8.
When in a partial set (A , B) we have B42A, then we say that it is a clas-

sic (bivalent) set. (We write 2A instead of X2A when X is clear from the con-
text.) The set of all classical sets in D (X) is a Boolean algebra, but it is not a
field of partial sets because it is not closed with respect to the constant n .

Partial sets on X can equally well be represented by another structure that
we call E (X). The domain of E (X) is the set of couples (A , B) of subsets of X
such that ANB4X. The operations R, S, T and constants 0, 1 are defined
as above, the only difference being n4 (X , X). We can define an isomorphism
W between D (X) and E (X) setting W (A , B) 4 (2B , 2A), where 2A4X2A
and 2B4X2B, so these two ways of viewing partial sets are equivalent.

It is well known that fields of sets are representative of Boolean algebras
(BA) and ring of sets are representative of bounded distributive lattices
(DL0, 1 ). The aim of this work is to show that partial sets play with DMF-alge-
bras (DMF) the same role that classical sets play with Boolean algebras, DM-
algebras and distributive lattices. We can shortly describe DMF-algebras as
follows. De Morgan algebras (DM) are structures of signature LBA satisfying
the axioms of bounded distributive lattices plus De Morgan laws

T(xRy) 4TxSTy and T(xSy) 4TxRTy

and double negation law

TTx4x .
DMF-algebras are structures of signature L DMF satisfying the axioms of DM-
algebras plus normality axiom

xRTxGySTy

and the fixed point axiom

Tn4n .
DMF-algebras can also be seen as DM-algebras with a single fixed point for
negation, because any DM-algebra satisfying )!x(Tx4x) is normal (see [3.3]
[4]) and then can be expanded to a DMF-algebra. In paragraph 3 we shall
show that any DMF-algebra is isomorphic to a field of partial sets. If we drop
the interpretation of n, any DMF-algebra becomes a DM-algebra and can be
represented as a quasi field of sets following [1]. (They define in the ring of all
subsets R (X) an operation AA4X2g[A], for any A’X, where g : XKX is a
fixed involution on X, and call any subalgebra of R (X) expanded with A a
quasi-field of sets.) Our representation theorem is more specific because there
are DM-algebras that cannot be represented by fields of partial sets, because



MAURIZIO NEGRI372

every field of partial sets has a single fixed point (¯ , ¯) for negation, whereas
DM-algebras can have more than one fixed point, or none at all: the following
four-element DM-algebra is an instance of the first case,

and any BA is an instance of the second.
In paragraph 4 we develop the concept of partial topological space in close

analogy with the classical concept of topological space: we only take as open
sets partial sets instead of classical sets. The resulting partial topologies pre-
serve some aspects of classical topologies, but the different nature of the com-
plement in the context of partial sets causes a different behaviour of closed
sets. For instance, a closed subset of a compact space is generally no longer
compact. In paragraph 5 we associate a partial topological space with every
DMF-algebra A and prove that A can be characterized as the set of compact
clopens of the associated topological space. We leave open the problem of
showing duality between DMF-algebras and some class of partial spaces.

2. – Construction of DMF-algebras.

If A is a lattice, we define the dual of A as a structure B 4 aA , SA , RA b,
i.e. we set RB 4SA and SB 4RA . We denote with A7 the dual of A. If A is a
bounded distributive lattice, then so is A7 . We say that W : A K B is a dual iso-
morphism iff W : A K B7 is an isomorphism.

The following theorem shows a general method to construct DMF-alge-
bras from bounded distributive lattices. If A is a bounded distributive lattice,
then the product B 4 A 3 A7 is a bounded distributive lattice too. If we denote
with R the operation RA and with Ri the operation RA7 (and adopt the same
convention with S , 0 , 1 ), then we have

(x , y)RB (z , w) 4 ((xRz), (yR 7w) )4 ((xRz), (ySw) ) ,

(x , y)SB (z , w) 4 ((xSz), (yS 7w) )4 ((xSz), (yRw) ) ,

0B 4 (0 , 0 7) 4 (0 , 1 ),

1B 4 (1 , 1 7) 4 (1 , 0 ).
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For any bounded distributive lattice A we define

p (A) 4A3A7N](a , b): aRb40(

and

r (A) 4A3A7N](a , b): aSb41(.

We denote with p (A) the structure with signature LDMF defined as follows: the
domain of p (A) is p (A), the lattice operations and constants are defined as in
A 3 A7 , T(a , b) 4 (b , a) and n4 (0 , 0 ). We define in the same way r (A) on
r (A), the only difference being n4 (1 , 1 ). The next theorem shows that p-
construction takes bounded distributive lattices in DMF-algebras

TEOREM 2.1. – If A �DL0, 1 then p (A) and r (A) are DMF-algebras.

Firstly we prove that p (A) is the domain of a substructure of A 3 A7 . If
(a , b) and (c , d) are in p (A), then (a , b) and (c , d) are in A3A and aRb4

cRd40. Then we have, setting A 3 A74 B to simplify notation,

(a , b)RB (c , d) 4 (aRc , bSd)

where

(aRc)R (bSd) 4 (aRcRb)S (aRcRd) 40,

and

(a , b)SB (c , d) 4 (aSc , bSd)

where

(aSc)R (bRd) 4 (bRdRa)S (bRdRc) 40.

So p (A) is closed with respect to RB and SB. As p (A) is also closed with re-
spect to 0B 4 (0 , 1 ) and 1B 4 (1 , 0 ), we have p (A) ’ A 3 A7 . As bounded dis-
tributive lattices have equational axioms, this proves that p (A), forgetting n
and T is a bounded distributive lattice. (The same can be proved for
r (A) ) .

Now we show that p (A) is a DMF-algebra: in fact, T is an involutive dual
automorphism, because

TT(a , b) 4 (a , b)

and

T((a , b)RB (c , d) )4T(aRc , bSd) 4 (bSd , aRc) 4

(b , d)SB (a , c) 4T(a , b)SB T(c , d).
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Of course we have Tn4T(0 , 0 ) 4 (0 , 0 ) 4n . As for normality axiom xR
TxGySTy, we must show that

(a , b)RB (b , a) G (c , d)SB (d , c).

If we remember that aRb4cRd40, we have

(aRb , bSa)RB (cSd , dRc) 4 (0 , bSa)RB (cSd , 0 ) 4

((cSd)R0, (bSa)S0)4 (0 , bSa) 4 (aRb , bSa).

(In the same way we can prove that r (A) is a DMF-algebra.) The following
theorem shows that p-construction preserves morphisms.

THEOREM 2.2. – Let A , B �DL0, 1 . If W : A K B is a DL0, 1-monomorphism
(isomorphism), then there is a DMF-monomorphism (isomorphism)
c : p (A) Kp (B). If W is idA then c is idp (A) .

We set c(x , y) 4 (W(x), W(y) ) . Firstly we verify that c(x , y) belongs to
p(B), i.e. W(x)RB W(y) 40B . As (x , y) �p (A), we have xRA y40A, so W(x)R
B W(y) 4W(xRA y) 4W(0A ) 40B , because W is a morphism. c is injective be-
cause W is injective. Let Rp A and Rp B denote respectively meet in p (A) and
p (B). c preserves meets:

c((x , y)Rp A (z , w) )4c (xRA z , ySA w) 4 (W(xRA z), W(ySA w) )4

(W(x)RB W(z), W(y)SB W(w) )4 (W(x), W(y) )Rp B (W(z), W(w) )4

c(x , y)Rp B c(z , w).

In the same way we can prove that c preserves the other operations and
constants.

In every DMF-algebra A we can define two sublattices D A and ˜A as
follows:

D A 4 ]xRTx : x�A( and ˜A 4 ]xSTx : x�A(.

From [4, 3.3, 3.4] we know that, for all x�D A , xGn, and for all x�˜A , nGx .
So [0 , n] 4D A and [n , 1 ] 4˜A , then D A and ˜A are bounded distributive lat-
tices. However they are only sublattices of A, and not bounded sublattices, be-
cause 0˜A 4n and 1D A 4n . We observe that ˜A ND A is a subalgebra of A and
then a DMF-algebra.

We can classify DMF-algebras in equivalence classes setting A A B iff ˜A

and ˜B are isomorphic as bounded distributive lattices. In other words, DMF-
algebras sharing the same [n , 1 ] interval are equivalent. In every class NAA N
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there is an «initial» element ˜A ND A that can be embedded in every other ele-
ment and there is a «final» element p (˜A ) in which any other element can be
embedded. The first assertion is clear while the second assertion is proved by
the following two theorems.

THEOREM 2.3. – If A is a DMF-algebra, then there is a monomorphism
W : A Kp (˜A ).

We define W : A Kp (˜A ) setting W(x) 4 (xSn , TxSn), where S and T

are taken in A . In general operations and constants without superscripts are
supposed to be in A . As ˜A ’ A as lattices, we write R and S instead of R˜A

and S˜A when no confusion is possible.
Firstly we show that W(x) �p(˜A ). As nGxSn and nGTxSn , we have

xSn , TxSn�˜A , so we have only to verify that

(xSn)R˜A (TxSn) 40˜A ,

remembering that 0˜A 4n . In fact, dropping all superscripts because every op-
eration can be taken in A , we have

(xSn)R (TxSn) 4 ((xSn)RTx)S ((xSn)Rn)4 ((xSn)RTx)Sn4

4 (xRTx)S (nRTx)Sn4 (xRTx)Sn .

By [4, 3.3, 3.4] we have xRTxGn for every x so (xRTx)Sn4n . We show
that W is injective. If W(x) 4W(y) then

(xSn , TxSn) 4 (ySn , TySn),

so

xSn4ySn(1)

and TxSn4TySn . As n4Tn, we have TxSTn4TySTn, so T(xR
n) 4T(yRn) and then TT(xRn) 4TT(yRn), so

xRn4yRn .(2)

Then we have

x4 (xRn)Sx

by (2) 4 (yRn)Sx4 (ySx)R (nSx)

by (1) 4 (ySx)R (ySn) 4yS (xRn)

by (2) 4yS (yRn) 4y .

We denote with Rp , Sp and Tp the operations in p (˜A ) and show that W pre-
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serves meets:

W(xRy) 4 ((xRy)Sn , T(xRy)Sn)4 ((xRy)Sn , TxSTySn)4

((xSn)R (ySn), TxSnSTySn)4

(xSn , TxSn)Rp (ySn , TySn) 4W(x)Rp W(y).

In the same way we can prove that W preserves joins. As for negation:

W(Tx) 4 (TxSn , TTxSn) 4 (TxSn , xSn) 4

Tp (xSn , TxSn) 4Tp (W(x) ) .

Finally W preserves 0 , 1 and n :

W(0) 4 (n , 1 ) 4 (0˜A , 1˜A ) 40p ,

W(1) 4 (1 , n) 4 (1˜A , 0˜A ) 41p ,

W(n) 4 (n , n) 4 (0˜A , 0˜A ) 4n p .

The following picture shows A and p (˜A ) in a simple case.

THEOREM 2.4. – If A is a DMF-algebra, then p (˜A ) �NANA .

Let W be as in the above theorem. We show that W is an isomorphism be-
tween ˜A and ˜p (˜A ) . As W : A Kp (˜A ) is a monomorphism by the above theo-
rem, we have only to show that W takes ˜A onto ˜p (˜A ). Let (a , a 8 ) �˜p (˜A ) ,
then n p (˜A ) 4 (n , n) G (a , a 8 ) because p (˜A ) is a DMF-algebra and every ele-
ment of ˜p (˜A ) dominates n p (˜A ) . So nGa and a 8Gn. From nGa we have a4

aSn and TaGTn4n, so n4TaSn . As (a , a 8 ) is an element of p (˜A ), we
have a�˜A and a 8�˜A . As A is a DMF-algebra we have nGa 8, so from a 8Gn
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we have a 84n . Then we have

(a , a 8 ) 4 (a , n) 4 (aSn , TaSn) 4W(a),

where a�˜A . A theorem like 2.3 can be proved with r(D A ) setting W(x) 4

(xRn , TxRn). This is not, however, a new embedding, because we can show
that p (˜A ) and r (D A ) are isomorphic.

THEOREM 2.5. – If A is a DMF-algebra, then p (˜A ) Cr (DA ).

Firstly we observe that

(a , b) �p (˜A ) iff a , b�˜A and aRb40˜A 4n ,

iff Ta , Tb�DA and TaSTb41DA 4n ,

iff (Ta , Tb) �r (DA ).

So we can define W : p (˜A ) Kr (DA ) setting W(a , b) 4 (Tb , Ta). As T is a bi-
jection between ˜A and DA , W is a bijection too. W preserves Tp :

W(Tp (a , b) )4W(b , a) 4 (Ta , Tb) 4Tr (W(a , b) ) .

W preserves Rp :

W((a , b)Rp (c , d) )4W(aRc , bSd) 4 (T(bSd), T(aRc) )4

(TbRTd , TaSTc) 4 ((Tb , Ta)Rr (Td , Tc) )4W(a , b)Rr W(c , d).

In the same way we show that W preserves the others operations and
constants.

We have shown that every DMF-algebra A can be embedded in p (B), for
some B �DL0, 1 , in particular A can be embedded in p (˜A ), but we cannot
prove in general that any DMF-algebra A is isomorphic to p (B), for some B �
DL0, 1 . The following axiom

(xy(xRy4nK)z(zSn4x&TzSn4y) )(2.3)

characterizes those DMF-algebras which can be obtained from bounded dis-
tributive lattices by a p-construction, as the following theorem shows.

THEOREM 2.6. – If A is a DMF-algebra, the the following propositions are
equivalent:

1) A Cp (B), for some B �DL0, 1 ,

2) (xy(xRy4nK)z(zSn4x&TzSn4y) ) ,

3) A Cp (˜A ).

1) implies 2). We show that 2) holds in p (B), for any B �DL0, 1 . Let
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(b , b 8 ), (c , c 8 ) �p (B). We suppose (b , b 8 )R (c , c 8 ) 4n4 (0 , 0 ), where 0 is
0B , so bRc40 and b 8Sc 840. As bRc40, we have (b , c) �p (B). We show
that we can set z4 (b , c). In fact,

(b , c)Sn4(bS0, cR0)4(b , 0 ) and T(b , c)Sn4(cS0, bR0)4(c , 0 ).

But from b 8Sc 840 we have b 840 4c 8, so (b , c)Sn4 (b , b 8 ) and T(b , c)S
n4 (c , c 8 ).

2) implies 3). By Theorem 2.3 there is a monomorphism W : A Kp (˜A ),
where W(x) 4 (xSn , TxSn). We show that if 2) holds then W is onto. If
(a , a 8 ) �p (˜A ) then a, a 8�˜A and aRa 840˜A 4n. By 2) there is a z�A such
that zSn4a and TzSn4b 8, so W(z) 4 (a , a 8 ).

3) implies 1). We can set B 4˜A because ˜A �DL0, 1 .

If A is the DMF-algebra shown on the left side of the preceding figure,
then there is no B �DL0, 1 such that A Cp (B), because aRb4n holds in A,
yet there is no z such that a4zSn e b4TzSn. In particular, AC/ p(˜A ).

We conclude this paragraph with some remarks about fields of partial sets.
We can see that D(X), the field of all partial sets on X, arises from a particular
case of p-construction, because D (X) 4p(R (X) ), where R (X) is the ring of all
sets on X. From Theorem 2.2 we see that A ’ R (X) implies p (A) ’p(R (X) ), so
p (A) is a field of partial sets whenever A is a ring of sets. We can ask if every
field of partial sets arises from a ring of sets by a p-construction, but we can
easily see that it happens iff (3) is satisfied. If A is a field of partial sets on X
satisfying (3), then A Cp (˜A ) and ˜A is isomorphic to the ring of set ]Z’
X : (Z , ¯) �˜A (. On the other side, if A Cp (B), for some ring of sets B, then A

satisfies (3).

3. – The representation theorem.

From Stone representation theorem we know that every A �DL0, 1 is iso-
morphic to a ring of sets. In particular Stone theorem gives an embedding
u : A KR(FP(A) ), where FP(A) is the set of prime filters in A and u(a) 4

]X�FP(A): a�X(.

THEOREM 3.1. – For any A �DL0, 1 , the DMF-algebra p(A) is isomorphic
to a field of partial sets on FP(A).

If u is the Stone embedding, by Theorem 2.2 there is an embedding
c : p (A) Kp(R(FP(A) )) where c(x , y) 4 (u(x), u(y) ) . As p(R(FP(A) ))4

D(FP(A) ) , we have shown that p (A) is isomorphic to a subalgebra of
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D(FP(A) ), the field of all partial sets on FP(A), so p (˜A ) is isomorphic to a
field of partial sets on FP(A).

COROLLARY 3.2. – Every DMF-algebra A is isomorphic to a field of partial
sets on FP(˜A ).

By Theorem 2.3 there is a monomorphism W : A Kp (˜A ). By the preceding
theorem there is a monomorphism c : p (˜A ) K D(FP(A) ) .

We take a closer look at the images of DMF-algebras as fields of partial
sets, because they will play a role in what follows as bases of topological
spaces. For any DMF-algebra A, we denote with A* the isomorphic image of A

as a field of partial sets given by Corollary 3.2, so we have

(4) A*4c i W[A] 4c[](aSn , TaSn): a�A(] 4

](u(aSn), u(TaSn) ) : a�A(.

When A is p(˜A ) we have simply

p (˜A )*4c[p (˜A ) ] 4 ](u(x), u(y) ): x�˜A , xRy4n((5)

by Theorem 3.1. (We can obtain the same result by applying the above corol-
lary. In fact p (˜A ) Cp(˜p (˜A ) ) by (3) of Theorem 2.6 and in particular W is an
isomorphism, so p (˜p (˜A ) ) 4W[p (˜A ) ]. By Corollary 3.2 we have p (˜A )*4

ciW[p (˜A ) ] 4c[p (˜A ) ] because we can identifiy isomorphic structures.) As
A is represented through a previous embedding in p (˜A ), we have A*’
p (˜A )* .

For any set A and Z’A3A, we denote with (Z)0 the set of all left compo-
nents, (Z)0 4 ]a�A : (a , b) �Z , for some b�A(, and with (Z)1 the set of all
right components, (Z)1 4 ]a�A : (b , a) �Z , for some b�A(. The following
theorem shows that left and right components of the representation of a
DMF-algebra A coincide with the Stone representation u[˜A ] of ˜A .

THEOREM 3.3. – Let F be any field of partial sets on X, then

1) (F )0 4 (F )1 .

2) Both (F )0 and (F )1 are rings of sets on X.

3) (p (˜A )* )0 4 (p (˜A )* )1 4 (A*)0 4 (A*)1 4u[˜A ], for any DMF-alge-
bra A .

1) If A� (F )0 then there is B’X such that (A , B) � F , so T(A , B) 4

(B , A) � F and A� (F )1 . In the same way we prove that (F )1 is included in
(F )0 .
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2) As (X , ¯) and (¯ , X) belong to F, X and ¯ belong to (F )0 . If A , B�
(F )0 then, for some A 8, B 8’X, (A , A 8 ) and (B , B 8 ) belong to F, so (AO
B , A 8NB 8 ) and (ANB , A 8OB 8 ) belong to F and then (AOB) and (ANB)
belong to (F )0 . As (F )0 4 (F )1 by 1), (F )1 is a ring of sets too.

3) By 1) we have (p (˜A )* )0 4 (p (˜A )* )1 and (A*)0 4 (A*)1 . Firstly we
prove (p (˜A )* )0 4u[˜A ]. Obviously (p (˜A )* )0 ’u[˜A ] by (5) above. The inclu-
sion u[˜A ] ’ (p(˜A )* )0 follows by observing that, for all x�˜A , we have xR
n4n, so (u(x), u(n) )�p (˜A )* by (5) above. Finally we prove (A*)0 4u[˜A ].
On one side we have (A*)0 ’u[˜A ], because A*’p (˜A )*, so (A*)0 ’ (p(˜A )* )0

and by the first part of the proof (p (˜A )* )0 4u[˜A ]. On the other side, let
u(a) �u[˜A ], then u(a) 4u(aSn) because a�˜A and a4aSn . But u(aS
n) � (A*)0 by (4), so u[˜A ] ’ (A*)0 .

4. – Partial topologies.

In Stone representation theory, for any A �DL0, 1 a topological space
(X , R) is constructed, where X4FP(A) and R is the topology generated by
taking the Stone representation u[A ] as a base. Next Stone showed that A can
be characterized as the set of all compact open sets in (X , R). In this para-
graph we develop partial topology, i.e. topology based on partial sets, to prove
a similar result.

Firstly we introduce infinitary joins and meets in DMF-algebras. If A is a
complete lattice, we introduce the operation Rp in p (˜A ) setting, for all
Z’p (A),

R
p

(Z) 4gR
A

((Z)0 ) , S
A

((Z)1 )h.

The set Z can also be given as an indexed set ](ai , bi ): i�I(: in this case we
write

R
p

(](ai , bi ): i�I( )4gR
A

]ai : i�I(, S
A

]bi : i�I(h.

Infinitary joins can be introduced in the same way. When no confusion can
arise, we simplify notation, dropping exponents and omitting any explicit men-
tion of the index set I, and simply write ]ai ( instead of ]ai : i�I(.

Infinitary intersection and union can be treated as particular cases
arising when A is a complete set lattice. In any complete field of partial
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sets on X we have in particular

1
p

¯4 g1¯ , 0¯h4 (X , ¯) and 0
p

¯4 g0¯ , 1¯h4 (¯ , X)

in analogy with classical infinitary operations.
Now we can define a partial topology on X as a class R’ D (X) such that: 1)

R is closed under finitary intersections, 2) R is closed under infinitary unions
and 3) n�R (i.e. (¯ , ¯) �R) . Observe that we have (X , ¯) �R as the result of
an empty intersection and (¯ , X) �R as the result of an empty union. A partial
topological space on X is a couple (X , R) where R is a partial topology on X.
The elements of R are called open sets. A closed set is a (partial) set (A , B)
such that (B , A) �R . As usual a clopen set is a simultaneously open and closed
set: (X , ¯), (¯ , X) and (¯ , ¯) are always clopen. It can be easily seen that the
clopens of a topological space on X are a field of partial sets on X .

A base for a partial topology R on X is a B ’R such that every open set in R
is 0B8, for some B8’ B. For any class of sets B we set R (B) 4 ]0B8 : B8’ B(.
(The notation R (B) will denote a class of partial or classical sets when the ele-
ments of B are respectively partial or classical sets.) The following theorem
gives a sufficient condition on B for R (B) being a partial topology.

THEOREM 4.1. – For any B ’ D (X), if B has the fip (finite intersection
property) and n� B , then B is a base of R (B).

We only observe that (¯ , X) 41¯ and (X , ¯) 40¯ belong to R (B). The
proof is similar to the classical case.

We can easily obtain partial topological spaces from classical ones as fol-
lows. Let R0 and R1 be classical topologies on X, we define

[R0 , R1 ] 4 ](A , B): A�R0 , 2B�R1 , AOB4¯(,

the set of all disjoint couples (R0-open, R1-closed).

THEOREM 4.2. – [R0 , R1 ] is a partial topology on X .

Obviously (X , ¯), (¯ , X), (¯ , ¯) � [R0 , R1 ]. Closure under finite intersec-
tions: if (A , B), (A 8 , B 8 ) � [R0 , R1 ] then A, A 8�R0 and 2B, 2B 8�R1 , so
AOA 8�R0 and 2BO2B 842 (BNB 8 ) �R1 . So (AOA 8 , BNB 8 ) 4

(A , B)O (A 8 , B 8 ) � [R0 , R1 ]. Closure under infinite unions: let ](A 0
i , A 1

i )( be
a sequence where (A 0

i , A 1
i ) � [R0 , R1 ], for all i�I, then ]A 0

i ( is a sequence
where A 0

i �R0 , for all i�I, and ]A 1
i ( is a sequence where 2A 1

i �R1 , for all i�
I. Then 0]A 0

i ( �R0 and 21]A 1
i ( 40]2A 1

i ( �R1 . So (0]A 0
i (, 1]A 1

i ()4

0](A 0
i , A 1

i )( � [R0 , R1 ].
In the other direction, we can associate two classical topologies on X to every
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partial topology R on X. We define the left topology R˜4 (R)0 , whose open sets
are the left components of R, and the right topology RD42(R)14 ]X2Z :
Z� (R)1(, whose open sets are the complements (in X) of the right components
of R .

THEOREM 4.3. – If R is a partial topology on X , then R˜ and RD are classi-
cal topologies on X .

From (X , ¯) �R we have X�R˜ and from (¯ , X) �R we have ¯�R˜ . Clo-
sure under finite intersections: if Z0 , Z1 �R˜ , then (Z0 , W0 ), (Z1 , W1 ) �R , for
some W0 , W1 ’X , and

(Z0 , W0 )O (Z1 , W1 ) 4 (Z0 OZ1 , W0 NW1 ) �R

so Z0 OZ1 �R˜ . Closure under infinite unions: let ]Zi : i�I( be a family of
open sets in R˜ , then ](Zi , Wi ): i�I( is a family of open sets in R , for some
]Wi : i�I( with Wi ’X , then

0](Zi , Wi )( 4 g0]Zi (, 1]Wi (h�R

and 0]Zi ( �R˜. This proves that R˜ is a classical topology on X .
As (X , ¯) �R , ¯� (R)1 so 2¯4X�RD by definition of RD. From (¯ , X) �R

we have X� (R)1 so 2X4¯�RD . Closure under finite intersections: if W0 ,
W1 �RD , then (Z0 , 2W0 ), (Z1 , 2W1 ) �R , for some Z0 , Z1 ’X , and

(Z0 , 2W0 )O (Z1 , 2W1 ) 4 (Z0 OZ1 , 2(W0 OW1 ) )�R

so W0 OW1 �RD . Closure under infinite unions: let ]Wi : i�I( be a family of
open sets in RD , then ](Zi , 2Wi ): i�I( is a family of open sets in R and

0](Zi , 2Wi )( 4 g0]Zi (, 20]Wi (h�R

so 0]Wi ( �RD . This proves that RD is a classical topology on X .

The following theorem shows that we can extract classical bases for the
classical topologies R (B)˜ and R (B )D from the partial base B of the partial
topology R (B ).

THEOREM 4.4. – If R (B) is a partial topology on X having B as a base, then
R (B)˜4R((B)0 ) and R (B)D4R(2 (B)1 ) .

If Z�R (B)˜, then (Z , W) �R (B), for some W’X. As B is a base, (Z , W) 4

0](B 0
i , B 1

i )( where (B 0
i , B 1

i ) � B for all i�I . Then Z40]B 0
i (, where B 0

i �
(B)0 , so Z�R((B)0 ) .

If Z�R((B)0 ) , then Z40]B 0
i (, where B 0

i � (B)0 for all i�I . Then
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there are B 1
i ’X such that (B 0

i , B 1
i ) � B for all i�I. So 0](B 0

i , B 1
i )( �R (B)

and 0]B 0
i ( 4Z belongs to R (B)˜ .

If W�R (B)D, then (Z , 2W) �R (B), for some Z’X. Then (Z , 2W) 4

0](B 0
i , B 1

i )( where (B 0
i , B 1

i ) � B for all i�I . Then 2W41]B 1
i (, where B 1

i �
(B)1 , so W40]2B 1

i ( and W�R(2 (B)1 ) .
If W�R(2 (B)1 ) , then W40]2B 1

i (, where B 1
i � (B)1 for all i�I . Then

there are B 0
i ’X such that (B 0

i , B 1
i ) � B , for all i�I, and 0](B 0

i , B 1
i )( 4

(0]B 0
i (, 1]B 1

i ( )�R (B). So we have W40]2B 1
i ( 42 1]B 1

i ( �R (B)D .

If we try to obtain a partial topology R from its left and right topologies R˜

and RD, we find that [R˜ , RD ] is generally finer than R.

THEOREM 4.5. – For any partial topology R , R’ [R˜ , RD ].

If (A , B) �R , then A�R˜ and 2B�RD , so (A , B) � [R˜ , RD ].
In some cases we have R% [R˜ , RD ]. An example is given by R4 ](A , ¯):

A’X(N ](¯ , A): A’X(, that can easily seen to be a partial topology on X dif-
ferent from the set of all partial set on X, the discrete partial topology on X.
Then both R˜ and RD are the discrete classical topology on X and [R˜ , RD ] 4

D (X), the discrete partial topology. At the end of this paragraph we shall give
a sufficient condition for [R˜ , RD ] 4R, but this requires a study of compact-
ness in partial spaces.

We can define compactness in partial topology in the same way as in classi-
cal topology. Let (X , R) be a partial space, we say that a class ](G 0

i , G 1
i )( of

partial sets is an open cover of a partial set (A , B) if (G 0
i , G 1

i ) �R for all i�I
and (A , B) ’0](G 0

i , G 1
i )(. A partial set (A , B) is said to be a compact partial

set if every open cover of (A , B) includes a finite subcover. The whole space is
a compact space if (X , ¯) is a compact partial set.

THEOREM 4.6. – If A is compact in (X , R0 ), 2B is compact in (X , R1 ) and
AOB4¯ , then (A , B) is compact in (X , [R0 , R1 ] ).

Let (A , B) ’0](G 0
i , G 1

i )(, where (G 0
i , G 1

i ) � [R0 , R1 ] for all i�I , then
G 0

i �R0 and 2G 1
i �R1 for all i�I . Then A’0]G 0

i ( and 1]G 1
i ( ’B that implies

2B’0]2G 1
i (. As A is compact in (X , R0 ) and 2B is compact in (X , R1 ), we

have

A’G 0
i1

N, R , NG 0
in

and 2B’2G 1
j1

N, R , N2G 1
jk

for some ]i1 , R , in ( ’I , and some ] j1 , R , jk ( ’I . From the second inclusion
we obtain G 1

j1
O, R , OG 1

jk
’B , so we have

((G 0
i1

, G 1
i1

)N, R , N(G 0
in

, G 1
in

) )N ((G 0
j1

, G 1
j1

)N, R , N(G 0
jk

, G 1
jk

) )* (A , B).
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COROLLARY 4.7. – If (X , R0 ) and (X , R1 ) are classic compact spaces then
(X , [R0 , R1 ] ) is a partial compact space.

X is compact in (X , R0 ) and 2¯ is compact in (X , R1 ), so by the theorem
(X , ¯) is compact in (X , [R0 , R1 ] ).

THEOREM 4.8. – For any partial topology R on X, (X , R) is compact iff
(X , R˜ ) is compact.

Let X40]A 0
i (, where A 0

i �R˜ for all i�I . There are A 1
i ’X such that

(A 0
i , A 1

i ) �R , for all i�I , and

0](A 0
i , A 1

i )( 4 g0]A 0
i (, 1]A 1

i (h4 gX , 1]A 1
i (h.

As (X , 1]A 1
i () is a partial set, 1]A 1

i ( must be ¯ so ](A 0
i , A 1

i )( is an open cov-
ering of (X , ¯) and by compactness there are ]i1 , R , in ( ’I such that
(A 0

i1
, A 1

i1
)N, R , N(A 0

in
, A 1

in
) 4 (X , ¯), so A 0

i1
N, R , NA 0

in
4X .

Let 0](A 0
i , A 1

i )( 4 (X , ¯), where (A 0
i , A 1

i ) �R for all i�I , so X40]A 0
i (.

As (X , R˜ ) is compact, we have X4A 0
i1

N, R , NA 0
in

for some i1 , R , in �I , so
(A 0

i1
, A 1

i1
)N, R , N(A 0

in
, A 1

in
) 4 (X , Z), where Z4A 1

i1
O, R , OA 1

in
. As (X , Z)

is a partial set, Z must be ¯, so (X , R) is compact.

THEOREM 4.9. – For any partial topology R on X, n is compact in (X , R) iff
(X , RD ) is compact.

Let X40]A 1
i (, where A 1

i �RD for all i�I , then ¯41]2A 1
i (. For every

i there is a subset A 0
i of X such that (A 0

i , 2A 1
i ) �R , so (A 0

i , 2A 1
i )On4

(¯ , 2A 1
i )�R because n belongs to every partial topology. Then 0](¯ , 2A 1

i )(4

(¯ , 1]2A 1
i () 4 (¯ , ¯). As n is compact in (X , R) by hypothesis, there are

]i1 , R , in ( ’I such that

(¯ , ¯) 4 (¯ , 2A 1
i1

)N, R , N(¯ , 2A 1
in

),

then ¯42 (A 1
i1

N, R , NA 1
in

) and X4 (A 1
i1

O, R , OA 1
in

).
Let (¯ , ¯) ’0](A 0

i , A 1
i )(, where (A 0

i , A 1
i ) �R for all i�I . Then ¯’0]A 0

i (

and ¯41]A 1
i (. As all A 1

i are closed sets of (X , RD ) and (X , RD ) is compact,
there are i1 , R , in �I such that A 1

i1
O, R , OA 1

in
4¯ . So (¯ , ¯) ’ (A 0

i1
, A 1

i1
)N

, R , N(A 0
in

, A 1
in

) and (¯ , ¯) is compact in (X , R).

Now we can exhibit an important point of difference with respect to classi-
cal spaces: we cannot any longer prove that closed subsets of compact spaces
are compact. Let R0 and R1 be classical topologies on an infinite set X such that
(X , R0 ) is compact and (X , R1 ) is not compact. (We can suppose, to fix our
ideas, that R0 is the cofinite and R1 is the discrete topology on X.) Then
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(X , [R0 , R1 ] ) is compact by Theorem 4.8, but the closed set n is not compact in
it. If n were compact then (X , [R0 , R1 ]D ) would be a compact space by Theorem
4.9, but [R0 , R1 ]D4R1 .

As we have seen above, given any partial topology R we can generate a fin-
er partial topology [R˜ , RD ] from its left and right classical topologies. What
are the fixed points of this process? When [R˜ , RD ] 4R? We give a partial sol-
ution when R is generated by a field of partial sets. Firstly we introduce the
concept of full field of partial sets. If F is a field of partial sets on X, we say
that a subset A of X is a component of F if A is a left or a right component of F,
i.e. A� (F )0 N (F )1 . As F is a field (F )0 4 (F )1 , so A is a component of F iff A�
(F )0 (or A� (F )1 ) . We say that F is full if (A , B) � F whenever A and B are
components of F such that AOB4¯ .

THEOREM 4.10. – A field of partial sets F on X is full iff (3),

(xy(xRy4nK)z(zSn4x&TzSn4y) ) ,

holds in F .

Firstly we assume that F is full and prove (3). If x4 (A , B), y4 (A 8 , B 8 )
and (A , B)O(A 8 , B 8)4(¯ , ¯), then AOA 84¯ and BNB 84¯ so B4B 84¯ .
As F is full and A, A 8 are components of F satisfying AOA 84¯, we have
(A , A 8 ) � F. If we set z4 (A , A 8 ) then (3) holds in F, because x4 (A , ¯) and
y4 (A 8 , ¯). In the other direction, we suppose that (3) holds and that A and B
are components of F, with AOB4¯. If A is a component of F then there is
A 8’X such that (A , A 8 ) � F , so (A , A 8 )Nn4 (A , ¯) � F . For the same rea-
son we have (B , ¯) � F . As (A , ¯)O (B , ¯) 4n , by (3) there is a z in F such that
zNn4 (A , ¯) and TzNn4 (B , ¯). Let z4 (C , D), then (C , D)N (¯ , ¯) 4

(A , ¯) so C4A , and (D , C)N (¯ , ¯) 4 (B , ¯) so D4B . This proves that z4

(A , B), so (A , B) � F .

THEOREM 4.11. – Let F be a field of partial sets on X. If F is full and n is
compact in (X , R(F ) ) then R(F ) 4 [R(F )˜ , R (F )D ].

By Theorem 4.5, R (F ) ’ [R (F )˜ , R (F )D ]. Next we prove [R (F )˜ , R (F )D ] ’
R (F ). If (A , B) � [R (F )˜ , R (F )D ], then A�R (F )˜ and 2B�R (F )D , with AO
B4¯ . So by Theorem 4.4, A�R((F )0 ) and 2B�R(2 (F )1 ) . So A4

0]F 0
i : i�I( where F 0

i � (F )0 for all i�I . If B4¯ then (A , B) 4

0](F 0
i , ¯): i�I(. As F 0

i and ¯ are components of F and F is full, we have
(F 0

i , ¯) � F for all i�I, so (A , B) �R (F ). So from now on we assume Bc¯ . As
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2B�R(2 (F )1 ) we have 2B40]2F 1
j : j�J(, where F 1

j � (F )1 for all j�J ,
and

B41]F 1
j : j�J(.(6)

We can suppose that ]F 1
j : j�J( is closed with respect to finite intersec-

tions. (Otherwise we extend it to the class

W 4 ]F 1
j1

O, R , OF 1
jn

: j1 , R , jn �J , n�v(.

W is still a class of elements of (F )1 , because F is closed under finite unions
and intersections, and we still have 1W 4B . ) We prove that

for all F 0
i there is a F 1

j such that F 0
1 OF 1

j 4¯ .(7)

Let’s suppose, on the contrary, that

there is a F 0
i such that , for all j�J , F 0

i OF 1
j c¯ .(8)

We know that F 1
j is closed in (X , R (F )D ) , for all j�J. The same holds for F 0

i :
firstly we observe that R (F )D4R(2 (F )1 ) , by Theorem 4.4, then we note that
F 0

i � (F )0 and (F )0 4 (F )1, by 1) of Theorem 3.3, so 2F 0
i �2(F )1 , then F 0

i is
closed in R((F )1 ) . So Z 4 ]F 0

i (N ]F 1
j : j�J( is a class of closed in

(X , R (F )D ) . We prove that Z has the fip. Let Z8 be a finite subset of Z, we dis-
tinguish two cases. Case 1: F 0

i � Z8. Then

1Z84F 0
i OF 1

j1
O, R , OF 1

jn
4F 0

i OF 1
j ,

for some j�J, because we have supposed ]F 1
j : j�J( closed under finite inter-

sections, and F 0
i OF 1

j c¯ by (8). Case 2), F 0
i � Z8. Then

1Z84F 1
j1

O, R , OF 1
jn

*B

and then 1Z8c¯, because we have supposed Bc¯. From our hypothesis we
know that n is compact in (X , R (F ) ) so, by Theorem 4.9, (X , R (F )D ) is a com-
pact space in which 1Z c¯ , because Z is a class of closed sets enjoying the fip.
So we have

¯c1Z 4F 0
i O1]F 1

j ( 4F 0
i OB

by (6). This is absurd, however, because F 0
i ’A and by hypothesis AOB4¯ .

As we have shown that (8) implies a contradiction, we have proved (7).
Now we can define, for all i�I a f (i) �J such that F 0

i OF 1
f (i) 4¯ , by (7). As

F is a full partial field, we have (F 0
i , F 1

f (i) )� F . Then

0](F 0
i , F 1

f (i) )( 4 g0]F 0
i (, 1]F 1

f (i) (h4 gA , 1]F 1
f (i) (h�R (F ).
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On the other side we have (¯ , F 1
j ) � F , for all j�J, because ¯ and F 1

j are com-
ponents of F and F is full, so

0](¯ , F 1
j )( 4 g¯ , 1]F 1

j (h4 (¯ , B) �R (F ).

As 1]F 1
f (i) ( ’B, we have (A , 1]F 1

f (i) ()N (¯ , B) 4 (A , B) and then (A , B) be-
longs to R (F ).

THEOREM 4.12. – Let F be a field of partial sets on X. If (X , R (F ) ) is com-
pact and R (F ) 4 [R (F )˜ , R (F )D ], then F is full.

If A and B are components of F, then A, B� (F )0 4 (F )1 . By Theorem 4.4,
R (F )˜4R((F )0 ) so A�R (F )˜ . By Theorem 4.4, R (F )D4R(2 (F )1 ) so 2B�
R (F )D . Then (A , B) � [R (F )˜ , R (F )D ] 4R (F ). So there is a basic open cover
0](F 0

i , F 1
i )( 4 (A , B), where (F 0

i , F 1
i ) � F, and by compactness (A , B) is a fi-

nite union of elements of F . As F is a field of partial sets, it is closed under fi-
nite unions, so (A , B) � F .

So «F is full» is a sufficient condition for R (F ) 4 [R (F )˜ , R (F )D ], if n is
compact in the space, and a necessary condition, if the whole space is
compact.

5. – Partial Stone spaces.

Now we are in a good position to prove a topological characterization theo-
rem for DMF-algebras. For any DMF-algebra A �NANA we define a topologi-
cal space (X , R (A*)) , where X4FP(˜A ) and A* (see (4)) is the field of partial
sets on X representing A . R (A*) is indeed a topology on X because every field
of partial sets on X is a base for a topology on X, by Theorem 4.1. We say that
(X , R (A*)) is the partial Stone space associated to A. We shall show that
every DMF-algebra A can be characterized as the set of all compact clopens of
its partial Stone space.

We shall derive the topological properties of R (A*) from topological prop-
erties of the classical topologies R (A*)˜ and R (A*)D through the results of the
preceding paragraph. Firstly we show that R (A*)˜ and R (A*)D are well
known classical topologies, but to gain some insight in them we must recall
some basic facts about the classical Stone topology associated to a bounded
distributive lattice B. We follow the neat exposition in [2, 2.1], but the original
work is obviously due to [5].

Let’s denote with I(B) the complete lattice of ideals in B, we define
h : I(B) K R(FP(B) ) setting h(Z) 4 ]Y�FP(B ): ZOYc¯(, for all ideal Z of
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B . One can show (see, for instance, [2, 2.1]) that

i) h(B) 4FP(B), h(]0( )4¯ ,

ii) Z0 ’Z1 iff h(Z0 ) ’h(Z1 ),

iii) h(Z0 OZ1 ) 4h(Z0 )Oh(Z1 ),

iv) h(S]Zi : i�I( )40]h(Zi ): i�I(,

where Zi �I(B) for all i�I. Finally we define u : B K R(FP(B) ) setting u4

h i i , where i : B KI(B) is the lattice monomorphism i(b) 4 (b] (the principal
ideal generated by b) So we have, for all b�B ,

u(b) 4 ]Y�FP(B): (b]OYc¯( 4 ]Y�FP(B): b�Y(.

Always following [2] one can show, from i)-iv) above and from well known results
about filters separating xcy in distributive lattices, the following theorem.

THEOREM 5.1.

1) R0
B 4 ]h(Z): Z�I(B)( is a topology on X4FP(B), the classical Stone

topology associated to B ,

2) (X , R0
B ) is a compact T0 space,

3) u[B] 4 ]u(b): b�B( is the set of all compact open sets, is a ring of
sets isomorphic to B and a base for R0

B , so R0
B 4R (u[B] ).

Now we return to DMF-algebras and consider, for any DMF-algebra A,
the classical Stone topology associated to the bounded distributive lattice ˜A .
The following theorem shows that this classical Stone topology is the left
topology of R (A*).

THEOREM 5.2. – R (A*)˜4R (u[˜A ] ) 4 T 0
˜A .

We have R (A*)˜4R((A*)0 ) by Theorem 4.4 and (A*)0 4u[˜A ] by 3) of
Theorem 3.3, so R (A*)˜4R0

˜A by 3) of Theorem 5.1.

If we denote with F(B) the complete lattice of all filters of a bounded
distributive lattice B , we can define k : F(B) K R(FP(B) ) setting k(Z) 4

]Y�FP(B): Z’/ Y(, for all filter Z in B . One can show, as above, that

i8) k(B) 4FP(B), k(]1() 4¯,

ii8) Z0 ’Z1 iff k(Z0 ) ’k(Z1 ),

iii8) k(Z0 OZ1 ) 4k(Z0 )Ok(Z1 ),

iv8) k(S]Zi : i�I() 40]k(Zi ): i�I(,

where Zi �F(B) for all i�I. Then we define i : B KF(B) setting i(b) 4 [b), the
principal filter generated by b, and finally we define h : B K R(FP(B) ) setting
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h4k i i . So we have, for all b�B ,

h(b) 4 ]Y�FP(B): [b) ’/ Y( 4 ]Y�FP(B): b�Y( 42u(b).(9)

As above we can derive from i8)-iv8) above the following theorem.

THEOREM 5.3.

1) R1
B 4 ]k(Z): Z�F(B)( is a classical topology on X4FP(B ), the dual

Stone topology associated to B ,

2) (X , R1
B ) is a compact T0 space,

3) h[B] 4 ]h(b): b�B( is the set of all compact open sets, a ring of sets
antisomorphic to B and a base for R1

B , so R1
B 4R (h[B] ).

Going back to DMF-algebras we consider, for any DMF-algebra A, the du-
al Stone topology associated to the bounded distributive lattice ˜A . The follow-
ing theorem shows that this dual Stone topology is the right topology of
R (A*).

THEOREM 5.4. – R (A*)D4R (h[˜A ] ) 4 T 1
˜A .

We have R (A*)D4R(2 (A*)1 ) by Theorem 4.4 and 2(A*)1 42 (A*)0 4

]2u(x): x�˜A ( 4 ]h(x): x�˜A ( by 3) of Theorem 3.3 and (9), so R (A*)D4

R1
˜A by 3) of Theorem 5.3.

Now we can prove the topological characterization theorem.

THEOREM 5.5. – For any DMF-algebra A , the partial Stone space
(X , R (A*)) is a compact partial space where A* is the set of all compact
clopen sets.

By Theorem 5.2 and 5.4, we know that R (A*)˜ and R (A*)D are respectively
the classical and the dual Stone topology, so (X , R (A*)˜ ) and (X , R (A*)D ) are
respectively the classical and the dual Stone space and they are compact
spaces by 2) of Theorems 5.1 and 5.3. By Corollary 4.7, (X , [R (A*)˜ , R (A*)D ] )
is a compact partial space and by Theorem 4.5, R (A*) ’ [R (A*)˜ , R (A*)D ] so
(X , R (A*)) is a compact space.

We show that every element of A* is compact clopen. As A* is a field of par-
tial sets, every element of A* is clopen. By (3.4) the elements of A* are of kind
(u(aSn), u(TaSn) ) , where a varies in A. As aSn belongs to ˜A , u(aSn) is
compact in the classical Stone space (X , R (A*)˜ ) by 3) of Theorem 5.1. As
TaSn belongs to ˜A , 2u(TaSn) is compact in the dual Stone space
(X , R (A*)D ) , because 2u(TaSn) 4h(TaSn) by (9) and h(TaSn) is com-
pact by 3) of Theorem 5.3. So (u(aSn), u(TaSn) ) is compact in
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(X , [R (A*)˜ , R (A*)D ] ) by Theorem 4.6. But R (A*) ’ [R (A*)˜ , R (A*)D ] by
Theorem 4.5, so (u(aSn), u(TaSn) ) is also compact in (X , R (A*))

We show that if (A , B) is a compact clopen set in (X , R (A*)), then
(A , B) � A*. As (A , B) is an open set, we have (A , B) 40](C 0

i , C 1
i )(, where

(C 0
i , C 1

i ) � A* for all i�I. By compactness there is a finite subset K’I such
that (A , B) 40](C 0

i , C 1
i ): i�K(. But A* is field of partial sets, so is closed

under finite unions, then (A , B) � A*.
This result can be used to obtain a topological characterization of those

DMF-algebras which arise with p-constructions i.e. DMF-algebras in which
(2.3) holds, by Theorem 2.6.

THEOREM 5.6. – Lat A be a DMF-algebra, then (2.3) holds in A iff
R (A*) 4 [R (A*)˜ , R (A*)D ].

We know that (X , R (A*)) is a compact partial space, by Theorem 5.5, and
A* is a field of partial sets by the representation theorem for DMF-algebras.
So by Theorem 4.12, if R (A*) 4 [R (A*)˜ , R (A*)D ] then A* is full. By Theorem
4.10, (2.3) holds in A* and then in A .

Let’s suppose that (2.3) holds in A, then it holds also in A* and then A* is
full, by Theorem 4.10. Now we observe that n is compact in (X , R (A*)), be-
cause A* is made of compact clopens, by Theorem 5.5, and n� A*, because A*
is a field of partial sets. So we can apply Theorem 4.11 and conclude that
R (A*) 4 [R (A*)˜ , R (A*)D ].
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