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Bollettino U. M. 1.
(8) 1-B (1998), 283-342

Solvability of Two Stationary Free Boundary Problems
for the Navier-Stokes Equations.

V. A. SOLONNIKOV

Sunto. — St studiano due problemi con frontiera libera per equazioni stazionarie di
Navier-Stokes: il problema del movimento di un liquido viscoso incomprimibile
generato dalla rotazione di una sbarra rigida 1mmersa nel liquido con velocita an-
golare assegnata e il problema della fuoriuscita di un liquido da un tubo circolare
nello spazio libero. St assegna l'angolo di contatto tra la frontiera libera e la super-
ficie del tubo e, nel secondo problema, il flusso totale del liquido attraverso Uapertu-
ra del tubo. Si dimostra che, nel caso di flusso totale piccolo (oppure della velocita
di rotazione piccola), questi problemi possiedono delle soluzioni uniche assi-sim-
metriche appartenenti ad alcuni spazi di Holder con peso.

1. — Introduction.

The present paper is concerned with two stationary free boundary pro-
blems for the Navier-Stokes equations: the problem governing the motion of a
viscous incompressible liquid generated by a slow rotation of a rod immersed
into the liquid and the problem on the effluence of the liquid out of a circular
tube. A common feature of these two problems is the fact that their solutions
possess an axial symmetry, and the proof of their solvability relies on the
analysis of the Stokes problem in the half-space with boundary conditions of
the same type as on a free surface.

Here is the formulation of the problems.

1. Problem 1.

Let V be a domain of revolution of the curve L about xs-axis where L is a
union of the straight line L' = {x; =d,, 2, =0, 23> —m;} and of a smooth
bounded curve L" located in the domain 0 <x; <d, £, =0, —(m; +my) <
x5 < —m,; with the endpoints (dy, 0, —m,) and (0, 0, —m; —my) (m,, My are
positive numbers). It is assumed that V is rotating about x;-axis with a small
angular velocity e. A viscous incompressible liquid occupies an infinite domain
Q = Q, bounded by a free (unknown) surface I'= {x3 =h(|2' |), |®' | >dy},
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dy) > —my, and by a part X of dV contained in the domain a5 < h(d,). The
liquid is subject to a constant force of gravity directed along the vector —e; =
(0,0, —1). It is required to find the velocity vector field wv(x)=
(v1(x), v2(x), v3(x)) and a scalar pressure p(x) satisfying in Q; the Navier-
Stokes equations

(1.1) —wWeu+ (0-V)v+Vp=—gje;, V-v=0,

the boundary conditions

v|z=ce,|x" | =e(—axy, 21, 0),
vn|r=0, Tn —oHn|r=0,
1.2) v
ér = —cos?,

V1+ |V k|? | le']=do
and the conditions at infinity

[ v(x)—0, p(@) + gows—0  (|a| = ),

(1.3)
h(Je" ) =0, (Ja'[—= ).

Here v, 0, g, are positive constants (coefficient of viscosity, of surface tension,
and gravitational constant, respectively), x' = (21, @), |¢' | = Vai + x5, e, =
x'[lx'|,e,=(—u, 2, 0)/|2" |, is a contact angle, i.e. the angle between >
and I at the points of the contact of these surfaces which assumes an arbitrary
value from the interval (0, ), H is twice the mean curvature of I" defined by
the formula

2 h. Y
(14) =S S M _1d

T is the stress tensor: T = —pl + vS(v), S(v) is twice the strain tensor with the
elements S;; = dv; /dw; + dv; /Ix;.

2. Problem 2.

The domain 2 = Q, occupied by the liquid is a union of the half-cylinder
Q_={|x"| <dy, x3<0}, of the aperture S = {|x' | <dy, ¥3=0} at the end
of the cylinder and of the jet £ . bounded by S and by a free surface I" which
contacts the lateral surface X of Q _ along the line M =3S = {|x' | = dy, &3 =
0} and extends to infinity. The free boundary is a surface of revolution about
xz-axis of the line I'" given by

1.5) r=|x'| =), 2y = X5(S)
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(s is the arclength of I'" counted from the point x5 =0, » =d,). The problem
consists in the determination of this surface, i.e. of (s) and x3(s), as well as of
v(x) = (v, v9, v3) and p(x) satisfying the relations

—wWeu+ (- V)Yv+Vp=0, V=0, (xeQ,)),
v|s=0, wvn|;=0, Tn-o0Hn|r=0,
fvgdx’=s,

s
v)—v-@)—0, p@)-p-(@)-p—>0, (3——),
v(x)—0, p(x)—0, (Je|—>o,23>0),

where v_ (x) = (2¢/md§)(1 — |®|® /d§), p- (x) = —(8ve/ady) w3 is a Poiseuille
flow and p is a constant which is not given a-priori. In addition, there is pre-
scribed a contact angle ¥, i.e. the angle between X and I" at the contact line M,
or, which is the same, the angle a(s) between the tangential vector to the line
I'" and the plane x3 =0 for s =0:

3m 7 37
a(0) = ? - (a(O)E(O,ﬂ),ﬁE(E, ?))

The angle a(s) is related to x3(s) and 7(s) by the formulas
r'(s) =cosa(s), 25 (s) =sina(s)

and the mean curvature of I' is defined by

sin a(s) sin a(s)
1.6) H=H,—- =—a'(s)—
7(s) 7(s)
where Hy = —a’'(s) is the curvature of the line I"’. It is clear that this line and,

as a consequence, the surface I, is completely determined by a(s), since
S S

r(s) =dy + fcos a(t) dt, x5(s) = fsina(t) dt .
0

0

In both problems the free boundary I is noncompact but the domain £,
has only one, and 2, has two «exits to infinity» (by an «exit to infinity» of the
domain £ a connected unbounded component of Q%= Q\Bg(0), B(0) =
{|]x| <R} is meant). In the second case, one of the «exits» has a form of a
cylinder and another «exit» is close to the half-space.

Let us introduce basic weighted spaces of functions and vector fields in
which we are going to work. The choice of weight functions is determined by
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the behaviour of solutions of the above problems for large |x| in the «exits» of
different geometrical structure and, in addition, by possible singularity of sol-
utions at the contact line M =X NT. Let | be a positive non-integral number,
se(0,1],b>0.By C/(2,, b) we mean the space of functions (or vector fields)
given in Q; and having a finite norm

A7 |uleie,n= 2 supo(x, b+ |j|, |j]| —s) |D/ux)| +
2,

0<1j| <1

> supolw,b+1,1—s) sup |x—y|" " |Diu®) — Diuly) | + |u
Jl =11 ece yeK(x)

C*(R1)

where C*(£,) is a standard Holder space of functions (or the space of s times
continuously differentiable functions in the case of integral s), K(x) = {y € 2,:
|x—y| <(1/2)o(x,1,1)} and

lz|®, if || >4d,,
o(x, b, m) =
{ dist (, MmO i dist (¢, M) < dy/2;
at all the other points x e Q, o(x, b, m) assumes strictly positive values. This
space will be used also for s <0, in which case the last term in (1.7) should be
omitted.

To consider Problem 2, we need the spaces of functions and vector fields
whose elements decay as power functions as |x| — %, &3>0, and exponen-
tially as || — o, 23 < 0. Let & = 0 and [, s as above. We define Csl, (25, b) (in
the case se (0, []) as the space of functions with finite norm

||t o= 2 supo(x,a, b+ |j|, [j] —s)|D/u(x)| +

0<lil<t 0.

> supo(w,a,b+1,l—s) sup |v—y|" " |Diw(x) — Diuly)| + |u
7l =11 xeQs yeK(x)

C*(22)

where K(x) = {ye Q,: | —y| <o(x,0,1,1)/2} and

el if < —2d,,
o, a,b,m)=2 |x|®, if |x|>4d,, 23>0,
dist (x, M)maxtm, 0) if dist (x, M) <d,/2;

at all the other points x € £, the function g is strictly positive: o(x, a, b, m) =
00>0. If s <0, then the last term in the norm should be omitted.

To characterize regularity properties of the free boundary, we need the
spaces of functions «(r) given at an infinite interval J,= (0, ) or J,; =
(dy, o), decaying like power functions as »— o and, possibly, having certain
singularities at the left end of the interval (r=0 or r=d,). Let J:= (&, =),
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se(0,1] and let C!(J:, b) be the space of functions given on J: with the
norm

[1]
|u| i, v = EO supo (7, b+ [j, 7] — )| D ulr)| +
1=0r>¢

sup o1(r, b+1,1—s) sup |7 =2 |V DWau(r) =D u(r) |+ |u
r>& [r=r'|<|r-§|/2

C(Jg)

where

rb,  ifr>E&E+1,

(r, b, m) =
e {(r—g)mmm’m, ifr<E+1.

Finally, by C!t #(J4,» 3) we mean the space of functions given in J,, and such
that D/ue C!*{(J¢, 3), =0, 1, 2. The norm in this space can be defined by
the formula

K

et » = 1%t 9 S}lpel(r,[l] +4,2+ [11—s) | DY 2u(r) | +
do

sup 0, (r,[11+4, 3+ [11—s) | DM 3u(r)| +

Jay

sup 0,(r,4+10,8+1—s) sup |r —r|-L| DIy (r) — DU 3yr)| .

TEJdO |r' —r| <2

This space differs from the space C!} f(JdO, 3) by the behaviour at infinity of

the derivatives D™ *24(r) and D3 u(r) of its elements: the rate of decay of
these derivatives is the same as the rate of decay of D™ 1y(r).

In this paper we deal mainly with axisymmetrical functions and vector fiel-
ds. For functions this means that they do not depend on the angle ¢ of rotation
about the axis of symmetry, and for vector fields this means that their cylin-
drical components are independent of ¢.

Before presenting main results of the paper, we say a few words about the
rest state (¢ =0). Then v(x) =0, and the free boundary is defined by the
equations

25 = hy(r) (Problem 1),

r=1ry(s), x3=uxy(s) (Problem 2),

where 7y(s) =d0+fcosa0(t) dt, xe3(s) = fsinao(t) dt. The functions hy(s)
0 0
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and a,(s) satisfy the relations

o d rhg (1)
% gl =0,
R VAT
(1.8)
h!
& = —cos?, ho(r) =0 (r— ),
V1+he2(r) |[r=do
wh(s) + sin o,
"o
1.9)
37w

a0(0)27_'ﬁ', OLO—>0 (S_)OO).

The unique solvability of problem (1.8) for arbitrary ¢ € (0, &r] was establi-
shed by W. E. Johnson and L. M. Perko [5] (we observe that hy(r) tends to
zero at infinity exponentially). Problem (1.9) can be solved explicitly. First of
all, it is easy to see that

difro(s) sinay(s) =cosay(s)sinay(s) +ry(s) ap(s)] =0,
S

hence,
7"0(8) Sinao(s) = dosinao(o) = C
which implies

dry

ds

Vré(s) —cé.

=|cosay(s)| =

1
7(s)

Integration of this equation gives

ry(s) = \/(s +dy cosay(0))?+dé sinZay(0),

hence,

w03 (s) =dysin a (0)log(s + d, cosa0(0)+\/(s+d0 cos at(0))2+dg sinZay(0)).

If 0¢(0) e (0, /2], then 7y(s) is an increasing function; in the case a((0) e
(7/2, ) 7y(s) decreases for se(0, —d, cosay(0)) up to the value 7y, =
dy sina ((0) and increases for s > —d,cos ay(0) without limits.
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We can find 7, as a function of xy =z,. Indeed, the equation

d dry (dzy\™'  co 1 7\
ﬂ:_()(ﬁ) = ‘Sa0:+_ /y=02—602:i (_0) —1
dz, ds \ ds sina Co

implies

o — (1
7y = Co cosh ,
Co

where c; is determined by sina ((0) cosh¢; ¢y ' = 1. We see that I'" is a chain line.
Main results of the paper are contained in the following two theorems.

THEOREM 1.1. — If € is small enough, then Problem 1 has an isolated axi-
symmetrical solution (h, v, p) possessing the following properties: he
CliiJy, 8), veCl™2(24,2), p+guzeClii(R,3), and

(110)  [vfcivza, o+ [P+ 9% e, s+ [h—ho letia,, s S clé]

Here | is an arbitrary positive non-integer, and s satisfies the conditions
s<I+2,s21,se(0, min(7/29, sy)) where s, = N4 and A is a root of a tran-
scendental equation

(1.11) sin 249 = A sin 24

with a minimal positive real part different from 1.

THEOREM 1.2. — If ¢ is sufficiently small, then Problem 2 has an isolated
axisymmetrical solution a, v, p (and the angular component of the velocity
vanishes) possessing the following properties: aeCl™2(Jy, 1), ve
Csl7+02(92, 2), Vpe Csl—z,o(gz, 4), and

112)  oleren o T IVPlel s o@s ot o= ao iz, » S cle]
where se (0, sy), Sy s the same as in Theorem 1.1.

REMARK. — Elementary analysis of equation (1.11) (see, for instance, [13])
shows that s, is a decreasing function of J, in particular,

so=1/3 for ¥ =372,
sp=1/2 for d=m,
so—1, as v—19;.

where 9, e (7/2, 371/2) is a root of the function tan 2 — 24, and s, grows wi-
thout limits, as 9 — 0. In Problem 1, 9 € (0, xr), and in Problem 2, «(0) € (0, 7)
and 9 e (71/2, 371/2), hence, s, is a real number from the interval (1/3, 2). The
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case of limiting values of the contact angle J =0 and ¥ = 7 in Problem 1 is
excluded only for technical reasons; it can be treated in the same way as in [19].

Problem 1 was considered by D. Sattinger [11] (in the case 9 = 7/2, when
the solution has no singularity at the contact line) and by I. Mogilevskii [8] for
¥ e (0, 7). In both papers it was assumed that the liquid was contained in a
bounded container, so the domain £2; was bounded. In the case of unbounded
£ it is necessary to analyse the behaviour of the solution at infinity. We make
use of the axial symmetry of solution and show that this condition guarantees
the decay of the velocity vector field of the order |x| ~2 (symmetrical solutions
of the Stokes and Navier-Stokes equations were considered also in the papers
[4,17,18]).

Problem 2 was studied in the paper [17] where, in particular, Theorem 1.2
was formulated (in the case when the domain Q _ = {xe Q,: x3 <0} is a half-
space but not a cylinder, and 9 € (377/2, 2:7)). Main attention in [17] is given to
the two-dimensional case, in particular, it is proved that, in contrast to the
three-dimensional case, the jet may have a form close to an infinite sector or to
a strip with the aperture dependent of the value of the contact angle at the
contact set M consisting of two contact points x. = (*d,, 0). In addition, it is
shown in [18] that in the three-dimensional axisymmetrical case there exists a
solution of Problem 2 with the jet Q , = {xe R?: 23>0} close to a cylinder; in
this case the pressure assumes a certain non-zero value at infinity.

Theorems 1.1 and 1.2 reduce to the contraction mapping principle in wei-
ghted Holder spaces. It is convenient to write Problems 1 and 2 in a slightly
different equivalent form. We separate tangential and normal parts in dy-
namic boundary condition 7rn — oHn = 0, introduce a new pressure function
p + gxs instead of p in Problem 1, and take account of formulas (1.4), (1.6) for
the mean curvature of I'. This makes it possible to write Problems 1 and 2 as
follows:

[ —wW2o+ W V)v+Vp=0, V=0, xeQ,,
vis=c¢ce, x|,
(1.13) == ey |2
vn|r=0, S(w)n|=0,
L v@)—0, px)—0, (|z|—>x);
(o d rh'(7)
——:—goh=n-T(v,p)n|x3=h(T),
rAr /14 p,?
(1.14) .
h'(r)
————|,_q,= —cos?, Mr)y—0, (r—ow);
| V1+h,?
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[ —wW2o+ (@ V)v+Vp=0, V=0, xeQ,,
v|s=0, wvn|;=0, ©Sw)n|,=0,

(1.15) vag(x’,O)dx’ze,

S
ve)—v_(x)—>0, px)—p_-(x)—p—>0, (r3g—>— ),

L v(@)—0, p@)—0, (Jr]—>x,x;>0);
, sin a(s) 1
a'(s) + =—0 T, PIN|_ i), r—ns)»
7(s)
1.16) 4
37

a(0) = > -, oas)—>0, (s—>x);

L

here

r(s)=d0—l—fcosa(s’)ds’, ac3=fsina(s’)ds’.
0 0

By 7 in the condition 7-S(v)n|= 0 we mean arbitrary tangential vector on I}
in fact, it suffices to satisfy this condition for two linearly independent tangen-
tial vectors: for 7= 7' with the components 7{"’ = ng, 7§ = —n, (7, and n, are
radial components of = and n), and for t=1% =e, = (-, ¥, 0)|x' | L

The paper is organized as follows. In § 2 a model problem in half-space is
considered. § 3 is devoted to auxiliary linear problems for v and p in the do-
mains 2, and Q, with given I'. In § 4 linearized equation for the free boundary
is analysed. Finally, in § 5 the proof of Theorems 1.1 and 1.2 is presented.

The author brings his thanks to Professor V. V. Pukhnachov for fruitful
discussions.

2. — Model problem in the half-space.

Consider in the half-space R? {x3>0} the boundary value problem
—wWeu+Vp=Ffx), V-v=gk)),
2.1) ;

Vg | i = :b(.’)ﬁ,), S; U)E_J+
e i Qg Ouj |w=0

v
_3 :d](x,)a j:1;27

where x' = (1, 25) and f(x), g(x), b(x"), d;(x"), j =1, 2, are given functions
rapidly decaying at infinity.

The solution of this problem can be written explicitly as the sum of some
volume and surface potentials. Let U(x) be the fundamental matrix of sol-
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utions of the Stokes system of equations. It is 4 X4 matrix with the
elements

Uyz) = (5”’ + 2 ) i,j=1,2,3,
8av \ |z]  |z|?
1 (2 .
UM(z):UM(z):EW’ 1=1,2,3,
2

Uu(z) =vo(x),
where 0(x) is the Dirac o-function. The solution of the Stokes system (2. 1;) in
the whole space R? can be written in the form

3
v; () = Zl fUl;f(x—y)J,‘,(y) dy+fUi4(x—y) gy dy, i=1,2,3,
J= R3 R3

3
px) = -21 fU4j(x —y) f;(y) dy + vg(x).
J= R3

The representation formula for the solution of problem (2.1) involves the
Green matrix §(x, ) = (Gyu(x, ¥))s,1-1,2 3 4 and the Poisson kernels Pg(x)
(s=1,2,38,4,7=1, 2, 3).

ProposITION 2.1. — The solution of problem (2.1) is given by the formu-
la

3
22) wvi(x)= ‘21 f Gy, y) fi(y) dy + ) Gu(w, y) g(y) dy +
'7 RY R}

2
ZlfPi,,(W’—y’,wg)dﬂ(y’)dy”rfPis(x’—y’,xg)b(y’)dy', i=1,2,3,
“=lp2 R2

3
23) px) = 21 fG4j(90, ¥ f;(y) dy + vg(w) +
J= R%

2
21 fP4,u(90'_?/’,903) d/t(y’)d?/'+fp43(90'—y', x3) b(y') dy’
“=1p2 R2

where

Gy, y) =Uy(x—y)+Ug(x,y), s,t=1,2,3,4,
Uy, y) =U,@—-y*), s=1,2,3,4 y=12, y*=U, ¥, —¥)),
Ui, y)=-Uglw—y*), Uji(e,y)=Uslx-y*), j=1,2,3,

U4>Z(x’ ?/) =0 )
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Psy(x):_z'l/(]s;/(x)v S:1v2y3)4) V:1,2,

3 2
Pylw)= — 20 k=1,2,3,
27 x|
v 1 3a?
P43(90)=——(———35).
a\ || ||

Proor. — The Green matrix § for the problem (2.1) was constructed
in [7, 20] where also the justification of the formula (2.2) in the case d; =d, =
b = 0 can be found. Consider the case f=0, g = 0. Since P;, are proportional to
Us,, and Pg is a kernel of the K. Odquist double layer potential (see [10]), it is
clear that the sum of potentials with Poisson kernels P, in (2.2), (2.3) satisfies
the homogeneous Stokes system, and the integrals

u;(w) = fPis(ﬂc’ —y',x3) bly') dy’
RZ
satisfy the boundary conditions
Ui () | =0 =0s3b(x").
In addition, we have

ngﬂ(x’—y’, w3) d,(y')dy' =

R

x3 L = Yu
— d,(y')dy —0 xs—0).
SWVR! (Je' —y" |?+af)? uly") dy (@

It remains to show that
S;t3(v)|x3=0:d[u, ,u=1,2.

Making use of the relations

1 (29, 9 w,
Ui‘u(m): _( g - )a
8av \ |x| Ow; ||

o wxiw 29 ax,w;

dus [x|”  u=1 0w, |af?
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we obtain for ¢ =1, 2

o; 2 ( xséiudu(?/’) 903(90,1_?/‘”) adﬂ) y' —

2n(|x1_yr|2+x32)3/2 4n(|x!_yr|2+x32)3/23_yi

8903 /4:1R2

3 & [ w(w;—y)w,—y,) b ob(x’

3 3 (5 — v, — ¥, b gy —di@) - (")

2 u=1y (o' —y' |+ xf)? dy, du;
as x3— 0, hence,

(9'Ui 81)3

:di('%")7 i:1727

x3=0

dxg  ox;

q.e.d. The proposition is proved.

PROPOSITION 2.2. — Assume that f and d' = (dy, dy) are axisymmetrical
and that the norms

£l = sup (Lt [& D P | F@ |, gl p = sup (1 + |2 Flo@)]
R3 R3
ld' 545 = sup (1+ |2 D2 (@) |, [blh.s= sup (1+ |2 D28 o) |,
R? R

are finite for some e (0, 1). Then

24) [lpll, = Sup(l + x| |o@) | < Fllasp+llglls g+ 1ld 545+ 1Bl 5) -
R}

Proor. — Since

x X Xy x
ﬁ(x):ﬁ+_f¢_%r f2:fr_,+f¢_%7
| | [ | | | [ |
X X X X
i) =d — —d,——, dy=d,—— +d, ——,
2" | |2 | | | Ea

and f, d' are axisymmetrical, we have
ffldac:ffzdaczo, fdldac’zfdzdac’zO.
R3 R? R? R?

It is also clear that

fﬂciﬁ,(x)dx=fﬂc3ﬁ(x)dx=0, i=1,2.

R} R}
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Taking into account that Gs(x, 0) =0 (s =1, 2, 3, 4), we can write (2.2) in the
form

3
25) ()= ;2‘1 f[Gik(x, y) — Gy (x, 0)] fi(y) dy + me(x, y) 9(y) dy +
=i /

R}

2
ﬁgl f[Piﬁ(W/—?/’, wg)— Pig(a’, Wg)]dﬁ(?/,)d?/,‘*‘fpm(ﬁﬁ’_?/’, w3) by ) dy' =
- R? R?

aGik('%., Z)

1o

2 3G (x, 2)
> ZB 57
k= oz

3

7>

o f?/]fk(y) dy +
R}

o fysfs(?/) dy +
R}

2 OPy(x’, x3)
Cute, 0 g ay— 3 T

dsdy '+
y=1 ox !?/,, d

R3 B, 14 R

Pis(x', w3) fb(?/') dy' +v/ (x)

R

with

m
m= oz m

3 3 3G,
=3 f[Gim, P -G, 0= 3y, 0D O]fkaw dy +
—1p 2=

J G, 1) - Gute, 001 gty dy +

B3

2 2 aPi (2)
> f[Piﬁ(x,_y/rw?,)_Piﬂ(%,;963)"’ 212/,, 8:0 ]dﬂ(y/)dy,+
=

B=1p, "
f[Pig(x’_y,,xg)_Pig(x,,xg)] bly)dy' =L+, +1;+1,, 1=1,2,3.
RZ

Let us estimate the functions v; — v/ = v and v/ in the domain {|x|>1,
x3>0}. It is clear that

| @) | <clae| 2 Fllrp+ lglls s+ ld N5+ 5+ 1Bllo 1 )

To estimate v, (x), we split each integral I, k=1, 2, 3, 4, into two parts, in
which the integration is carried out over the domains |y| < |x|/2 (or |y’ | <
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||/2) and |y| > |x|/2 (|y'| > |x|/2), respectively, and we make use of the
inequalities

2 3Gy, (x, 2) cly|”*!
Gi ’ _Gi 70 - m o~ s —— )
w(%, y) w(x, 0) mgl?/ 2. o 277
cly|”
|Gis(x, y) — Gy, 0)| < PR ) ly| <|x|/2,
2 3P”(OC) C|y,|y+1
Py(x' —y', a) — Pyla', ) + > —2 < ,
B Yy ,x3 B 3 =1 on, |90|2”

cly'|”

|Pis(x' —y', w3) — P, x3) | < PIEE

C oy l<lel2,  ys<1.

We take y e (0, §) and evaluate, for instance, I; as follows:

|| e ( || 7277 f ly|' 7 | (y) | dy +

lyl <=2

f (o =y 7+ 2] 7+ ylle] )| ) |d@/) s

ly| = |x|/2

$0||f||4+ﬁ(|x|2y f ly|* 71+ |yt Pdy +

ly| <=2

+ f (Je—y| 1+ o] "+ |ylle] )1+ |y|)_4‘ﬂdy) <cla| 27| fllyp-

lyl = [=]/2

Integrals I, and I; should be treated exactly in the same way; finally,

|1y < f |Ps(x' —y', x3) — Pz, @)lb(y ") | dy’ +

ly" | < |xl/2

f (|Pile’ —y', w3) | + [Pa(x’, @) )by ") | dy ' <

ly"| > ||z

||b||2+ﬁ(|x|” [ wrpas iy peray +

ly"| < |z|/2

o2 [ asy iy +
ly' | > |o|/2
dy’
L3 ) 112 2132 " V248
' lee (e =y " [P+ag)=(1+y " |)

)Scllbllz+ﬁ Bl



SOLVABILITY OF TWO STATIONARY FREE BOUNDARY PROBLEMS ETC. 297

Hence,
|/ @) | <cle| 27" (|Fllasp+ llglls s s+ ld s+ 5+ 10l 4 ) -

It remains to bound |v(x)| for |x| <1. This can be easily done by using
formula (2.2). We have

|vi(@) | sC(||f||4+/;f |x—y|*1(1+ |y|)—4fﬁdy+

R}

lolls s | 12— 921+ [y Py +
R%

||d’||3+ﬁf(lac’ —y P+aed) A+ |y Py +
R2

sup |b(y ") | f |Ps(x' =y, 903)|d?/’)sc(”f”uﬁ"‘”QH3+/3+Hd’H3+/3+Hb”2+ﬁ),
R? RZ

which completes the proof of (2.4) and of the proposition.
Now, we pass to the estimates of the solution of (2.1) in weighted Hélder
spaces C'(R?, b) with the norm

26)  |u]cirs,n = m%] S}g}’(l + @DV [DIu) | +

> sup(1+ |x|)'*? sup |z —y | | DIu(x) — DI uly) |
=10 yer? y e K(x)

where K(x) = {yeR3}: |x—y| <(1+ |x|)/2}. The space C'(R?, b) is defi-
ned in an analogous way.

THEOREM 2.1. — If feCY(R3,4+p), geC'" Y (R3,3+p), d eC' " (R?,
3+p8), beC'"2(R2,2+p), Be(0,1), and f,d are axisymmetrical, then
veC'*2(R3,2), peC'"Y(R2, 3), and

|v|cte2ra o)+ [P+, sy S (| Flours, avp T |9]cto1rs, 345 +

ld" |civige, 545+ |0 cirzre, 24 p) -

Proor. - Let A,={rxeR3:r<1+|x|<2r}, A/ =A,NOR}=x'¢€
R% r<1+ |x|<2r}, B.=A,UA,UA;y, B/=B,N3R?. We assume that
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r>1 and make use of local estimates for problem (2.1),
@0 [+l <

c([F1§) +r~ max |f(x) | + [l +r ' max lg(a) | + [d' 15,V +

pll max |d'(x")| + [b1%,? +7“l‘2n}§:}x [bx") | + r‘l‘zn}gx lv(x)]) .
(the proof of this estimate is given in the Appendix). Multiplying this inequali-
ty by r'*4, we easily obtain
r AL+ 1Y) < (| Flogs, o+ 9] origs, s +

|’ [cre1ge, 5y + b o222 + [[oll2)

and in virtue of (2.4)

@8) supr'TH([w]f P+ [plfY) <

r>1
(| Flers, avp + 19lcms, s+ p+ [d (et 5o+ Dl ct2re 20 p) -
Next, we observe that for arbitrary function ¢(x) with finite norm

sup (r " *[q1”), @€ (0, 1), m>1, or sup (7“”7‘1sup |Vg(x)|) there holds

r>1 r>1
inequality

lq() | < [q(x) — q2x) | + [q(22) —q(4a) | + ... = 121 |q(2 ) — q(2w) | <

Sup(?" m— a[q](a)) 5) zk_l |x|)a <C|.’)C| —msup(,r—m—(Jn[q]XL))
r>1 1(1+2k llxl)nt+a r>1 !
or
2k—1 |9€|

lq(x) | < sup(r’m 1Sup|V(](90)|)z (142 [a]) ! =

c|e| ~"sup (r =" sup | Vg(x) |)
r>1 A,

for arbitrary x e R% with |x| > 1. Applying these inequalities to v, p and to
their derivatives we evaluate successively |Dj v(e)|,j=01+2,...,1,
|ka(90) |, |k| =[], ..., 0 and deduce from (2.8), (2.4) the estimate

[U|ctee@s, o+ [Plern@, s S

c([flcurs, avp+ 19lctrme,sept 1A [crige s4p + |0]ctreme 21 p)
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where R = {xeR?: |x|>1}, and the norms in the left-hand side are defi-
ned by formulas (2.6) with suprema taken in ﬁ?; instead of B2 . The estimate of
the Hélder norms of v, p in B3 \E:’lr is a classical result of the theory of elliptic
boundary value problems. The theorem is proved.

Formula (2.5) gives asymptotic expansion of the solution of (2.1) for large
||. Since

fflyld?/= fﬁ»@/fly’ I’ldy=ﬂfffr(% yg) ridrdy; =Fy,
R3 R% 00

[rmdy=[rut1y 17y =) 1,0, gy r2aray, =7,
R% R3 00

ffzyzdy=F1, fﬁyzdy= —F,,
3 3

R} R}
and

fdﬂhd?// =) d2y2dy’ :”fdr(V)Tzdrle,
2 0

R? R

fdﬂ/ld?/' =— ) diy.dy’ =ﬂfd¢(’r’)7'2dr=Dz,
2 0

R? R

we can write v{* in the form

2 = —F1( 3Gy (x, 0) + 0G(x, 0) ) _Fz( IGp(x, 0) 3Gy (x, 0) ) N
3901 3902 3901 axz
IG5 (x, 2) )
—2 ‘ fysfsd?/"'Gm(ﬂCa 0) gdy-l—Pig(x)fbdy -
323 zzORi R R?

Dl( OPy(x)  3Py(r) ) - Dz( 8Py(x) 0P, (x) ) _

3961 3962 8901 3962

C1Vi(x) + CoVa() + Cs Vs(x),
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where
— 3xxsd 3xx?
yomasme o X Sw o, Sxel
|| || || ||
Fo—vD F,—vD 1 1
Ci=--2—2, Cp=——- fygfgdw—fgdy,
27y 47y 4y Y 2”Ri
1
Cs= —( fbdy’+fgdy).
27\ g2 R
Hence,
2.9) v(x) =CVi(x)+ CyVo(x) + C3Vi(x) +v' ().

The corresponding formula for the pressure has the form
p(x) = Cy Py(2) + C3 P3(w) +p' (),

where Py = —P3=2v(1/|x|* - 3xf /|x|®).

We have proved that v’ (x) = O(|x| “277), e (0, 1). Since (v', p') satisfy
relations (2.1) in R?, one can show exactly in the same way as in Theorem 2.1
that v’ e C'*2(R%, 2+ ), p' e C' 1 (R%, 3+ y).

For the half-space problem with the boundary condition v |,, -, = 0 formula
of the type (2.9) was obtained in [2, 3] without any assumption on the symme-
try of the solution. It may be shown that this formula does not hold for the sol-
ution of problem (2.1), if the data are not axisymmetrical.

3. — Auxiliary linear problems.

In this section we consider linear problems

(—vwWPo+Vp=~Ff(x), Vwv=gk), 2z,
@1 Jv|y=0, vnr|=0, )S@n|,=0, i=1,2,

L v@)—0, p)—0, (x—x);

[ — WP+ Vp=Ff(xr), Vov=gk), xe,,

vls=0, vn|l,=0, S@w)n|,=0, i=1,2,
N . o
v(®)—0, (o] — %),

L p@) =0, (Jg]|—=0,25>0), plx)-p—0, (Jg|=>cw,x3<0),

in given domains £, and Q, of the type described in §1. We recall
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that 7V is a tangential vector to I" with the components 7(¥ =ngy, ") = —n,
and 7'® =e,. We prove the following theorems.

THEOREM 3.1. — Let 092, =2UT where I' is given by equation xs= h(r)
with h e CSZI f’(JdO, 3) (I and s are the same as in Theorem 1.1). For arbitrary
axisymmetric feCl_,(21,4+B), geClZH(Q4, 3+ B), Be (0, 1), satisfying
the condition

fg(ac) de=0,
Q)

and, in the case O <0y, s>1, the compatibility condition g(x)|.cy =0,
problem (3.1) has a wunique axisymmetric solution veC!T%(Q4,2),
peClTi(R,4, 3), and

33) |v

e+ Plarie, s S Fla e avp + 9l s4p) -

If the angular component of f vanishes, so does the angular component of v.

THEOREM 3.2. — Let 02, = X U I" where I is a surface of revolution of the li-
ne I'' about the xs-axis, and I'' is given by equations (1.5) with x3(s) =

s

fsina(s') ds',r=d,+ fcosa(s') ds', aeCl!™2(J,y, 1). For arbitrary awi-
0 0

Symmetm'c fe Csl—Z,a(‘QZ’ 4 +ﬁ)a gECslill,a(QQy 3 +ﬁ)7 ﬁE (Oa 1), satlsfymg
the conditions

fo=0, fg(x)dw=0,
Q9

and, in the case O <y, s >1, the compatibility condition g(x) |,y =0, pro-
blem (3.2) has a wunique axisymmetric solution ve 05,22(92, 2), Vpe
Cl 5 o(23,4) such that peCI*1(Q,,3), v,=0 and

34) v

ey T VP, jen o T IPlcite, 9 S

([ Flet y 2o arpt 19lci] 00 sp)-

The parameters 1, s are defined in the same way as in Theorem 1.2, ae
(0, a).

Both theorems are proved in several steps, the first of which is the analysis
of generalized solutions of Problems 1 and 2. Let 3(£2,), ¢ =1, 2, be the space
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of vector fields with a bounded Dirichlet integral
1/2 3 8vj 1/2
Doy, = ( f|DU|2d9€) = ( 2 f|— |2d90)
Q; L= IQY. 89@
satisfying the boundary conditions
v|2=0, v'n|p=0.

By a generalised solution of Problem 1 or 2 we mean a vector field v € 3(22;),
t=1, 2, and a function p e Ly 1,.(£2;) satisfying the equation

Vo=g@), zeQ;,

and the integral identity
v
3.5) E fS(v): S(a) dac—fpV-ndx=f(f-q+ng-n) dx
Q; Q; Q;

for arbitrary e 90(2;) with a compact support.

Before proving the existence of a generalized solutions of Problems 1 and
2, we formulate some auxiliary propositions whose proofs can be found in
[6, 1, 15, 18].

PROPOSITION 3.1. — Let GC R? be a bounded domain possessing the cone

property. Arbitrary fe Ly(G) such that f fla)dx =0 can be represented in the
form G

(3.6) flx) =V-u(x), uw(@) | co6=0,

where u is a vector field with a bounded Dirichlet integral, and

3 8%
(3.7 ||Du||%2(G) = > f | — |2 dw < C||f||%2<a>
k=1 G 8ﬂck

2,

with the constant ¢ independent of f. The correspondence between f and u s
linear.
If G is a special Lipschitz domain, i.e. the domain of the form

3.8) Xy < Fxy, ) =F(x')

where F(x') 1s a function satisfying the Lipschitz condition
|Fx')—F(y')|<cle'—y'|, Va',y' eR?,

then (3.6) and (3.7) hold for arbitrary fe Ls(G).
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PROPOSITION 3.2. — If Gc R? is a bounded domain satisfying the cone con-
dition, then for arbitrary u € Wy (G) such that u |s=0, where X e 3G, mes X >
0, the Korn inequality

(3.9) |1Dul?, ) < clS@)|l, )

holds with the constant c¢ independent of u.
In special Lipschitz domains (3.8) Korn’s inequality (3.9) is satisfied for
arbitrary vector field u(x) with a bounded Dirvichlet integral.

COROLLARY. — For arbitrary u € 3(2;), 1 =1, 2, there holds the inequality
(3.10) IDulff, 0, < elS@)|fi, o, -

Indeed, £, is a union of a bounded domain 2, = {xeQ;: | —ap| <R},
xr = (0, 0, R/2), R/2 > m, + m,, satisfying the cone condition, and of a special
Lipschitz domain 2, (8.8) with the Lipschitz continuous function F(x) =
min (k(|2"|), R/2—VR*— |2’ |?), so (3.10) follows from the estimates (3.9)
for G=92,, and G = Q ;.

Further, Q,= Q5 U Q45U Q,; where Q, = {xeQ,: |v|<R,x3>0} is
a bounded domain satisfying the cone condition, Q= {reQ,: |x| >
R, 23>0} is an unbounded domain which can be defined by inequality a3 >
F(x') with a certain Lipschitz continuous F(x'), if R is large enough, and
Qo ={xeQ,: x3<0} is an infinite cylinder on whose lateral surface X the
condition u | s = 0 holds for arbitrary u € 9((2). It is evident that (3.9) is sati-
sfied in G = 2, for arbitrary u e 3((Q2,), hence, (3.10) holds in 2,.

Now, we turn to the proof of the solvability of Problems 1 and 2.

PROPOSITION. — 3.3. — Assume that f and g are axisymmetrical and have fi-
nite norms

supo(x, 4+ 5,2 —3s)|f(x)|
21

and

Sgpe(ﬂc, 3+B,1-s)|gx)]| .

Then Problem 1 has a unique axisymmetrical generalized solution v e
IH(21), peLy(2y), and

B.11) Dol + Pl <

c(sgp olx,4+,2—s)|f(x)] +sgp ow,3+8,1—9)|g®)]|).

If the angular component of f vanishes, so does the angular component of v.
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ProposITION 3.4. — If f and g are axisymmetrical, have finite norms
supo(x, a, 4+ B, 2 —s)|f(x) |, supo(x, a, 3+ B, 1—s)|g(x) |,
Q5 Q9
and f,=0, then Problem 2 has a unique axisymmetrical generalized sol-
ution with the following properties: veIN(RQ,), peLy(2,\2(2)), Vz<0,

where Q(z) = {xe Qy: x3<z}, and v, = 0. The solution satisfies the inequa-
lities

3.12)  [IDvlL,0, + Pl ) <

c(sup o(x, a, 4+ B, 2—s) |f(x)| +sup o(x, a, 3+ B,1—3s)|g(x)|)
Q5 Q9

with ae (0, ay), and

313) D[, <
ce 2% (sup o(x, a, 4+ B, 2 —s) |f(x) | +sup o(x, a, 3+, 1—3) |g(x)|)?
Q9 Q9

where w(t) = {xeQy: —t—1<ax3< —t}, t is an arbitrary number greater
than 2.

REMARK. — It may be shown that in the domain Q ~ = {xeQ,: x3<0}

0
the pressure p has the form p(x) =p'(x)+ | P(t)dt with p’'eL,(Q_),
PelLy,(—o,0) (see [12]). 3
We restrict ourselves to the proof of somewhat more complicated Proposi-
tion 3.4.

ProoF OF PROPOSITION 3.4. — We reduce problem (3.2) to a similar problem
with g(x) = 0 by the construction of an auxiliary vector field w(x) satisfying
the equation V-w(x) = g(x). We define a smooth monotone function y(x;) equal
to 1 for x3 < —1 and to 0 for &3 > 0 and a smooth function A(x") e Cy” (|’ | <

dy) possessing the property f A(x") dx' = 1. The vector field

|7 | <do

w () = x(w3)Ax") e3 f 9(y) dy

Q(ac3)

satisfies the equation

Vew, = y(a;) Alx") f g(ac)dac’w(xg)A(x’)fgW)dyng)

le" | <dy Q(a3)
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and the estimate

llew: [y o ) < CS}leQ(x, a,3+p,1-3s)|gx)|.
2

Further, we construct a vector field w, also satisfying this estimate and the
equation V-w, = g(x) — g, () = g-(x). We observe that

fgz(%)dx’= fg(x)dac’— fgl(m)dac’zo

o’ | <dy o’ | <do o’ | <do

for all 23 < —1, and we decompose the domain (—1) into an infinite number
of bounded subdomains w;,=w(k), k=1, 2, .... By Proposition 3.1, there
exist vector fields ws ;e W%(wk) such that V-w; , =g, in w; and

|Dw,, ||%2(wk) < dlge ||%2(¢uk) .

In the domain Q3 = {xe Q,: ¥3> —1, |x| <2R} there exists w e V)Vé(Qél)
satisfying the equation

V-wy =gy (x) — ¢(2) fg2<z> dz=gy(x), el

Qb

where ¢ (x) e Cy° (24,), supp ¢ € 25\ 21, f ¢ (z) dz =1, and the inequali-
ty Q5 \22
IDwiV |7, 04, < cllGelF 04 -

Finally, in Q,, there exists a vector field w{* such that
0@ [ gz, tzeonnoy,

(2) _ [
- Q5
192(90), if WEsz\Qél,
and

||Dwé2) ||%2(sz) S C(“gz”%z(gzz) + ”92”%2(%1)) .

We extend w; () into Q, setting w, ,(x) =0 for x e 2, \w, extend w(zl)(ac)

and wS® (x) in the same manner, and we set

wy(x) = 2w, () + wi (@) + w (v).
k=1
It is clear that V-w, =g, and

2

|Dw, ”%2(92) = k§1”w2, /cH%z(wk) + [lws" + w T (@5 U Q) S

c(sgp o(@, a, 3+ B,1—3s)|g(x) ).
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Hence, w(x) = w,(x) + w,(x) satisfies the equation V-w = g and the inequality

[Dw|f, 0, < c(sgpg(m, a,3+B,1—s)|g(x)|)?.

A new unknown vector field u(x) = v(x) — w(x) should be solenoidal: V-
u =0 and satisfy the integral identity

(3.14) Y [ sy sapde=[rude— 2 [sw): sap de
24, Q, 29,

for arbitrary divergence free ne (£ ,) (we denote by (L2 ,) the space of such
vector fields). By virtue of Korn’s inequality, the bilinear form in the left-hand
side can be considered as a new scalar product in (£2,). We observe also
that

ff-ndoc

Q5

<csupo(x, a,4+p3,2—5s) |f(.oc)|( fe‘”3 |n(x) | do +
Q3

Qo3

f |dist (2, M) |™2O =2 | p(a) | da + | || ~* P | p(x) | dx) <

Qo Qo9

DN, c0, 5up o(x, a, 4+ B, 2 —3) |f(2)] ,
Q9

hence, u € J(£2,) is uniquely determined by (3.14). Setting in (3.14) n =u we
obtain

1Dl 0, < c(sgp o, a,4+B,2—s)|f(x)| +|Dwl,0,) <
c(sup o(x, a, 4+ B, 2 —s) |f(x)| +sup o(x, a, 3+ B,1—35)|g)|).
Qs 22

The vector field v = w + u satisfies the equation V-v =g, the estimate

1Dv|1,0, < IDW|L, 0, + [Dull,0,) <
< c(sup o(x, a, 4+ B, 2—s)|f(x) | + sup o(x, a, 3+ B, 1—s)|g(x)]|)
Q5 Q9
and the integral identity

% fS(v): S(n)dx—f(f-nwgv.n) dze =0
Q2 Q5

for arbitrary ne J(2,). It follows from Proposition 3.1 (see [6, 12, 13] in this
connection) that for arbitrary z < 0 there exists the function p, € L, (2, \2(z2))
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such that
% fS(v): S(p) dac—f(f'n+ng-q)dx=fsz-ndac
Q, Q5 Qs

where ned(L2,;) and n(xr) =0 for x3<z. Clearly, p, (x) =p,(x) for x;>
max(z;, 2»), hence, we have constructed a generalized solution (v, p), ve
I(823), p € Ly 1,.(22) of Problem (3.1) with homogeneous boundary conditions
such that p e L, (2,\2(z)), Vz < 0. Taking in (3.5) as a test function the vector

field pe W%(Q +) extended by zero into 2 _ and such that V- =p and

DAl ) < cliplrio )

we easily obtain

Ipllzye ) <

c(ISW)|lryc0 . +supolx, a, 448, 2—3) |f(x) | +supo(x, a, 3+, 1—s) |g(x) |) <
.Qz -QZ

c(sup o(x, a, 4 + 3, 2—s)|f(x)| + sup o(x, a, 3+, 1—s)|g(ac)|).
Q32 [op

The uniqueness of the solution is obvious: the difference v = v; — v, of two
solutions is an element of J(£2,), and

fS(v): S(pde=0, VneiQ,),
Qs

hence, v; = v, and p; — p; = Const = 0.

Axial symmetry of the solution is a consequence of the symmetry of the
problem: if the data are symmetric, then it is easy to verify that
Uv(U ~'x), p(U ~'x), where U is an orthogonal matrix corresponding to rota-
tion about the axs-axis, is a generalized solution of (3.2) together with
v(x), p(x). Hence,

Uv(U tx)=v(x), pU ‘x)=p)),

q.e.d. Further, if f,=0, then, taking in (3.5) n={(|x|/R)v,e, where (e
Cy" (R?) is a cut-off function equal to 1 for |x| <1/2 and to zero for |x| > 1,
and letting R tend to infinity, one obtains:

v v, \? ov,, 1 2
0= E!S(v): S(Cv(pe(p)dac—w!![(a—x:) + (a—: — ;vq&) ]rdwd(pdmg

which implies v, =Cr, and this is possible only in the case C=0, ie,
v, = 0.
It remains to prove inequality (3.13). For the vector field u satisfying (3.14)
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this inequality follows from Theorem 3.3 in [14] (with w, defined as above and
with kj, = e). By virtue of this theorem, there exists a,> 0 such that

1D o0 < e =2 (supe> || ]2, e +
2
T>

(51(11[)) (dist (z, M))™=E=5 0| f(x)|)? + Sl>1[1) 2 [|SW) |2, iy + 1DUlE, wi0y)) <

ce 2" (sup o(x, a, 4+ 8,2 —s)|f(x)| +sup o(x, a, 3+, 1—s) |g(ac)|)2.
Q9 Qs

In addition,

—t 2
1Dw, |, (o) < ¢ (Sup e " |g() | f e dy) < ce > (sup e~ |g(x) | )7,
Q) — Q(t)
1Dw; |2, < €llgallf ywrno, o < ce 72“(2‘?}3 e " |g(x)|)?,

with t<k<t+1, ae (0, ay). These estimates of Du, Dw,, Dw, imply (3.13).
The proposition is proved.

Proor oF THEOREM 3.2. — The proof consists in the investigation of regula-
rity properties of a generalized solution. Consider the solution in the domain
(&) =wE-1)Uw(&)Uw(E+1), £>3. It is easily seen that v and p =p —

|@(&) | fp(y) dy satisfy (3.5) for arbitrary ge 90(2,) with supp nc w(&),
and (&)

121z, ) < el Flliy e + 1S@) |, + IS@) Iy @ey) <

ce “(sup o(w, a, 4+ p,2—3s)|f(x)| +sup o(x, a, 3+ B, 1—3)|g®)]|).
0 Q5

Further, by virtue of local Schauder estimate for the solution of the problem
under consideration,

[o|ct=2wen + VP el < €| Flctaen + 19 et 1@ + 0l @e) + 1P lL@e))
which implies

B.15)  [v]etzment |VP|otwenSce (|

citl (92,3+ﬁ)) .

s—1,a

s (@0, a+p T1Y

It follows that p(x) —p as x— — », and

Pl <c(|Fley 0uaep T 19lcitt @0 34p) -

Similar estimates hold also in the domain w(&), £ (0, 3), and in arbitrary
compact subdomain of €2, which is bounded away from M. The simplest way of
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the investigation of the regularity properties of the solution near M is to use
its axial symmetry. In cylindrical coordinates the Stokes equations and the
boundary conditions take the form

( (82 v, &P vr) op v Ov, v
v + t—=-- +_/Ur+f;"’
ort  oxf or r or r?
& & 0 0
(3.16) : —v( = ”23)+_”:_K&+J3,
or o Oxg r or
ov, 0 .
Y +£=—v—+g, (r,x3) e,
| or  Ox 7
) )
VN, + V303 =0, ‘r-—v +n-—v=0, (r,ag)el",
(8.17) ] on or
[ vr=v3=0, (r,x3eX’).

where G c R* is the domain bounded by the straight lines {r=0, x3e R}, X' =
{r=dy, x3 <0} and by the curve I'’, n is the normal to the line I'’, 7, = n3,
73 = —n,. Near the contact point » = dy), 3 = 0 system (3.16) can be considered
as the two-dimensional Stokes system for the vector field V(», x3) with V; = v,,
Vs = v3 perturbed by lower order terms, and boundary conditions (3.17) can be
written in the form

V'nll":(), t'a—‘l‘n'— :0, V|2':0.

Hence, (V, p) have exactly the same regularity properties near the contact
point as the solution of two-dimensional Stokes equations satisfying the same
boundary conditions (see [13]). In the o-neighbourhood Bs= {(r, x3)e
G: 0*(r,x3) = (r —dy? + #§ <62} of the contact point there holds the
estimate

(3.18) |V| Cl*2(Byp) + |p | Cl 1 Bow) S

c(|F et ymy T 19]ct1s,) + ”V”Wzl(B,;) +pllzyz,) <

o(| f|Cé72,a,<!22,4+/3>+ lg C;fi"(.oz,3+ﬁ))

where F = (f,, f3), se (0, s5), s<l+2,s#1, and

|ulcisy= 2 sup oVl =70, ay) [DIulr, x3) | + || cogs,) +
0<‘]|<l By

+ 2 sup o' 7(r, wy)sup ((r' =)+ (x5 — 2 )02 | DI ulr, wg) = DIur’, @),

lil=t Bs By
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if 0e(0,!] (in the case o <0, as usual, the term |u|¢sg,, should be excluded

from the norm; B, ={(r’, x3)eBy: \/(r—r’)2+ (05— g P < (1/2) o(r, x3)}).
Finally, we should clarify the behaviour of a generalized solution for large
||, when x3>0. For large s we have cosa(s) >0, the equation

r(s) =dy + fcos a(t) dt
0

is invertible, and the line I'" can be given in the form
x3=a3(s(r) =D(r), r>71p.
The derivatives of @ are expressed in terms of a(s):

dd  dxy [ dr\ !
319) — = —| — =t s=s(r)»
( ) dr ds ( ds ) an a(s) | =0

a*e  a'(s)

dr? cos®a(s) |s=sm

etc., hence, @' eC'"%(J,,, 1).
For arbitrary R > 21, we construct the extension of @(r), @ r(r), from the
interval » > R into the interval (0, R), according to the formula

Dp(r)=Dd(r) for r>R,

R
Dr(r) = ¢(R)—f¢"(t)¢g(t) dt for r<R,

where 1 ,(t) =1—§(t/a). Clearly, @ z(r) = ®r(R/2) for r<R/2, ®Pp=
D' PreC'*2(Jy, 1), and

(3.20) | PR [z, 1) S [P [t 20, 1) -
The mapping x = Zz(y):
(3.21) =y, 1=1,2, wy=ys+DPr(|y|)

which is invertible, if @ ,(t) <1 (and this is the case for large R, by virtue of
(3.19)), transforms the half-space R? into the domain Q% = {x3> @ (|x'|)}.
Let R;>>R. The functions u =y v, ¢ = p, p satisfy the relations

(822) —wWPu+Vg=ypf+f, Vu=yrg+g, xe, |z|=R,

(3.23) un=0, vSwn=d' xel, |v|=ZR,,
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where
’r 2 _
f ——ZVVUVT/)RI—UV 1/)31+pr31, g’—Vle-v,

aw Rl a’l/) Rl

d'=(-7) + (v'n)

T

Extending all the functions in (3.22), (3).23) by zero we may consider (3.22) and
(3.23) as equations in Q% and on Q" respectively. Under transformation
(3.21) they take the form
—WEu+ Vpp=ypf+f, Viu=yrg+g', yeR},
(8.24) { ug— DPp, (|y])uy — Ppy,(|y|) us|y,—0=0,
S'(w)n—nn-S'(w)n)|,,_o=d'r,

where

3 0
VIQ:JTV:( E J’mk ) ’
m, k=1 Om li=1,2,3

3 ov; o
S’(U) = ( E (Jmk . +ij - )) ’
m=1 &ym aym j,k=1,2,3

J,. are elements of the Jacobi matrix

1 0 0
J= 0 1 0 ,
. (pRyl . ¢Ry2 1
14 @y, 1+ ®p, 1+ Pp,

n is a vector with the components

Py 1
r— —_—— ng = - )’
Vi+oz(y']) Vi+ o2y’ |
T,=MNg, Tg= —N,. We can also write (3.24) in an equivalent form

—wWeu+Vg=Ff+lLu,q Vu=g +Lu),
(3.25) Usg |y3:0 = l3(u),
Sig(u)|y3:0=di1+l4i(u), ?::].,2,
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where fi =y f+f, gy=vprg+g',di=d' v,=d"ngy; /|y |,
W, ) =v(Vg =V u+(V-Vp)q,
Lw)=(V-Vp)u,
ls(w) = @ g, (|y|) uy + Pp,,(|Yy]) Uus | y5—0»
lyi(u) =
(Sis(w) — Sz () + Siz(w)(1 —ng) — Sy (w) my — Sip(w) nz + ni(-S' W) n) |- -

The coefficients of these operators are proportional to the derivatives of @x(|y|),
and it follows from (3.20) that for arbitrary ue C'*3(R3, 2), qe C' "1 (R3, 3)
there holds the estimate

326) L, @) |ciws, avp+ @) |croms 34p +

2
|ls(u) |civere, 24 p) + '21 [lii(W) [ci+rr2, 54 p) S
iz

CRﬂ_l(lulcwrZ(R?}”Q)‘f'|Vqlcl(R§”4)), ﬂE(O,l)

Hence, by the contraction mapping principle, problem (3.25) with f; e C'/(R?,
4+p),0,eC"YR2,3+pB), dyeC' T (R?, 3+ ) defined above has a unique
solution Ue C'*2(R2, 2), Qe C' "1 (R2, 3), and

(3.27) |U|C[+2(R§,2)+ |Q|CZ+I(R§,3)S

2
C(|f1 lcirs, avp + |91 e 1re 34p F El |di |C“1(R2,3+ﬁ)) <

(flei s w@uarp t 19l w0usep) -

The difference w =u — U, k= q — @ has a finite Dirichlet integral in R? and
satisfies the equations

—wWEw+Vipk=0, Vpyw=0, yeR?,
or
(3.28) —vWpS'(w)+ Vpx=0, Vew=0, yeR?
and boundary conditions
wn=0, S’ (w)n —n(n-S' (w)n)=0, Ys=0.

Multiplying (3.28) by ®(y)w(y), M(y) =dety '=1+ @ ryy» and integrating
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over B3, one easily obtains

f |8 w) |*a(y) dy =0,

R}
ie., u=U, q= Q. Estimates (3.15), (3.18), (3.27) imply (3.4). Theorem 3.2 is
proved.

Theorem 3.1 is proved in a similar way but it should be observed that the
angular component of v, v,, in general does not vanish. Therefore problem
(3.1) with homogeneous boundary conditions in cylindrical coordinates takes
the form

(82 v, &F vr) ap v v, v
—v + +—=—-——"T+ —uv.+f,
or? du? or r 9r ol
& oa e 0
—V( 1}3+ v3)+_p:_£ﬁ+f3’
or? o s r or
v, 8 .
v +£:_v_+g) (7'5903)6(;7
or oxs 7
2] o
VN, + V303 =0, r—v+n'—v 0, x5 = h(r),
on ot
v,=v3=0, (r,x3)eX .
Fo v v v
b @ P @
—v + =f-——-—, (@rx)eq,
( or? O ) o o 72 ’

Vo
%|2':0, %|L=0,

where G c R? is a domain bounded by the straight line {r =0, x5 > —m; — m,}
and by the curves X' = {(r, x3) e L: 23 < h(r)} and a3 = k(r); r is a vector with
the components

h, 1
n,=—- ——, = —,
V1+h™ V1+h'™
T,=Mng, T3 = —n,. In comparison with (3.16), (3.17), we have here additionally

a mixed Dirichlet-Neumann problem for v, satisfying the Laplace equation
with lower order terms. Therefore we should subject the parameter s to an ad-
ditional constraint s < /29 (see [9]). Inequality (3.18) and all the subsequent
estimates hold with s < min (s,, 7/29).
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Now, let us consider problems (3.1), (3.2) with general non-homogeneous
boundary conditions on I
[ —wW2u+Vp=Ff(x), Vwv=gk)), ref,,
(3.29) v|z=0, wvn|=bx), 7SOn|,=d@), i=1,2,

(v@)—=0, p)—=0, (|Jz|—=>x);

[ — WP+ Vp=Ff(x), Vv=gk), xel,,
v|z=0, vn|=bx), TVSWn|,=d (),

(3.30)
v(x)—0, (Jx|—x),

N

| p@) =0, (|g]|=>wo,23>0), p@)-p—0, (Jr|—=w,r;<0).

The domains 2 ,, as well as the data (f, g, b, d = d, 7'V + d '?) in these pro-
blems are axisymmetrical. We say that an axisymmetrical function f(x) given
on I belongs to the space C/(I", b), if f(r(-), 25(-)) e CL(J,, b), and we set

| fleir, o = 1f0rC), 23() | i, by -

THEOREM 3.3. — Let 092, =2U T where I is given by equation xs3= h(r)
with h e (751 If’(Jdo, 3) (I and s are the same as in Theorem 1.1). For arbitrary
axisymmetric feCl_,(21,4+p), geC 1 (2,,3+p), beClT2(Q,,2+p),
d;eClP Q4,3+ B), Be(0, 1), satisfying the condition

fg(ac)dac—fb(ac)dSzO,
2 r
and, in the case O <1, s> 1, the compatibility condition
. .2 b 2 .2
(3.31) sindcosdg(x) =d;(x)sin“9 + &_(COS U —sin“d), rxeM,
T

problem (3.29) has a unique axisymmetric solution veClT3(Q4,2), pe
C!*1(Q,,3), and

(8.32)  |v|cirey, T Pl i S
c([flct gy, a4p T 191t @1 340p T 1] ciozi 24 p + .212 [di lci1r34p) -
i~
If f,=0 and dy =0, then v, =0.

THEOREM 3.4. — Let 02, =3 U I'where I is a surface of revolution of the li-
ne I'' about the xs-axis, and I'' is given by equations (1.5) with x3(s) =



SOLVABILITY OF TWO STATIONARY FREE BOUNDARY PROBLEMS ETC. 315
H

fsina(s’)ds’, 7‘=d0+fcosa(s’)ds’, aeCl*2(J,, 1). For arbitrary axi-
0 0

symmetric fFeCl_, (Q5,4+p), geCli] (Q,5,3+p), beClT3(Q,2+p),

s—1,a

d, e ijll(!)l, 3+p), pe(0, 1), satisfying the condition f,=0,
fg(%)dx—fb(x)dSzo,
Q, r

and, in the case 9 <9, s>1, the compatibility condition (3.31), problem
(3.30) has a wunique axisymmetric solution veCl1*(2,,2), Vpe
Cl 5 o(Q22,4) such that peCl*{(2,,3), v,=0, and

B33)  |v|cizg, 2t VP, weunt [Pleie., 5 S

¢t j@usep T 0]ct2r 2 p + i [ctt i 34 p)-

s—1,a

c(|flei_y, p@naep T 19

These theorems reduce to Theorems 3.1 and 3.2 by the construction of an
axiliary axisymmetrical vector field w(x), xe 2,, 1 =1, 2, such that

w|x=0, wn|=>b, Swn|=d;, i=1,2.

We restrict ourselves with the proof of Theorem 3.4.

Proor oF THEOREM 3.4. — It is easy to verify that the boundary conditions
on I are satisfied, if

3

w|r=bn, ow =dy 7'V = 2, Vr(bn)
on |r j=1
where Vi is the gradient on the surface I. The construction of a vector field
with given values of this field and of its normal derivative on a surface is a
standard problem (also in weighted Hélder spaces, see ([16], Theorem 4.1). In
the axisymmetrical case it is convenient to use cylindrical coordinates. It can
be shown that there exists an axisymmetrical vector field w’ e Cslfaz(QQ, 2) sa-
tisfying the conditions

’ ’ aw r (1) l ’
w' |p=bnl’, % =d; 't - ,Zlnjvr(bé n;)
j=

r

where ¢’ is a smooth axisymmetrical cut-off function equal to zero, if di-
st (¢, M) <1 and to 1, if dist (x, M) > 2, and the inequality

W' vz, 24 S bl cre2r, 20 p + 1di [l s 4p) -

To construct a vector field w” satisfying the necessary boundary conditions bo-
th on X and on I" near M and possessing the necessary regularity properties,
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one has to use Theorems 4.4 and 4.5 in [13], according to which there exists
w"eCl (2,4, 2+ ) with a compact support, such that

w'|s=0, w-n|;=b1-¢), 1PSw)Hn|,=d(1-¢), i=1,2,
and
|w” ¢, 245 S
(blerzr,zemt ldi et sep + 1 Flel s a@easp+ 19lct! @0 54p) -
Clearly, one can set
w=%w +w’

where ; are appropriate smooth cut-off functions. The theorem is proved.
Theorem 3.3 is proved in a similar way.
At the conclusion of this section, we consider the problems
—wW2u+Vp=0, Vo=0, xeQ,,
UlZ:a(x) = (_902, L1, 0)7
vn|r=0, 7-S@n|,=0, i=1,2,

v(x)—0, p)—0, (@xX—x),

(3.34)

and

([ —vwWPo+Vp=0, Vo=0, xeQ,,

v|z=0, wovn|;=0, #)-S@n|=0, i=1,2,
(3.35) T fvg(ac’,O)dx’=1,

K
v@)-v_(x)—0, pE)-p_@)-p—0, (r3—>— ™),

\v(m)%O, p(x) —0, (Je| — o, 23>0).

THEOREM 3.5. — If a satisfies the hypotheses of Theorem 1.1, then pro-
blem (3.34) has a wunmique axisymmetrical solution veC!T%(R4,2)),

peCslfll(Ql, 3) (I, 1, s are the same as in Theorem 3.1), and

(3.36) |v]cirz,, 2t |Plcit oy, 9 Scla]cteg) -

PRroor. — We construct the solution in the form v(x) = A(x) + u(x), A(x) =
a(x) w(x) where w(x) is an axisymmetrical smooth cut-off function equal to one
in the neighbourhood of 9V and to zero for large |’ | and |3 |. It is easily ve-
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rified that V-A =0, A-n|r=0, S(A)n|r=a(dw/0n) |r, so, for (u=v —A, p)
we obtain problem (3.29) where the data f, g, b, d; are smooth and have
compact supports bounded away from M. By Theorem 3.3, this problem is uni-
quely solvable, and (3.35) follows from (3.31) (moreover, it can be shown that
v =10,(7, x3) ¢, and p = 0). The theorem is proved.

THEOREM 3.6. — Problem (3.35) has a unique axisymmetrical solution with
the following properties: veCl2(Q4,2), VpeCl 5 ((2,4), v,=0 (I, 1, s
are the same as in Theorem 3.2), and

(3.37) E

cli@n T IVPlel j@nnSC.

ProOF. — We construct the solution in the form
vw)=C_(@)v_(x)+ (@) v, (x)+u(x),
px) =8 _(x) p_(x) + &, (@) p,y(®) + qlx),

where (v_, p_) is a Poiseuille flow with a unit net flux,

3xix v 1 R
U+(9€) = - y

zalal P T A\ TP T T

E_(w)=C_(x3) and &, (x) =C . (|x|, x3) are smooth cut-off functions such
that § _(w3) =1foras> -2, _(x3) =0 for ay3> —1, &, (v) =1 for |x| > 4d,,
23>0, &, (x) =0 for |x| <2d, and for a3 <0, and, finally, (u, ¢) is a solution
of problem (3.30) where f(x), g(x) are smooth functions with compact
supports,

2
b)=—-C,v.n=~— 3§+903r (n-x)|r,
2 a]’
0, () = 22 (_ 2ay (o D)+ 2ayryaen) | 105D ) )

39632 . aC+ . 8C+
((x 7) ™ + (x n)a—)

2m|x|? T

r

dy=0. Since x'n = —rsina +x3cosa, aeCl2(J,, 1) and a5 e C!*2(J,, 1)
(which means that x3(f) may have only logarithmic growth at infinity), it is
clear that be C/*2(I', 2+ ), d;e C*1(I", 3 + B), so, the existence of axisym-
metrical u e C/ %' Q,, 2), VgeC!_, ,(2,, 4), such that e C/*{ (24, 3),u, =0
follows from Theorem 3.4.
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The uniqueness of the solution in the class indicated in the formulation of
the theorem follows from the fact that the solution of a homogeneous problem
decays exponentially as x3— — o; as a consequence, it vanishes, which follows
from the energy estimate. The theorem is proved.

4. — Second auxiliary problem.

In this section we consider Cauchy and boundary value problem for ordina-
ry differential equations arising after linearization of (1.14) and (1.16),
ie.,

1d  mp'
4.1) rodr (1+ ho?(r))*?

w1,"|1*:d0=0a 1/"(7)—)0, r—©,

—b¢y(r)=f(r), r>d,

where b¢ = g,/0, and

) cos a((s) sin a((s) s.
4.2) E'(s) + ( &(s) + sina,(¢) &) dt =g(s),  £(0)=0.

7(8) r§(s) ¢

(ho(r), ay(s) are defined in § 1). We prove the following theorems.

THEOREM. — 4.1. — For arbitlﬂary fe Cslfll(JdO, 3), se(0,+2], problem
(4.1) has a unique solution eCSLIiO’ (Jq,5 3), and

4.3) |Wlets3um, Sl flei iy, -

THEOREM 4.2. — For arbitrary g e Cslfll(JO, 3), se (0, 1+ 2], problem (4.2)
has a unique solution EeC!3(J,y, 1), and

(44) &

2y, S ClG ]l iy, 3) -

We start with a less complicated second theorem.

PRrROOF OF THEOREM 4.2. — We make use of the relation sin a(s) = cy7y(s) !
(see §1), write (4.2) in the form

& [ &b
- dt= 0)=0
Sl S ga=na, a0 =0,

(4.5) i7”0(8)5(8) +
ds
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and introduce new dependent and independent variables

&(s) = ry(s) &(s),

" at " at
u=—fz—e[—u0,0], Uy = —~
s rp@) 0 1)

Then (4.5) is transformed into

@ + c2 f@(v) dv=7r¢gu), wuel—uy 0],

Z(_uo) =0

where €(u(s)) = &(s) ete. Hence,

(4.6) E(u) = f cos ¢y (u — v) g(v) 7¢ (v) dv,

— g

This formula gives a bound for |E| We have

| Ew) | _i |g(v)|r0(v)dv<sup|g(t)|9(t 3,1— )fg(t 3.1-5)

< csup |g(?) |o(t, 3,1 —5).
t>0

Hence,

Cc
&b | < cnfl(t)su% 9D (7, 3, 1 =) < —— sup[g(D) (7, 3, 1 = 5).

Further estimates can be deduced from (4.2). Assume that se (0, 1). For
arbitrary ¢’ e (0, t) we have

t+t’ t+t’ 9 T ,
strtr-et= | e @dr= [ (g L0 gy @ [ S dr’)dr
t To o ro(t")

t 70(7)
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which gives

t+t’

dr
t+1') — &t 3 1- T e 1 N
|8 +8") = &) | < ¢ sup|g(n) |olr, S)tf o, 3,1-5)

t+t’ t+t’ T
ggg|sw>|<1+r>(f S LA —i ,)s

¢ o(T)(1+T) 7ord(mg r(e )1+

et (sup |g(r) |o(r, 8,1 —s) +sup | &) | (1 + 7)) < ct"*sup |g(r) |o(r, 3, 1 —s);
r>0 r>0 r>0

hence,

[Elcsuy S ¢ Sup |g(r) |o(r,3,1—5).

Further, for arbitrary se (0, I+ 2] we have

|&) | cf
! < 1 _
|& ()| < e +sup(1+ 1) |E0) | 20 f o] <

c(o(t,2,1—s)) tsup|g(r)|o(r, 8,1 —5).
>0

In the same way, differentiating (4.2), we can estimate higher order derivati-
ves of & and their Holder constants which leads to (4.4). Theorem 4.2 is
proved.

Theorem 4.1 is proved in several steps. First of all, it is convenient to intro-
duce a generalized solution of problem (4.1) as a function (), r > d,, with a fi-
nite norm

% 12
4.7 ( fﬂr(zp’z +y?) dr)
do
satisfying the integral identity
) ) J
4.8) — 4 pd rdr= — rdr
dof( Ry Yy d!fn

where 7(r) is an arbitrary function also with a finite norm (4.7).

ProPOSITION 4.1. — For arbitrary f(r) with

sup o(r, 3, 1 =8) |[f(r) | = ||| f|| <

7‘>U
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problem (4.1) has a unique generalized solution, and it satisfies the inequality

@) [ @2+ p2eyrdr<e|i 2.
dy

Moreover, for arbitrary t> d,+ 2

t+1

(4.10) f(w’2+w2)rd%ct’5 (el
t
with the constant ¢ independent of t.

Proor. — The existence of a unique generalized solution follows from the

©

Riesz representation theorem, since f fyrdr is a linear functional in the space
doy
IC of functions with a finite norm (4.7):

|fﬁyrdr| S Fal J‘Q*I(V, 3,1—1s)|n(r)|rdr<
0 0

do+1 o
<c||I £ f(r—d0)5*1|17(7ﬂ)|d1"+ f 1"2|17(r)|d7”)s
dy do+1

do+1

F/ dp+1 172 © 1/2
<c|I £ (J~m?+f)m) +( flMﬂPrm) ]SdWﬂWMM-

Taking 1 = v in (4.8) we easily obtain (4.9). Inequality (4.10) can be proved by
the «technics of the Saint-Venant principle» in the form presented in [14]. We
assume that ¢ > d, + 2 and put in (4.8) n(r) = y(r)y ;. (r) with

1, ft—k<r<t+k+1,
0, if r>t+k+2 or r<t—-k-—-1,
r—(—-k-1), ift—-k-1<r<t—k,
t+k+2—7r, t+k+1<r<t+k+2,

xi(r) =
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k=0,1,2, ..., to obtain

t+k+2 t+k+2

2
tk1(<1+2;zr>)3/2 b”w)“(”dwt kfl 1+ zﬁﬂ"’”(”d“
t+k+2 t+k+2 1/2 t+k+2 1/2
- J vf<r>w<r>x<r>drs|||f|n( / wzdr) ( / d—Z) <
t—k—1 t—k—1 t-k—-1 T
t+k+2 1/2 2k+3 12
2
|||f|||(t_kf_1 e dr) ()
t+k+1

After easy calculations we show that y, = f (Y% + yw?) rdr satisfies the
inequality t=k

YeSCoWrv1—Yp) + 1 Fy

2k+3
with F, = Z_—  _ Hence,
=
Co C1
< + F
Y CO+1?/k+1 41 k

and

(Fk+6Fk+1+ +6mFm+k)+am+lyk+mﬁ-1

Yi S
Co +1
where 6 =c¢;/(¢co+1)€(0,1), m>0, k+m<[t]—1. In particular, taking
k=0, m=p[t]—1, fe(0,1) and making use of the inequality

81(27+3)

87 (2j +3)
1= G+Dre

t2F;0 = (I I* < Ire 1—py

’

we obtain

¢ I . . _
h< — 2 07(2j+3) + oM FIF< I,
co+1 j=0

q.e.d. The proposition is proved.
We need one more lemma concerning the estimate of the convolution
integral

(4.11) (1) = f K(r—s) F(s) ds
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with K(z) =e "% I*l or K(z) =e »I*Isignz in weighted Holder norms

IFl,, = sup " |F() |, m>0,
r>dy+1
”F”m,a ”F”m+ sup rmre sup t°“ |F(Z + 1) _F(z)| ae(0,1).
r>dy+1 0<t<w2

PROPOSITION 4.2. — Let F(t) be a function with ||F||,, . < « vanishing for
t <dy+ 1. Then the convolution (4.11) satisfies the inequalities

4.12) [0ll,, < €llF ], ,
(4.13) [V, o < llF ], o -

ProOF. — Inequality (4.12) follows immediately from the elementary esti-
mate

©

(4.14) fe’b‘”"*'(l + s Fds<e(1+ |vD7F,  k,b5,>0;

—

indeed,

©

o | <1l [ e i s s < e,

do+1

Now, we evaluate the difference v(» + 0) — v(r) with » > d,, 0 € (0, 1/2). We
have

v(r+ ) —v(r) = f Kir—s)[F(s+90)—F(s)lds +

30/2
30/2

fK('}"—S)[F(S-I‘Q)—F(S)] ds + fK(T—S)F(S-i—Q) ds=L+1,+1;,

Using again (4.14), we obtain

©

11y | < cl|Fll, w0 f e Ml tds < et r R, o5

max (dy + 1, 30/2)
30/2

I | < d|F],, f e WImSI(1+ s+ o) "+ (1+5) "]ds <
0
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30/2

b e _ 50 “ _ (30 )“
F bolr=sl] (1 m 1 m_= ds <
| ||m0fe [( +|s+o]) (2(s+9)) +(1+5s) (23 ] s

C”F”mQaT ey

finally, we observe that I3 =0 in the case ¢ <d, + 1; hence,

0

—(by)/2 2 - —m o “
|I; | <e 72|, e |s+o| ™ds
do+1-o dy+1

N

a
(g ) r e RIE <o A,

so, (4.13) is proved.

Proor oF THEOREM 4.1. — We estimate weighted Holder norm of a weak
solution of problem (4.1). First of all, since W4 (t, t + 1) is continuously imbed-
ded into C(t, t + 1), we have

t+1 1/2
sup |p(r)| Sc( f(lp,’.2+1/)2)d7”) <
t

t<r<t+1

t+1 172
ct—l/Z(fw;?wZ)mr) <c ISl i Ezdyte
t

From this inequality and from (4.9) we obtain

(4.15) sup »* |p(r) | <c|| fl -

r>dy

Further, we consider 17)(7#) = yY(r) — y(dy + 2) as a solution of the Sturm-Liou-
ville problem

1d )

PP B s L G R C R R
. 0

re(dy, dg+2)=1, ¥ |24=0, P|r—g:2=0.
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From the representation formula of the solution of this problem in terms of
the Green function and from the equation (4.16) we obtain (see [13])

@17 |plen < (Jwldo+2) | + |9 |etsa) <

s+1 s+1

<c|flein+ [W(do+2) | <c|fla+ia

where
“/)(r)
Ylon= = sup(r = doY =7 | — == | +
o<j<l
dByr'y  dBy(r)
Sup (7" - do )<I - U) Sup 1/' 7" [l] - l B - + 'l/) CU(I)
1 |r’—r|<<r—do>/2| . dr't drt! [+ Wl

0 <o <1 (in the case 0 <0, as usual, the term |y |¢o(, is omitted).
Finally, we consider y(r) in the interval > d; + 1. From the equation (4.1)
for y and from (4.15) we deduce

sup ¥ |y (r)| + sup 7"3 [p" ) | <c|IFIl S

r>dy+1 ro>dy +
and, after the differentiation of this equation,

[11+1
<c| Y sup 73

1=0 r>dy+1

0+3
(4.18) > sup 7?

i=0 r>dy+1

d'y(r)
drt

di
A +|||f|||)-

To get a sharper estimate of the derivatives of y,we introduce the fun-
ctions w(r) = ry(r) and 2(r) = w(r) u(r) where u € Cy* (R), u(t) = 1 for t = d, +
2, u(t) =0 for t < d, + 1, and we set X(r) = 0 for » < d, + 1. These function sati-
sfy the equations

4.19) p(r )da)(fr) —biw=1f+ K(Mw), r>d,,

dar P

where p(r) = (1 + hg?(r)) 73”2, and

dz_b() =ﬂ+FO, ’V'ER,
dr? dr
10(7")
Fi(r) = u(r) [ 1 —plr ))7 + —
p(r)

Fo(r) =ruf+u’ (7")|:(1—]0( ))—+ :|+2pt’w’+/,t"cu
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(we assume that X, F;, F;=0 for » <d,+ 1). Hence,

[

1
2 - _ —bo |r—s|
(r) e fe

0 —

(dF1(S) +F0(S)) ds —
ds

1
T f e ~Wl"=sl(bysign (r—s) Fi(s) + Fy(s))ds .
) —

When we differentiate this formula and make use of Proposition 4.2, we obtain

420)  [DIZll+j, 0 < DI Fillesj o+ D7 Follej, o) <

J J J
C( ,ZOHD; le +ia T ,EOHD;}f”:an, ot 20 | Dy () |C“(Jdo+1))
i= i= i=

where a =1 — [[] (we have used the fact that the function 1 — p(») and the de-
rivatives of p(r) decay exponentially at infinity). Now, using (4.18) and the ele-
mentary interpolation inequality

D}l +i,0 < elD}wle s, o + c(e) | Df (1) |y, VeE(O0, 1),

we obtain from (4.18) and (4.20) the following estimate of Dj w(r):

IDiolse <o 2 IDialhe o+ '@ 2 IDifhi o+ N1£11).

Hence,

[1+1 ] [11+1 ]
a2y S IDi0lkrw=e( S 10! s 1111

The derivatives D, w, i = [I] +2,[l] + 3, may be expressed in terms of lower
order derivatives with the help of equation (4.19), and it can be shown
that

DI 2 wlly 4 1y + 1D 2 olly s 1y,

also can be estimated by the right-hand side of (4.21). Clearly, these two esti-
mates, together with (4.18), imply (4.3). The theorem is proved.

5. — Proof of Theorems 1.1 and 1.2.

We begin this section with the construction of special mappings of the do-
mains 2;, © =1, 2, corresponding to the rest state in both problems (see § 1)
onto Q;.
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PROPOSITION 5.1. — Let the surface I’ be given by equation x3 = h(r), r =
|’ | >dy, and

(5.1) |h_h0|6gli?(=]d0:3)$6l<<l'

There exists an invertible axisymmetrical mapping x = Z;(y) of the domain
Qg onto 2, with the following properties:

Dz (', ho(ly' D) =0y |)

2) The elements J,,, of the Jacobi matrix of Z,, as well as the elements
JE of the Jacobi matrix of the inverse transformation 2! satisfy the ine-
quality

(52) |ka -9 km

JU km __ . _ L
crz@e, o T 1™ = Ok [etv2ay, o Sl —ho |ci30,,9)

where s e (0, sy),

|wlei2on,n = |Ulerem T > ,5up oy, q(|7) +b, ] —9)|DIuly) | +
01

< |jl<l+

sup o(y, L+ b,1+2—s)sup |z —y|" " |Diu(y) — D'u(z) |,
[Fl=10+2 Qg K(y)

q(|7]) = 1] for || <[, q(|7]) = [l for |7] =1+ 1,11+ 2 K(y) = {ze Q;:
|Z—y| SQ(?/? 15 1)/2},

%[ lyl*,  if |y| >2d,,
Q(y’ k’ m) = . ( 0) . .
| (dist (y, M) )maxtm: O =i dist (y, M) < dy/2 .

and if the functions hy(|y' |) and he(|y'|) satisfy (5.1), then the elements of

corresponding Jacobi matrices J{) and J P, i =1, 2, satisfy the inequalities

1 2) 1. Dk 2)k ~ ~
(58) |Jlém) - Jlém) |Cé+2(901, 4) + |J( Yo — J( o |Cé+2(901, 4) S Clhl - hz |C§I%(Jdoy 3)

t
PROP(%SITION 5.2.— Let I'' be given by (1.5) with »(t) =d, + fcos a(t’) dt’,
0

x3(t) = fsina(t’) dt', a(0) =37/2 — 9 and
0

(5.4) |a_a0|CSI+Z(J0,1)<(32<<1, SE(O, min(SO,ﬂ/Zﬁ)).

There exists an invertible axisymmetrical mapping x = Z,(y) of the domain
Qe onto 2, with the following properties:

D If |y | =7(@t), ys=we(t), then |x'| =r(l), x3=x3(l)
2) Zo(y) =y for ye X and for y; < —1.

3) The elements J,,, of the Jacobi matrix of Z,, as well as the elements
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J ™ of the Jacobi matrix of the inverse transformation Z ', satisfy the ine-
quality

. k
(55) |ka - 6km |Cé1+2(.(202, 1) + |J "— 6km

G2 » S cla—ag a1
where s; =min (s, 1),

|u|ci2@mn= 2 supoly, |j| +b, [j] —s)|DIuy)| +

0S|I <l+2 Qg

> supo(y,l+2+b,1+2—s)|sup|z—y|" "D/ uly) — Diuz)|,
il =1+2 Qy K(y)

Ky)={2eQ4: |z-y| <oy, 1,1)/2},

[ |y|*, if |y|>2d,,

oy, k, m) = . o g

(dist (y, M))™, if dist(y, M) <d,/2 .
(in particular, (5.2) shows that Ji,(y) = 6 1, for y e M). Moreover, if the cur-
ves I'l and I'; satisfy the above conditions, then the elements of the corre-
sponding Jacobi matrices satisfy the inequalities

1 2) - 1k 2)km | o
B.6) [T = Ti) [ctrzi@p, v+ 1TV =T O [orag, 1y Selay —ag g, -

ProorF oF PROPOSITION 5.1. — Using standard methods (see [13], § 2, and
[16], Theorem 4.1), we can construct an extension @ eC!I$(2,3) of
h(|y"|) —ho(|y' |) from I'y into £, satisfying the inequality
(5.7) |®|CZI?(901y3)SC|h_h0

s

Cliday 3)

and possessing the property of axial symmetry (this can be easily achieved if
we pass to cylindrical coordinates and make all the constructions on the plane
(r, x3)). Moreover, multiplying our extension by an appropriate cut-off fun-
ction we can satisfy the condition

O(ly'|,ys) =0 for ys< —m,.
The mapping Z; can be defined by the formula

’

x' =y, 903=?/3+(p(?/);

it is easily seen that (5.2), (5.3) follow from (5.7). The proposition is
proved.

PrOOF OF PROPOSITION 5.2. — We pass to cylindrical coordinates, set &, = r,
&, = x5 and define a mapping of the domain G, onto G (see the notation in § 3)
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as follows:
(6.8) n=+2(¢), &ely,
Here ®(&) = (D ,(&), ®,(&)) is a vector field satisfying the boundary condi-
tions
D(E) [ =0, D(E(s))=8s)—E&(s),
Eo(s) = (1y(s), we3(s)) , &(s) = (r(s), w3(s)) .
From the relations

13

r(t) — 7 (t) = f[cos a(t) — cos ao(1)] dr =

0
t

1
—(a(t) — ao(t))fdufsin(ao +ula—ay))dr,
0

0

t

1
xo (1) — 2g3(t) = (alt) — ao(t))fdufcos(ao +ula—ay))dr,
0

0
it follows that & — &y = (r — 1y, 5 — 2p3) € C/ T 3(Jy, 0), and

|7 =17,

3 0 T |8 — T3 [cli3u,, 0 S ¢la—ag |tz 1) -

Therefore, using standard methods, we can construct an extension of &(t) —
Eo(t), ®oyeCli}(@G,0), from I'" into G, such that

|Polciie,o S cla—ag|ereu, -
We can also assume that
Dy(&) =0 for &;=r<dy/3 and for E, =3 < —1.
Now, we set
D(&) = D (8) x(&1— dy, &)

where y(n7) =x0(#/|n|), xois a smooth function given on the unit circle and sa-
tisfying the conditions (0, —1) =0, x () =1 for 5, > 0. Clearly, ®(&) sati-
sfies the necessary boundary conditions both on I'' and on X', moreover, as
E(0) =£,(0) and £'(0) = £4(0), D (&) vanishes at the contact point (d,, 0) to-
gether with its first derivatives, and

(5.9) |¢|él+3 (90210)$C|a_a0|CSZ+Z(J0’1).

s1+1

We define the mapping Z, by formula (5.8) or, in the Cartesian coordinates
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x = (21, X9, 23), by

Y
ly" |
It is easily seen that inequalities (5.2) follow from (5.9). The proposition is

proved.
Let us proceed to the proof of Theorems 1.1 and 1.2.

=Y+

D.(|y' |, ys), 1=1,2, xy=y;+Py(|y' |, ys).

Proor orF THEOREM 1.1. - We map 2 onto £, by means of the transfor-
mationng 1 and we observe that the operators V and S(v) are transformed into

V' = 21 (Jm}c(a/a?/m))kzl,z,s and
3 v 3 9
S’(U):( ZJmk_/U_,r_ Eszﬂ) ,
m=1 Ym m=1 aym ,k=1,2,3
respectively. Hence, in the coordinates y = Z;!(x) e Q,, (1.13) take the
form
W20+ @-V)v+Vp=0, Vv =0,
(65.10) J v|y,=ca, v-n|;,=0, S'n|,=0, i=1,2,
v(y)—=0,  py)—0, (Jy|—=)

where a(y) = (—¥s, 41, 0) and 7'”, n are tangential and normal vectors to I,
respectively. Since

n=|- hyl _ hyz 1
VI+VE?  A1+VhE VItV R”

and

- hﬂyl hﬂyz 1
o— | [ ’
V1+Vh?  V1+Vh?Z 1+ Vh?
are related to each other by the formula
B (Jfl)T n(]
|(J ™) ny |

(J is the Jacobi matrix of the mapping Z,), the condition v-n | = 0 is equivalent
toJ lv-n, | r, = 0. We multiply this condition and equation V'-v =0 by det./
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and write (5.10) in the form

[ W+ Vp=v(V2-V)v— (0-V)v+(V-V)p=Fflv, p, ],
Vo=(V-detJ(J HTV)v=glv, I,

G11) { v|y,=ea, vy |p, = —detJJ Hv-ng |, =0blv, yl,

7y S() no | r, = (1-S() g — °-S" (@) 0) | 1, = di[v, 1, i=1,2,
Loy =0,  ply)—=0, (ly]|—= =),

where v = h — hy (this function determines completely the transformation Z;
and the vectors n and 'V, whereas ¥ =t{ =e¢,).
As

detJV'-v =V-((det])J 'v),

the expressions g[v, ¥] and b[v, ] are related to each other by the formula

fg[v, ylde= fb[v, wldS.
Iy

Qn

In addition, the following proposition holds.

PROPOSITION 5.3. — 1) For arbitrary veCl*2(Qq,2), peCr Q4 3),

se (0, sy), and arbitrary small yeClf 2 (T4, 8) (so small that (5.1) is sati-

sfied) there hold the estimates
( lglv, ¥1|ciin s+p T [0l ¥ civ2irg 24 p T

2
‘21 |d1[U7 w]

g, 3+ S CP]E 20,8 [Vt 2oy, 20

(5.12) S
|f[U, P, ¥l |C§72(90174+ﬁ) <

clpla3ug, 3 (0] ci2@p, 2+ VPl s@m, 0) + €|U]E 20y, 2 -
2) If (vy, p1, Y1) and (vs, P2, Vo) satisfy the above hypotheses, then
(6.13)  |flvy, p1, 11— Flos, P2, Yol L@, a+p T

|glvy, Y11= glvs, Yeleit oy, 3+p +

|blvy, 1] — blvg, 2l

2
cltery, 2+p T 21 |dilvy, v1] = dilve, Yallcit iy, s+ p +
iz

clr =2l iu, (|02 [az@e, 2+ 02 [E 2@y, 2+ VP2 el yn, o) +

clor = vz |civzo, (V1 630, + 101 ez, 2 T V2 i 2@g, 2) +

|V =) |t scop, o 1% |63, 9 -
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Estimates (5.12), (5.13) are obtained as a result of standard and somewhat
lengthy calculations based on the inequality

(B.14) | fulciie, b Sl a2, o 1%l ek, b s

In virtue of (5.14) and (5.1),

3

mk
cil@nsep SO > 1|J — Ok
c,m=

lglv, ¥]

CL+2(Qo1, 4) |DU @, 3) S

clyletss, » Ve, 2 -

Further, since
glvy, Y11= glvs, w2l = = det,(J7 ) T)V-(v; —vy) +

(detJy(J;7 DT — (detJo(J5 )T )V v,
we have

|glv1, Y11= glvs, ¥all|cl iy, s+p < c(|¥1 |6 3070, 8) |U1 = U2 | clv20y, 20 +

|1 — ¥, Cli3(Jg 3) |v; c§*2<901,2>) :

Similar estimates hold for b[v, v], d;[v, v] and for flv, p, y] which
is a linear combination of the terms (J"* —96,,)D%v;, DJ"*Dv;,
(J"™ =6 ,4)(Op/3y;) and (v-V') v;.

Let £= (£, £) be a linear operator assigning the solution of problem
(3.29) in the domain £ to the data R = (f, g, b, d;, d,), according to the for-
mulas v =L, R, p=L,R. It is clear that (5.10) is equivalent to the equa-
tions

v=e¢vy+ & Ry, p, ] =evy+ Qlv, p, v],

p=epy+ LRv, p, Y] =epy+ Aslv, p, p1,

Where R[vapvw]:(f[vapva g[vaw]y b[U, 1/)], dl[vy 1/)]7 d2[v7 1/}]) and
(v, po) is a solution to the problem (3.34). In view of Proposition 5.3 and of the
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continuity of the operator £, we have

|(i11[v (v, p, 1/’”0”%(!201 3 S

|Ay[v1, p1, 1/)1] - a1[vz, D2, Y z] |C“2(901 2yt
(5.15) \ | Az, p1y w1l — Aolvg, P2y Wallcir iy, s S
c|lv1 =02 et 2@y, 2 ¥ 1 16300, 9 F 101 ledr2@0, 2 F [V2 [l 2@, 20) +

cly1=v2laiug 9 (V2 ezt |02 |8 2@ 2t [P2 |0t i@n, ) +

{ c|p1— P2 |t i@y, 3 | Y1 Cl3Ta0 3) -

Equations (1.14) can also be written in a similar way. When we subtract
from (1.14) analogous relations (1.8) for %, we obtain

od p'n
(5.16) rodr (14 hy?)*?
p'(0)=0, yr)—0, (@r—>x),

= goyp(r) =f(r) + Qly],

where f(T‘) = n‘T(U5 p)n|x3:h/0(7-)+¢(1»),

g (r) +uyp ' (1) "
[1+ (kg (r) +up' (r) PP

1
__30d _
Qly] = " drm (r)of(l u)

l+3

For arbitrary v, v, v.eC;7(Jq, 3) satistying (5.1) we have

gy ) S <c|y|% G300 3) 0

|QLy1]1—Qly ] |C§t11(JdO yScly;— ¢2|C§+1<Jd0 3 (¥, |C’H<Jd0 3t ¥ |Cf+1(Jd0 3)) -

We denote by £5 a linear operator which makes correspond the solution of pro-
blem (4.1) to the function f in the right hand side of the equation and write
(5.13) in the form

p=0"1e(f+QlyD.
As
f=(=p+wn-S'(0)n)|, 1, = ¢eho+ Rilv, p, ¥, €],
Jo=ng-T(0o, po) Mo |y = ) »
Ri[v, p, v, el =(—Qlv, p, pl+vn-S' (v)n — evng-S(o) o) | 4y = y(r) =

(= Aslv, p, Y1+ evn-S' (vo)n — evny-S(vy) ny) +vr-S' (v — eVY)N) | 4= 1) »



334 V. A. SOLONNIKOV
we have
Yy=eypo+ Aslo, p, v, €l
where
vo=L3fo, v, p, v, el=0" QY]+ Rilv, p, v, €.
It is easily seen that

|Rilv, p, ¥, el 3w, S

cly

4303 (V] clr2@e, 2 T [Pl l@n. s &) He|v]Ereg,, 2

and

|Rilvy, p1, Y1, €] — Ryi[vs, s, ¥2, €]

~ <
Gty 3) =

cly1— e

o 3g 3 (U2 | etz 2 + U2 |&rv200, 2) T | P2 @y, 3t E)+

c|lvy — v,

cr2@p, 2 Y1 [atiu, s + |01

cir2an )t |V [l ey, 2) +

c|p1— P2 |c}t}(901,3) [ Cy13ap 3)

if v;, p;, ¥; satisfy the hypotheses of Proposition 5.3. Hence,

(| Qslv, p, ¥, ellaisiu,, s S

cly

&30 U el 2@, 2+ Pl Han ) T W] e 30,8 T 8) +

clv |%‘1*2<9m,2> )

5.17) 4 |Aslvy, p1s Y1, €] = Aslvg, oy Yo, €l|e 30, 0 S IV —Waldl 3wy, 9
(|2 [ci+2 00, 2) + V2 | B2, 2) F | P2 |01t 10, 3) + €) +
clvr=valasivg s (Vi lativg s + [¥2 a0, ) +
c|v1— Vs | ct+2(ay, 2 (|91 |C‘sli%(=,d0’ 3+ |01 | 200, 20 F V2| a2y, 2) +

Lelpi =Pl lan, ) (W1 |t iug, -

Thus, problem (1.13), (1.14) reduces to the equations

v EUo+a1[U,p,¢],

p=3p0+a2[v,20,¢],

§:8§0+a3[va D, Y, 8]a
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or
(5.18) V=¢Vy+alV, el,

where V= (v, p, ¥), Vo= (vo, po, ¥0); A= (s, Az, A3).
Equation (5.18) should be considered in the subspace €' of the space

Cl2(Qg, 2) X Cl 1 (201, 3) X Clii Iy, 3)

whose elements V = (v, p, ) satisfy the condition vy(d,) = 0; the norm in €' is
defined, as usual, as the sum of norms of v, p and :

[VIer=|v]|civ2@p, 2+ [Plei+ i@ 3 T 1El 6304, -
Proposition 5.3 and inequalities (5.17) imply
[Vo et <col|a|cizs,)
|alVl|er < e ([V]e)P + €| Ve,
lalVil—alVal|er< e |Vi—= Vo |a([ Vi e+ [Va |+ | Vi |5+ | Vo |2+ e) .

Hence, it follows from the contraction mapping principle that equation (5.18)
has a unique solution satisfying the inequality

|V]e < k() = 2aclaloraay
= =

1-cie+\/(1—ce) —deyerelal o,

(k(¢) is a minimal root of the quadratic equation c¢;k®— (1—c &)k +
coela)ci+2s,) =0), provided that ¢ is small enough:

degere|alcriasy < (1—cre)?,  6(2k(e) +2K%(e) +e) <1.

Theorem 1.1 is proved.

Proor oF THEOREM 5.2. — We follow the arguments in the proof of Theorem
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1.1. The mapping « = Z,(y) transforms (1.15) into

( —’VVZU +Vp=V(V’2_V2)U — (U’V’)U + (V_V’)pzf[v9 D, g];
Voo=(—-detJJ )T V)v=glv, &,
UlZOZO; U'W/O|F0:(I_detJJ_l)v.nolr()Eb[v’é:]’

(519) J IBD'S(U)nO |F0 = (tBD'S(U)nO - t(l)'S’(U)n) |I"0 = dl[v’ ‘S]y

fv3<y) dy'=¢, (y3<-1),
S

vy —v_(y)—0, ply)—-p_(y)-p—>0, (ys—>— =),
(v —0,  py)—0, (Jy|— =, y3>0),

where &= a — a, (we note that the mapping Z, and the vectors n and 7’ are
completely determined by &). It is easily seen that

fg[v, Elde = fb[v, £lds,
ry

Qo2

moreover, the following proposition holds.

PROPOSITION 5.4. — 1) For arbitrary veCLi2(Q, 2), peCl'! (2, 3)
and arbitrary small £ CLT2(Jy, 1) (so small that (5.4) is satzsfzed) there hold
the estimates

2+p T

[ l9lv, Ellci+t op 5+p + | bLD,
|d;[v,

g3+ S ClE a1 [Vl ct 2@, 2)

(5.20)
[flo, p, Ellct s w0 4+p S

sz,a<902,4>) + C|U|%£,*a2(902,2)-

2) If (vy, p1, &1) and (s, ps, E2) satisfy the above hypotheses, then
(6.21)  |flvy, p1, §11—Flvg, P2, &5 |C§,2‘a(902,4+ﬁ) +
+1glvr, §11 = glve, Exlcitt g 3+p T+

|blvy, &11—blvg, &olci+2ry, 24p t |dilvr, E11— dylvs,

C|§1_§2

s 1o, 3+ﬁ)s

Oy (@ ) T

,1)(|Uz

Cl2@p 2 T V2 | ali2@p ) +

¢|vr — V2 200, 5 ([&1 [crr2we, v+ |01

c|V(pr=p2) ey w20 0 |1 D)
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This proposition is proved by the same kind of calculations as Proposition 5.3
but instead of (5.14) there should be used the inequality

| fu] ctriconm, o < €l fleii2@um v [l i, b >
1<2, bi<b,+1, S3<sor s<s3<s+1, u|ly=0.

We denote by £ = (£, £) a linear operator which makes correspond the sol-
ution of problem (3.30) in the domain Q (, to the data R = (f, g, b, d,), accor-
ding to the formulas v = & R, p = & R. It is clear that (5.19) is equivalent to
the equations

(5~22) U= EUO + ‘flR[vy p9 g] ) p = €p0 + ‘EZR[Uy p$ g]

where R[v, p, £] = (f[v, p, &], glv, &], blv, &], d,[v, &]) and (v, p,) is a sol-
ution to the problem (3.35). In contrast to .£; R, v, and p, do not decay as x3—
— oo, s0 we introduce the functions u =v — ev,, ¢ = p — p, and write (5.22) in
the form

(5.23) {“:ﬁlR[uﬂvo,qﬂpo, El=Rlu, q, &, ¢l,

p= £2R[U + &0y, q + €Po, 5] = L(BZ[ua q, 57 8]-
Since v and p enter into R[v, p, €] with a multriplier proportional to J*" —

O 1 OF to its derivatives (except for the nonlinear term (v-V') v), the following
analogue of (5.20) holds:

( |g[u+8v()a §]|ClJrl /Qozy3+ﬂ)+

s—1,a

|blu + evy, &]

clv2ro, 2+ p + | dilu + evg, E1|ctiiry 54p) S
c|&lcteae, vl ez, v+ €],

(5.24)
| flu + evy, q + evy, &]

<
Ci_g,a(Quz, 4+ P =

C|§|Csl+2(=70, 1)( |u ClH2(Q0, 2) + |ch,31—2,a(90274> + |£| )+

C(|u|%s[,t12(902,2)+ gl |u|CsL,+02(902’2)+ |8|2)

v

(we have taken into account that (v,-V)wv, tends esponentially to & 2(v_-
V)v_ =0, as 23— — =, so the norm [(vy-V) 0o |¢!_, (24, 1) 18 finite). Moreo-
ver, if u;, q;, &; (1 =1, 2) satisfy the hypotheses of Proposition 5.4, then

(56.25) | fluy + evy, q1 + epy, E11 — Flus + evy, g + €ps, &2

Cly Qo d+p) T
|glu, + evy, §11— glus + evy, 52]C;f%y,,(902,3+/f) +

|bluy + evy, §11— blus + evy, Exlci+2ry, 245 +

|diluy + vy, §11—dylus + evg, Eolcitir, 344 S
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c|&1 =&z o2y, n (s [ets2op, 2+ [Us |82, 0+ | Va2 [0y om0+ [€]) +

cluy—us cizz@p 2 (&1 [crzuy, v+ [
¢|V(g1 = @) |ci s w2 1§ [0, 1) -
Equations (1.16) also can be written in a similar way. When we subtract

(1.9) from (1.16), we obtain

, cos ay(s) sin a ((s) s_ L
(5.26) §'(s)+ ) &s)+ s Of sin a () Et) dt= — o ~f(s) + Q[v],

§0)=0, &()—0, (s—x),

where
) =n-T@, PIN| 4y a0, r= o) = €fo(8) + Byl + evo, g + epo, &, €],
Jo(s) =ng- T, P0G |2y = s(s), 7= o) »
R [u + evy, q + epy, &, €]l = (Bslu, q, &, €1+ evn-S' (vy) n —

8Vn0‘S(U()) ng, + Vn'S ,(u) n) |x3:x03(s), r=ny(s)

1
2
=) (1~ wysin ay(s) + vi(s))do —

@lel= 70(8) ¢

Slna(o()S) f& (t) dtf(l — ) cos (ay(t) +v&(t)) dv —
70 0

1 sina(s)  sinay(s)
aﬂo(s)( rs) ns) )
Hence, (5.26) is equivalent to

E=ebo+ Blu, q, &, €l

Where §0= O‘il‘fSﬁ)’ $S[u7 q7 57 8] = 071£3(Q1 +R1[u5 q; 59 8])7 and "63 iS a
linear operator which assigns the solution of (4.2) to g(s).
Thus, we have reduced Problem 2 to the equation

(527) V= (u’ q, S) = 8V0 + ‘%[V; 3]

s 1
[ e dt [ sin (o) + uy) du.
0

0

with V= (0, 0, &), 8= (B, B, Bg) in the space
=C! (R, 2) X C1H] (R4, 8) X CLH2(Jy, 1)
where a”z(Jo, 1) is the subspace of C!"2(J,, 1) whose elements satisfy the
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condition £(0) =0 and C!*] ,(Q, 3) is the space of functions such that
IVale: ,0pmo<®, q@)—0 (Jg]— o0, r;3>0)

(but g(x) may tend to a constant, as x3— — ). Just as in the preceding theo-
rem, it is easy to verify that ® is a contraction operator in €., and equation
(5.27) has a unique solution satisfying the estimate

lw|ctzm 2+ 1Vl j@m o+ |Elctvew, nscle] .

Hence, Problem 2 also has a unique small solution. The theorem is pro-
ved.

Appendix: proof of inequality (2.7).

Let A,={xeR3:r<1+ |x|<2r}, B, ;= FreR}:r/2+ A <1+ || <
4r—N)}, B! =B, ;NoR%, 2e(0, r/2), and let &(x, A) be a smooth cut-off
function equal to one for x € B, ;, to zero for x e R3 \B..; /2, and satisfying the
inequality

|Dig(x, A)| <c(f) M.

If (v, p) is a solution of (2.1), then u = vi(x, 1), = (p —p)&(x, 1), p = Const,
satisfy the relations

—vWVeu + Vq=F¢—2vVoVi —wV3E + (p —P)VE,

Viu=9gZ+Viv,
9 ¢ .
Ug |geo=0")C, Sg)|p-o=d;l+v,— +v3— , =1,2.
3|,3 0 (") ¢ ;3( )| 5=0 ]C )j Bty 3 32, | as-0 J
Classical Schauder estimate for this problem gives
(ol 2 + [Vply , < [ulfd® + [Vqlgh <
¢ | LFEIR + [gZ1hs V) + (D814 + [d L1V +
2 aé aC a+1)
[2vVOVE +wVEE — (p — D) VEID + [0-VELE + 2 [0 — + v —
* * j=1 8.703 ax] R2

To estimate the norms in the right-hand side, we use well known interpolation
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inequalities. For instance, we have
(1]
[FEI <[FIY +c¢ X (l‘k[f](l_k)+/ll"“max|Djf(x)|) <
+ k=0

By, i B, w2 By
c([f]“) + 2 "' max | () | ) :

By, iz B, i1

The norms of ¢g&, b, d’ ¢ are estimated in a similar way. The norms of expres-
sions containing v and p — p are evaluated with the help of interpolation ine-
qualities with a small parameter &:

[VoVely |, < elvlf 2 +cle) A7 ~* max |v(@) | ,
A " By, 2

[(p~PIVEL) , <elVpIY  +c(e) A~ max|p(@) =5 | .
v, A2

By, 2 By, 12

If we choose the constant p in such a way that f (p(x) —p)dx =0, then
B, i

max |p(x) — P | < crmax | Vp(x) | < er(v max |V2o(x) | + max |f(z) ) .
B, i By e B, e By i

Now, we evaluate | VZv(x) | with the help of the same kind of interpolation ine-
quality, i.e.,

A
max | VZo(x) | S e A! —[v]gff; +e(e A2 ¥ max |v(w) |,
By i r ’ By, 12

choose ¢; in an appropriate way and collect all the terms. This gives

[l + [Vpl , < c(UFIY , + 27" rmax |f(a) | + L9157 ) +
’ ’ ’ 7, A2 ’

A~ max | g(a) [+ [015 P + A~ *max |b(x ') |+ [d' 1§V +2 7 Tmax |d'(2)]) +
By nA Blip nA B

- 1+2
e[l %, + ey, + ¢ (@)Dt max o) |

Multiplying this inequality by 1201+ we obtain
F(A) < ce2@0ATV0 R(3/2) + K(4)
with
F(A) =A@ 000 [0+ + [VpI) ),

KQ) =A@ 0O F10 4271 e max | £(@) | +

B,
1,12 Br. 12

[gl4 D+ A" max [g(x) | + [0, 2+ A" "* max [b(x') | +

B, ; ),
By, y2 v A2 By i

[dr]l(gl;r;z)_i_iflfl gl,ax|d’(90') |) +Cr(e)17(2+l)(1+1/l)7,.1+2/l 2nax|v(90) | <
’ ”, A2 r, A2
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C(V/Z)(Z”)(l””)([f]gi 4D max | Flx) |+
gl D+ 7! max |g(o) | + (BT, + 2 max |b(x ) | +
[d' 15D+ vt max |d'(x") | ) +¢'(e)rt*2 max |v(x) | = K, .
Hence, taking ¢ sufficiently small we arrive at
1 y)
FQ) < EF(E) + K,

which implies F'(1) < 2K,, i.e., 2.7).
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