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The C *-Algebra of a Hilbert Bimodule (*).

SERGIO DOPLICHER - CLAUDIA PINZARI - RITA ZUCCANTE

Sunto. – Un C *-modulo hilbertiano destro X su una C *-algebra A dotato di uno *-omo-
morfismo isometrico f : A K LA (X) viene qui considerato come un oggetto XA della
C *-categoria degli A-moduli Hilbertiani destri. Come in [11], associamo ad esso
una C *-algebra OXA

contenente X come un «A-bimodulo hilbertiano in OXA
». Se X è

pieno e proiettivo finito OXA
è la C *-algebra C *(X), la generalizzazione delle alge-

bre di Cuntz-Krieger introdotta da Pimsner [27] (e in un caso particolare da Kata-
yama [31]) Più in generale, C *(X) è canonicamente immersa in OXA

come la C *-
sottoalgebra generata da X . Reciprocamente, se X è pieno OXA

è canonicamente im-
mersa in C *(X)**. Inoltre, considerando X come un oggetto AXA della C *-categoria
degli A-bimoduli hilbertiani, associamo ad esso una C *-sottoalgebra O

AXA
di OXA

che commuta con A, su cui X induce un endomorfismo canonico r . Discutiamo
condizioni sotto le quali A ed O

A XA
sono l’uno il commutante relativo dell’altro ed X

è precisamente il sottospazio degli operatori di allacciamento in OXA
tra l’identità e

r su O
A XA

. Discutiamo anche condizioni che implicano la semplicità di C *(X) o di
OXA

; in particolare, se X è proiettivo finito e pieno, C *(X) è semplice se A è X-sem-
plice e lo «spettro di Connes» di X è T.

1. – Introduction.

Let C % B be an inclusion of C *-algebras and denote by A 4 C8O B the rela-
tive commutant. If r is an endomorphism of C , the subset Xr of B defined
by

Xr4 ]c� BNcC4r(C) c , C� C((1.1)

is a Hilbert A-bimodule in B , in the sense that Xr is a closed subspace, stable
under left and right multiplication by elements of A , and equipped with an A-
valued right A-linear inner product given by

ac , c 8 bA 4c* c 8 , c , c 8�Xr

such that Vac , cbA V4VcVB
2 . We say that r is inner in B if Xr is finite projective

as a right A-module and if its left annihilator in B is zero.
This notion reduces to that of inner endomorphism when, e.g., C 4 B has

(*) Research supported by MURST, CNR-GNAFA and European Community.
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centre CI ; if C c B but A 4CI , Xr is a Hilbert space in B and r is the restric-

tion to C of an inner endomorphism of B [9, 10, 11], i.e. r(C) 4!
1

d

c i Cc i*, with
]c i , i41, R , d( an orthonormal basis of Xr .

The crossed product of a unital C *-algebra C with trivial centre by the out-
er action of a discrete group [13, 19, 25] or by the action of a compact group du-
al [10] has the characteristic property that the objects (automorphisms, resp.
endomorphisms of C) become inner in the crossed product B , and that
A8O B 4CI .

These notions of crossed products might prove too narrow to provide a
scheme for an abstract duality theory of quantum groups in the spirit of [11],
or for the related problem of describing the superselection structure of low di-
mensional QFT by a symmetry principle [12, 15]. In the last case, indeed, no-
go theorems indicate that the relative commutant of the observable algebra in
the field algebra might have to be nontrivial [23, 29].

It is therefore interesting to study more general crossed products B asso-
ciated to the pairs ]C , r( and conditions ensuring existence and uniqueness,
in particular of the C *-algebra A appearing as the relative commutant
C8O B .

As a preliminary step towards this problem, that we hope to treat else-
where, we consider in this paper the situation where X is given as a Hilbert
C *-bimodule with coefficients in A (i.e. X is a right Hilbert A-module with a
monomorphism of A into the C *-algebra L(X) of the adjointable module maps,
defining the left action [27]).

With X r , r40, 1 , 2 , R the bimodule tensor powers of X (where X 0 4 A by
convention) we can consider the following C *-categories:

– the strict tensor C *-category TX with objects X r , r�N0 , and with ar-
rows the adjointable right A-module maps commuting with the left action of A ;

– the C *-category SX with the same objects and with arrows all the ad-
jointable right A-module maps. This is a strict semitensor C *-category in the
sense that on arrows only the tensor product on the right with the identity ar-
rows of the category itself is defined (cf. Section 2).

A general construction associates functorially to each object r in a strict
tensor C *-category a C *-algebra Or [11]. It is easy to verify that this applies
without substantial modifications to objects in a strict semitensor C *-catego-
ry. We can thus associate to the bimodule X viewed as an object of SX (to mean
this we will write for short XA ) a C *-algebra OXA

, where A is embedded as a
C *-subalgebra and X is embedded as a Hilbert A-bimodule in OXA

. The C *-al-
gebra C *(X) constructed by Pimsner [27] from the bimodule X , generalizing
the Cuntz-Krieger algebras, can be identified with the C *-subalgebra of OXA
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generated by X , and will coincide with OXA
if X is full and finite projective (Sec-

tion 3).
The C *-algebra O

A XA
associated with A XA , i.e. with X viewed as an object of

the tensor category TX , is embedded in the relative commutant A8O OXA
and

coincides with it if further conditions are fulfilled (Proposition 3.4). X induces
a canonical endomorphism on A8O OXA

which acts on O
A XA

tensoring the ar-
rows in (X r , X s ) with the identity arrow of (X , X) on the left. We give condi-
tions which guarantee that A is normal in OXA

, i.e. A 4 (A8O OXA
)8O OXA

; in
this case X identifies with the A-bimodule in B 4 OXA

which induces r on C 4

A8O OXA
in the sense of eq. (1.1).

If X is full, C *(X) is the universal C *-algebra containing A and X as an A-
bimodule and generated by X ; OXA

can be canonically identified with a C *-sub-
algebra of C *(X)** (Theorem 3.3).

While OXA
generalizes the Cuntz algebras On , nEQ when X is finite pro-

jective, if X is not it rather generalizes the C *-algebra OH discussed
in [6].

If X is finite projective and full and A has no closed two sided proper ideal
J such that X * JX%J , then C *(X) is simple if the Connes spectrum of the dual
action of Z on the crossed product of C *(X) with the canonical action of T is
full, i.e. coincides with T . If furthermore there is a tensor power X s of X con-
taining an isometry which commutes with A , then OXA

is also simple. These and
slightly more general results are discussed in Section 4 (cf. Theorem 4.7).

2. – Representations of Hilbert bimodules in C *-algebras.

A strict semitensor C *-category is a C *-category T for which the set of ob-
jects is a unital semigroup, with identity i , and such that for any object t� T

there is a *-functor («right tensoring» with the identity 1t of (t , t) )

F t : (r , s) K (rt , st)(2.1)

such that

F i4 id , F v i F t4F tv .

Here and in the following (r , s) denotes the set of arrows from the object r to
the object s in our category.

The product on the set of objects will be referred to as the tensor product.
In other words F : tKF t is a unital antihomomorphism from the semigroup
of objects of T to the semigroup End (T ) of *-endofunctors of T . We will con-
sider only cases where F t is injective, and hence isometric. Any strict tensor
C *-category is obviously semitensor choosing F t : TKT31t .
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Let A and B be C *-algebras. A Hilbert A-B-bimodule is a right Hilbert B-
module X (with B-valued inner product denoted by ax , ybB ) endowed with a
faithful *-homomorphism f : A K LB (X).

It was shown in [3] that a refinement of an argument by Dixmier on ap-
proximate units shows that if X is countably generated as a right Hilbert mod-

ule then there exist elements x1 , x2 , R of X such that !
j41

N

w xj , xj
is an approxi-

mate unit for KB (X), the C *-algebra of compact operators on X . In particular
every x�X is the norm limit

x4!
j

w xj , xj
(x) 4!

j
xj axj , xbB .

The set ]xj ( will be called a basis of X . The use of a basis will be helpful to
simplify our formalism, hence throughout this paper we will only consider
countably generated Hilbert bimodules. However, most of our results extend
to the more general setting.

Let B be a C *-subalgebra of a C *-algebra M . A right Hilbert B-module
contained in M is a norm closed subspace such that

XB ’X , X * X’ B

(for any pair of subspaces X , Y% M , XY denotes the closed linear subspace
generated by operator products xy , x�X , y�Y). If furthermore A % M is a
C *-subalgebra satisfying

AX’X , ax40 , x�X¨a40 ,

X will be called a Hilbert A-B-bimodule contained in M .
If X and Y are respectively a right Hibert B-module and a Hilbert B-C-bi-

module in M then XY is a right Hilbert C-module in M naturally isomorphic to
X7B Y .

If X and Y are right Hilbert B-modules in M then YX * is a subspace of M

naturally isomorphic to the space KB (X , Y) of compact operators from X to Y .
In general this identification does not extend to the space LB (X , Y) of B-linear
adjointable maps. However, LB (X , Y) may be recovered as a subspace of M**,
the enveloping von Neumann algebra of M . Let 1X � M** denote the identity
of XX *uw , the closure of XX * in M** in the ultraweak topology.

PROPOSITION 2.1. – Let X and Y be right Hilbert B-modules in M .
Then setting

(X , Y)B »4 ]T� M**: T1X 41Y T4T , TX’Y , Y * T’X *(

one defines a subspace of M**, in fact contained in YX *uw , which identifies
naturally with LB (X , Y). If X and Y are Hilbert A-B-bimodules in M
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then A (X , Y)B »4 A8O (X , Y)B corresponds in the above identification to
the set of elements of LB (X , Y) that commute with the left A-action.

PROOF. – Any T� (X , Y)B defines by multiplication in M** an operator
T×: XKY with adjoint T×*, hence T×� LB (X , Y). Since TXX *’YX * we con-
clude, approximating 1X ultra strongly with elements of XX *, that T� YX *us .
Furthermore TX40 implies T40, and this shows that TKT× is injective. On
the other hand this map is clearly isometric from YX * to KB (X , Y). If now S�

LB (X , Y) then for any basis ]xj , j41, 2 , R( of X , S !
j41

N

w xj , xj
is a norm

bounded sequence of compact operators hence it is of the form T×N , with TN �
XX * norm bounded and strictly convergent. Let T� YX *uw be a weak limit
point. Clearly T1X 41Y T4T . Furthermore for all x�X TN x is norm conver-
gent, necessarily to Tx , so TX’Y . We also conclude that S4T×, hence the map
TKT× is surjective and the proof is complete. r

A representation of a C *-category T in some B(H) is a collection of maps
Fr , s : (r , s) K B(H), r , s� T such that for any pair of arrows T� (r , s),
S� (s , t),

Fr , s (T)*4 Fs , r (T *) , Fr , t (ST) 4 Fs , t (S) Fr , s (T) .

Let HB be the C *-category of right Hilbert B-bimodules: If X and Y are ob-
jects of HB the set of arrows from X to Y is LB (X , Y). Let T ’ HB be a full sub-
category. Then the previous Proposition shows that if the objects of T embed
in M as right Hilbert B-modules then there is a representation of T in the
bounded linear operators on the Hilbert space of the universal representation
of M .

Note that in place of the universal representation we may consider any
faithful representation of M on some Hilbert space H . Indeed, the subspace
(X , Y)B »4 ]T� B(H): T1X 41Y T4T , TX’Y , Y * T’X *( lies in YX *uw and
again identifies naturally with LB (X , Y) (1X is as before the identity of
XX *uw ’ B(H) ) . It follows that there is still an obvious faithful representation
of T in B(H).

Our next aim is to extend the formalism of [9] to Hilbert bimodules. We de-
scribe natural realizations of categories of Hilbert bimodules faithfully repre-
sented in some C *-algebra as endomorphism categories of a suitable C *-alge-
bra. Our starting point is the following. We are given a unital semigroup D of
Hilbert bimodules over a C *-algebra A contained in the C *-algebra M . We as-
sume, for simplicity, that M is generated by the elements of D . We form the
subspaces (X , Y)A , X , Y�D , in M** and the category SD with arrows these in-
tertwining spaces. We denote by M

A the C *-subalgebra of M** generated by
the (X , Y)A’s. It is now clear that SD is a strict semitensor C *-category. If fur-
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thermore we define A(X , Y)A % (X , Y)A as the subspace of A-bimodule maps,
namely

A(X , Y)A 4 ]T� (X , Y)A : aTx4Tax , a� A , x�X( ,

the subcategory TD% SD with the same objects of SD and arrows A (X , Y)A , is a
strict tensor C *-category.

Let B ’ C be an inclusion of unital C *-algebras, and let EndC (B) be the cat-
egory of endomorphisms of B with arrows the intertwiners in C :

(r , s) 4 ]c� C : cr(I) 4c , cr(b) 4s(b) c , b� B( .

REMARK 2.2. – EndC (B) is a strict semitensor C *-category by defining the
tensor product on the set of objects to be the composition, and F t : c�
(r , s) Kc� (rt , st).

EndB (B) (simply denoted End (B) ) is a tensor C *-category by b3b 84

br(b 8 ) � (rr 8, ss 8 ), b� (r , s), b 8� (r 8, s 8 ).

THEOREM 2.3. – Let D be a unital semigroup of Hilbert A-bimodules in a
C*-algebra M . With the above notation, any X�D induces a unique endo-
morphism s X on A8O M

A such that

s X (T) x4xT , x�X , T� A8O M
A .

The map X� SDKs X �EndM
A (A8O M

A) that acts trivially on the arrows is a
faithful functor of semitensor C*-categories that restricts to a functor of ten-
sor C*-categories TDKEnd (A8O M

A). If furthermore A is normal in M
A then

the images of these functors are full subcategories.

PROOF. – Let ]x1 , x2 , R( be a basis of X . If T� M**1 then the sequence of

positive elements !
j41

N

xj Txj* is increasing and bounded in norm by VTV V1X V .

Therefore !
j41

N

xj Txj* is strongly convergent to an element f(T) � M** for any

T� M** and f is a norm 1 positive map. If T� (Y , Z)A , for Y , Z�D ,
then clearly f(T) � XZY * X *uw and f(T) XY’XZ and f(T)* XZ’XY , hence
f(T) � (XY , XZ)A . It follows that f leaves M

A globally invariant. Since
X * X’ A , the restriction s X of f to A8O M

A is multiplicative. Clearly if
T� A8O M

A then s X (T)x4xT for any x�X . Now s X (T) has support contained
in 1X , thus we conclude that s X (T) is independent on the basis. In particular,
if u is a unitary in A (or in A

A
»4 A 1C1X if A does not have a unit)

then the basis ]ux1 , ux2 , R( induces the same map s X , thus u commutes
with s X (A8O M

A), i.e. s X leaves A8O M
A invariant. Finally, if A is normal

in M
A and T� (s X , s Y ) then in particular for any x�X and y�Y y * Tx� (A8O
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M
A)8O M

A
4 A . For any basis ]yj ( of Y , !

j
yj yj* Tx is norm converging

to Tx , thus TX%Y . Similarly, T * Y%X , so T� (X , Y)A . r

3. – The C *-algebra Or.

In this section we discuss the C *-algebra Or associated with an object r of a
strict semitensor C *-category T . When we specialize r to a Hilbert bimodule
X , A will be embedded in Or as a subalgebra, and X as a A-bimodule. In view of
Theorem 2.3 we will give sufficient conditions on X in order that A is embed-
ded as a normal subalgebra.

The construction of the C *-algebras Or was given in [11] when r is an ob-
ject of a strict tensor C *-category T . We are now interested, among others, in
the categories SX with objects the tensor powers of a bimodule X and arrows
(X r , X s )A , r , s�N0 , so that SX is only a strict semitensor C *-category. How-
ever, the construction in [11] goes through without substantial modifications
and for the convenience of the reader we sketch it here in the case of a strict
semitensor C *-category.

We first form the Banach space Or
(k) inductive limit of (r r , r r1k ) via the

maps F r : (r r , r r1k ) K (r r11 , r r1k11 ). The composition and the *-involution
of T define on 5

k�Z
Or

(k) a structure of Z-graded *-algebra. There is a unique C *-

norm on 5
k�Z

Or
(k) for which the automorphic action of T defined by the grading

is isometric, and Or is the completion in that norm. We denote by 0 Or the
canonical dense *-subalgebra generated by images of intertwiners
(r r , r s ).

If T is a genuine tensor C *-category, tensoring on the left by 1r induces a
canonical endomorphism, s r of Or .

Any *-functor F : T1 K T2 of strict semitensor C *-categories induces an ob-
vious *-homomorphism F*: OrK OF (r) .

Let X be a Hilbert A-bimodule as in Section 2. We will consider the
semitensor C *-category SX with objects the A-bimodule tensor powers X r of X
and arrows the (X r , X s )A , the adjointable right A-module maps. We will write
XA when X is viewed as an object of this strict semitensor C *-category. We can
also consider the the strict tensor C *-category TX with the same objects and
arrows the bimodule maps A(X r , X s )A . We will write AXA when X is considered
as an object of this strict tensor category.

The construction of Or applied to r4XA yields a C *-algebra OXA
that con-

tains a copy of A as embedded in (X , X)A and X4 KA (A , X) % (A , X)A as a
Hilbert A-bimodule. OXA

is generated as a Banach space by the (X r , X s )A’s and
carries the action a of T defined by the Z-grading OXA

(k) .
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REMARK. – The left annihilator of X in OXA
is zero. For, given T�OXA

, Tx40
for all x�X implies, by Fourier analysis over the action a of T , Tk x40 for all
x�X , k�Z , where Tk is the projection of T in OXA

(k) . But each Tk* Tk can be
approximated in norm by elements of (X r , X r )A for large r , and the norm on
(X r , X r )A is that of the corresponding bounded operators on X r X r*. Thus
Tk 40 and T40.

REMARK. – In the special case where X is a Hilbert A-bimodule in the C *-
algebra M , (X r , X s )A are identified as in Section 2 with the corresponding
subspaces of M

A, but the closed linear span in M
A does not necessarily identify

with OXA
since the Z-graded *-subalgebra of M

A generated by the (X r , X s )A

does not necessarily carry an automorphic action of T defined by the grading
and continuous for the norm of M

A.

The following result is an easy consequence of the definition of O
A XA

and of
functoriality of the construction.

PROPOSITION 3.1. – Let X and Y be Hilbert C*-bimodules over C*-algebras
A and B respectively, and let A g B be a strong Morita equivalence such that X
and gYg21 are isomorphic as Hilbert C *-bimodules. Then O

A XA
and O

B YB
are

isomorphic according to an isomorphism that transforms A (X r , X s )A into
B (Y r , Y s )B .

Pimsner defined in [27] the universal C *-algebra generated by a Hilbert
bimodule X (cf. also [31] for a special case). These C *-algebras are generaliza-
tions of the Cuntz-Krieger algebras and we shall refer to them as CKP-alge-
bras. In the following Proposition we relate the algebras OXA

to the CKP-alge-
bras.

PROPOSITION 3.2. – Let X be a Hilbert A-bimodule and C *(X) the associat-
ed CKP-algebra. The identity map on X extends to a *-isomorphism of C *(X)
onto the C*-subalgebra of OXA

generated by X, which is onto OXA
if X is full and

projective.

PROOF. – Following Pimsner [27], we consider F (X), the full Fock space of

X , and J(F (X) ) , the C *-subalgebra of LA (F (X) ) generated by LA ( 5
n40

p

X n ) ,

p�N . For any x�X , let Sx be the image in M(J(F (X) ))OJ(F (X) ) of the opera-
tor that tensors on the left by x . The CKP-algebra is the C *-subalgebra gen-
erated by Sx , x�X . The automorphic action b of T on L(F (X) ) implemented
by the unitary operators U(z) on F (X) defined by U(z)x4z k x , x�X k , k�N0 ,
induces an action on the quotient C *-algebra, that restricts to an action g on
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the CKP-algebra such that g z (x) 4zx for x�X . It follows that the *-subalge-
bra generated by SX is contained in 0 OXA

in a canonical way, and that this is an
equality if X is full and finite projective. Clearly, the canonical action a corre-
sponds to g . r

THEOREM 3.3. – Let X be a full Hilbert A-bimodule contained in M such
that M is generated by X as a C*-algebra (hence M

A is generated by the
(X r , X s )A’s) and X has vanishing left annihilator in M

A. The following are
equivalent:

i) M is the universal C*-algebra with the properties above,

ii) OXA
is canonically isomorphic to M

A, i.e. there is a *-isomorphism
acting as the identity on (X r , X s )A , r , s�N0 ,

iii) the CKP-algebra C *(X) % OXA
is canonically isomorphic to M , i.e.

there is an isomorphism acting as the identity on X,

iv) there is an action a : TKAut (M) such that a z(x) 4zx , z�T , x�X .

PROOF. – If there is an action a as in iv) then the bitransposed action
a**: TKAut (M**) restricts to an action on M

A, still denoted by a , such that
a z (T) 4z s2r T , T� (X r , X s )A , and this shows the equivalence of ii) with iv)
and with iii) as well, in view of the previous Proposition. If i) holds then iv) fol-
lows from the universality property of M . Finally, iii)¨i) was proved
in [27]. r

Theorem 3.3 can be easily reformulated without assuming that X is full, but
requiring that M is the C *-algebra generated by X and A . In this case, condi-
tion iii) modifies requiring that there is an isomorphism of M with the aug-
mented algebra of Pimsner [27] which identifies the embeddings of X , re-
spectively of A , in those algebras. In condition iv) the action a will be further
required to be trivial on A .

In view of condition i) the CKP-algebra C *(X) % OXA
can be thought of as

the crossed product of A by X in the spirit of [1] where, however, only bimod-
ules of a more restricted class were considered.

PROPOSITION 3.4. – a) The inclusion functor i : TX % SX induces an inclu-
sion *-monomorphism

i*: O
A XA

K OXA

such that

i*(O
A XA

) ’ A8O OXA
.

We have that s X i i*4 i* i s X .
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b) If for some s�N , A(A , X s )A contains an isometry then

i*(O
A XA

) 4 A8O OXA
.

PROOF. – Part a) follows from the fact that the dual action of T on OXA
that

defines its Z-grading transform A(X r , X s )A according to the character s2r�
Z , hence their linear span coincides with 0O

A XA
. The canonical norm of OXA

, i.e.
the one for which the T-action is isometric, restricts to the canonical norm of
0O

A XA
. Since i*(O

A XA
) and A8O Oi(X) are globally invariant under the action of

T , to prove b) it suffices to show that the corresponding T-eigenspaces are
equal. Let R�A (A , X s )A be an isometry. Using R p1p 84s X

ps (R p 8 )R p , one can
easily show that for T in some (X p , X p1k )A the sequence
s X

r1k (R p 8 )* Ts X
r (R p 8 ), p 8�N , is eventually equal to a constant element of

(X r , X r1k )A . Thus the formula

Er (T) 4 lim
p

s X
r1k (R p )* Ts X

r (R p )

defines a norm one projection Er from O
A XA

(k) , the closure of 0O
A XA

(k) in O
A XA

, onto
(X r , X r1k )A that acts identically on (X r , X r1k )A and satisfies Er (aTa 8 ) 4

aEr (T) a 8 , a , a 8� A . It follows that the sequence Er is pointwise convergent
to the identity map, thus if T� A8O OXA

(k) then Er (T) � (X r , X r1k )A and approxi-
mates T . r

The functorial properties of the construction of OXA
imply that to each uni-

tary U� A(X , X)A we can associate a canonical automorphism s U of OXA
, leav-

ing O
A XA

globally stable, such that

s U (x) 4Ux , x�X .

We thus establish an isomorphism between U( A(X , X)A ) and the group of all
automorphisms of OXA

leaving A pointwise fixed and X globally stable.
The restriction to O

A XA
of such an automorphism commutes with s X ; hence

for each subgroup G of U(A (X , X)A ) the fixed point subalgebra O
A XA

G is globally
stable under s X . Thus s X induces an endomorphism s G of O

A XA

G .
The systems (O

AXA

G , s G) have been extensively studied when A4C ; we hope
to turn to the general case where AcC and G is replaced by a quantum group.

In the remaining part of this section we focus our attention on how A is em-
bedded in OXA

, more precisely, in view of Theorem 2.3 we look for conditions
that X should satisfy so that A is normal in OXA

.
A Hilbert A-bimodule X with left A-action f : A K LB (X) is called

nonsingular if w x , x �f(A) for some x�X implies x40. The trivial bimodule
A is always singular. It is easy to see that if X is nonsingular then
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Y7A X is nonsingular for any Hilbert A-bimodule Y . In particular, powers
of nonsingular bimodules are nonsingular.

Let A be a unital, purely infinite C *-algebra, and let X be a Hilbert A-bi-
module such that the left A-action f : A K LB (X) is unital. Then X is singular if
and only if it is singly generated. In fact, if there is a� A such that w x , x 4

f(a) c0, then by the pure infiniteness of A there is b� A such that b * ab4I ,
hence w bx , bx 4I , and this is to say that X is singly generated.

PROPOSITION 3.5. – Let X be a Hilbert A-bimodule in M .

a) If X is nonsingular and A (A , X s )A contains an isometry S for some
sD1 then C *(S)8O OXA

4 A .

b) If there are isometries Sk �A (A , X n(k) )A such that

Sk* s X
k (Sk ) 4l k

with Vl k VE1, then C *(Sk , k41, 2 , R)8O OXA
4 A .

In both cases A is normal in OXA
.

PROOF. – Let B denote one of the relative commutants described in a) or in
b), and S� A(A , X s )A an isometry. We show that B O OXA

(k) is zero for kc0 and
that it is contained in A for k40. Let F be a weak limit point of the sequence
F p , F p (T) 4 (S p )* TS p in some faithful representation of OXA

on a Hilbert
space. Clearly F(OXA

(k) ) ’X k , k�N , and F(T) 4T , T� B . Hence B O OXA

(k) is con-
tained in X k for k�N0 . Let T be an element of this subspace with kD0. If X is
nonsingular then TT *� B O OXA

(0) % A , so T40, and a) holds. To prove b), we
note that

T4Sk* TSk 4Sk* s X
k (Sk )T4l k T ,

thus T40. r

As a consequence of the previous result we can show normalcy of A in OXA

when X is a real or pseudoreal bimodule with dimension D1 in the sense
of [24]. More explicitly, and slightly more generally, we have the following
result.

COROLLARY 3.6. – If there is an isometry S�A (A , X 2 )A such that

VS * s X (S)VE1

then C *(s X
k (S), k40, 1 , 2 , R)8O OXA

4 A , hence A is normal in OXA
.
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PROOF. – The isometries

Sk »4s X
k21 (S)Rs X (S) S�A (A , X 2k )A

satisfy Sk* s X
k (Sk ) 4l k , with l4S * s X (S). r

4. – The ideal structure of OXA
.

In the first part of this section we introduce a natural class of *-represen-
tations p : OXA

K B(H), called locally strictly continuous, and we generalize
Pimsner’s universality result to the algebras OXA

. We then associate to X cer-
tain Connes spectra which allow us to characterize simplicity of OXA

and of the
CKP-algebra C *(X) % OXA

in terms of a suitable class of ideals of A .
The following is a variant of Pimsner’s universality result to the C *-alge-

bras OXA
.

THEOREM 4.1. – Let Y be a Hilbert bimodule over a C*-algebra B in B(H),
and D the C*-subalgebra of B(H) generated by the subspaces (Y r , Y s )B ,
r , sF0. Assume that the left annihilator of Y in D is zero, and let (U , f) be a
pair consisting of a *-isomorphism f : A K B and a linear surjective map
U : XKY which satisfies

U(x)* U(x 8 ) 4f(x * x 8 ) ,

U(xa) 4U(x) f(a) , U(ax) 4f(a) U(x) ,

for a, a 8� A , x , x 8�X . Then there is a unique *-representation p : C *(X) K

B(H) that maps x�X to U(x), as in [27, Theorem 3.12], which furthermore ex-
tends to a unique *-representation pA: OXA

K B(H) via

pA(T) p(A) 4p(TA) , A�X s X r* , T� (X s , X t )A ,

pA(a) 4f(a) , a� A .

If ker p is T-invariant then pA is faithful.

PROOF. – It is easy to see that for any T� (X , X)A there is a unique operator
p U(T) � (Y , Y)B such that p U(T)Ux4U(Tx), x�X , and that p U is a *-homo-
morphism s.t. p U(xy *) 4U(x)U(y)*, x , y�X . Let ]x1 , x2 , R( be a basis of X .
Since U has dense range, ]U(x1 ), U(x2 ), R( is a basis of Y . Since the left anni-
hilator of Y in the C *-subalgebra C *(Y , B) of B(H) generated by Y and B is
zero, for any a� A OXX *, !

i
f(a) U(xi ) U(xi )*4!

i
p U (axi xi*) is norm con-

verging to f(a), therefore by [27, Theorem 3.12] there is a unique *-represen-
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tation p of C *(X) ’ OXA
on H such that p(x) 4U(x). Now if max]r , s( D0, the

restriction of p to X s X r* extends uniquely to a map pAr , s : (X r , X s )A K

(Y r , Y s )B % B(H) such that for T� (X s , X t )A , A�X s X r*, B�X v X t*,

pAs , t (T) p(A) 4p(TA) ,

p(B) pAs , t (T) 4p(BT) .

We set, by convention, pA0, 0 4f : A K B % B(H). Uniqueness implies pAs , t (T)*4

pAt , s (T *), pAs , t p
A

r , s 4 pAr , t , and also that the restriction of pAs11, t11 to (X s , X t )A

coincides with pAs , t since the left annihilator of Y in C *(](Y r , Y s )B , r , sF

0() % B(H) is zero. We can thus define a unique *-homomorphism pA:0 OXA
K

B(H) extending pAr , s on (X r , X s )A . We show that pA is norm continuous. Let

T4 !
k42n

n

Tk be an element of 0 OXA
, with Tk � (X r , X r1k )A for a suitable r and

k42n , R , n and let 1F be the support of a finitely generated right A-sub-
module of X r , so T1F �C *(X). Then

Vp(T1F )VGVT1F VGVTV

for all F implies VpA(T)VGVTV .
Assume now that kerp is globally invariant under the action of T . Then

pAr , r is faithful on (X r , X r )A since the left annihilator of X r in OXA
is zero, there-

fore, since kerpO OXA

0 is the inductive limit of kerpO (X r , X r )A , pA is faithful
on OXA

0 , hence, being kerpA T-invariant, pA is faithful on OXA
. r

As a consequence of Theorem 4.1 the correspondence between unitaries
and endomorphisms of the Cuntz algebras generalizes as follows.

PROPOSITION 4.2. – Any unitary U� A8O OXA
defines an endomorphism l U

of OXA
acting trivially on A by

l U (x) 4Ux , x�X .

If U� A8O OXA

0 then l U is a monomorphism.
If X is finite projective, the correspondence UKl U is a one to one map of

the unitaries in A8O OXA
onto the endomorphisms of OXA

leaving A pointwise
fixed, which extends the canonical action of U(A (X , X)A ) (cf. Section 3).

PROOF. – We represent OXA
faithfully on a Hilbert space H . We have al-

ready noted that the left annihilator of X in OXA
is zero (cf. a remark in Section

3), therefore also the left annihilator of Y»4UX in OXA
(regarded as a Hilbert

A-bimodule in OXA
) is zero. By Theorem 4.1 there is a unique *-representation

l U of OXA
on H such that l U (x) 4Ux , x�X and acting trivially on A provided

we show that the left annihilator of Y in C *](Y r , Y s )A , r , sF0( % B(H) is
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zero. Now

Y s Y r*4Us X (U) R s X
s21 (U) X s X r* s X

r21 (U *) R s X (U *) U * ,

therefore

(Y r , Y s )A 4Us X (U) R s X
s21 (U)(X r , X s )A s X

r21 (U *) R s X (U *) U *% OXA
,

and the claim follows from the previous remarks. Note also that if T�
X s X r*,

l U (T) 4Us X (U) R s X
s21 (U) Ts X

r21 (U *) R s X (U *) U * ,

therefore the same formula must hold for T� (X r , X s )A , and we conclude that
l U is an endomorphism of OXA

. If U is a T-fixed point then l U commutes with
a , so ker l U is T-invariant.

Since the left annihilator of X in OXA
is zero the map UKl U is one to one. If

X is finite projective and x1 , R , xd is a basis in X , for each endomorphism l
leaving A pointwise fixed we can define, following Cuntz,

U»4!
i

l(xi ) xi* ,

so that U is unitary. For a� A , x�X , we have

Uax4l(ax) 4al(x) 4aUx

so that U� A8O OXA
and l4l U . If l(X) 4X clearly U�A (X , X)A . r

Our next aim is to determine the ideal structure of OXA
in certain cases of

interest for our pourposes. We first look at ideals invariant under the canoni-
cal action of the circle group. Let J be a closed ideal of OXA

. We call J locally
strictly closed if whenever one of r and s is nonzero Jr , s »4 J O (X r , X s )A is
strictly closed in (X r , X s )A . Note that in this case, Jr , s is the strict closure of
X s J O AX r* in (X r , X s )A . An ideal J of A is called X-invariant if X * JX%J . As
in [18] we associate to J the ideal JX »4 ]a� A : X * aX%J( which is a closed X-
invariant ideal containing J . We call J X-saturated if JX 4J . Note that the
zero ideal is X-saturated, and that, if X is full and nondegenerate (in the sense
that AX4X) and if J is proper then JX is proper.

LEMMA 4.3. – a) Any T-invariant closed ideal J of OXA
is the closed linear

span of Jr , s , r , s40, 1 , 2 , R . Therefore, if J is also l.s.c, it is determined by
J O A .

b) Let J be an X-invariant, X-saturated ideal of A , and let J
A denote

the c.l.s. in OXA
of the strict closures of X s JX r* in (X r , X s )A . If X is

full, let J be the c.l.s. of the X s JX r*. Then J
A and J are respectively
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a locally strictly closed T-invariant ideal of OXA
and a closed T-invariant

ideal of C *(X) such that J
A
OA 4 J O A 4J .

PROOF. – We first note that if B is any C *-algebra andowed with a continu-
ous automorphic action a of T and I and J are closed a-invariant ideals of B

such that the fixed point subalgebras coincide: Ia4 Ja then I 4 J . Indeed, by
Fourier analysis I is generated by by the subspaces I(k) that transform like the
character k�Z4 T×. Furthermore by [26, Proposition 1.4.5] any element T�
I(k) can be written in the form T4u(T * T)1/4 with u� I , hence T� IJa% J , i.e.
I % J . Exchanging the role of I and J we deduce that J 4 I . Let now J be a
closed T-invariant ideal of OXA

and let I be the closed linear span of Jr , s , which
is still a T-invariant ideal. Since the homogeneous part of OXA

is the inductive
limit of (X r , X r )A , J is generated by the subspaces Jr , r’s, hence I(0) 4 J(0) ,
therefore the previous argument shows that J is generated by the Jr , s . To
prove b) we consider, for any rF0, the ideal Jr of (X r , X r )A % OXA

defined by
the strict closure of X r JX r* in (X r , X r )A , so that the inductive limit of the Jr’s
generates J

A
OOXA

(0) . If a� A O J
A then clearly lim

r
dist (a , Jr O A) 4

lim
r

dist (a , A O J
A) 40. On the other hand Jr O A 4J for all r since J is X-satu-

rated, therefore a�J . It follows easily that J
A
O(X r , X r )A 4Jr , hence J

A is local-
ly strictly closed and, clearly, T-invariant. In the second case, we may argue in
the same way, replacing OXA

by C *(X), J
A by J , (X r , X r )A by

A 1XX *1R X r X r*%C *(X) and Jr by J1XJX *1R X r JX r*. Since
A OJ1XJX *1R X r JX r*%JX r 4J , we deduce as above that if a� A O J

then a�J . r

If J is a l.s.c. ideal of OXA
then J O A is always X-saturated. However, this

is not necessarily true if J is an ideal of C *(X). Indeed, this condition may be
stated equivalently requiring that if p : C *(X) KC *(X)OJ is the quotient map
and P is the support of the right p(A)-module p(X) contained in p(C *(X) )
(hence P�p(C *(X) )** ) then p(a) P40 with a� A implies p(a) 40. In cer-
tain cases, e.g. A %XX *, then J O A is X-saturated for every closed ideal J of
C *(X). If some positive power X s of X contains an isometry commuting with A

then every X-invariant ideal is automatically X-saturated.

PROPOSITION 4.4. – Let JK J and JK J
A be the maps described in the previ-

ous Lemma.

a) JK J
A is a bijective correspondence between X-invariant, X-saturat-

ed ideals of A , and T-invariant l.s.c. ideals of OXA
with inverse J

A
K J

A
OA .

b) If X is full and A %XX *, JK J is a bijective correspondence between
the class of ideals of A described in a) and the set of closed T-invariant ideals
of C *(X) with inverse the map J K J O A .
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PROOF. – By Lemma 4.3 and the above remarks we need only to show that
if A %XX * then every closed T-invariant ideal J of C *(X) is the c.l.s. of the
subspaces X r J O AX r*. Now A %XX * implies that X r X r*%X r11 X r11* for all
r�N , hence the homogeneous part of C *(X) is the inductive limit of X r X r*,
r�N , and this implies that the homogeneous part of J is the inductive limit of
J OX r X r*4X r J O AX r*, therefore J is generated by the subspaces
X s JX r*. r

We call A X-simple if it has no proper X-invariant, X-saturated ideal, and
X-prime if it has no pair of nonzero orthogonal X-invariant, X-saturated
ideals.

COROLLARY 4.5. – If X is a Hilbert A-bimodule, the following properties
are equivalent,

a) A is X-simple (resp. A is X-prime),

b) OXA
has no proper locally strictly closed T-invariant ideal (resp. OXA

has no pair of nonzero orthogonal, locally strictly closed, T-invariant
ideals).

Consider the following conditions:

i) A %XX *,

ii) for some s�N , X s contains an isometry S commuting with A .

If either i) or ii) holds and X is full, a) and b) are also equivalent to

c) C *(X) is T-simple (resp. C *(X) is T-prime).

If ii) holds, a) and b) are equivalent to

d) OXA
is T-simple (resp. OXA

is T-prime).

PROOF. – We prove only the statements concerning simplicity, those con-
cerning primeness can be proved with similar arguments. The equivalence of
a) and b), and of a) and c), in the case that i) holds, follow from Proposition 4.4.
Note that by Lemma 4.3 c) ¨a) (even without assuming that ii) holds). Con-
versely, assume that a) and ii) hold. Let J be a nonzero T-invariant ideal of
C *(X), then J O A is a nonzero, X-invariant, X-saturated ideal of A , hence J O
A 4 A , that implies J 4C *(X). We are left to show that ii) and b) imply d). Let
J be a proper T-invariant ideal of OXA

, and define J
A as the c.l.s. of the strict clo-

sures of J O (X r , X s ). J
A is a T-invariant ideal containing J . We claim that J

A is
locally strictly closed, or, more precisely, that J

A
O(X r , X s ) is the strict closure

of J O (X r , X s ) and that J
A
OA 4 J O A . It suffices to prove the second asser-

tion. Let a be an element of J
A
OA and let T be in the strict closure of some J O
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(X rs , X rs ) such that Va2TVEe , then Va2S r* TS r
VEe , hence a� J . It fol-

lows, by b), that J
A

4 OXA
. Let Ta be a net in some J O (X rs , X rs ) strictly con-

verging to the identity, then S r* Ta S r is a norm converging sequence in J to
the identity, so J 4 OXA

and the proof is complete. r

We denote by G(X) and G×(X) the Connes spectra of the dual action a× of Z
on C *(X)3a T and OXA

3a T respectively. By [25] (cf. also Lemma 8.11.7
of [26])

G(X) 4 ]l�T : I Oa l (I) c ]0(, I all closed non-zero ideal of C *(X)( ,

G×(X) 4 ]l�T : I Oa l (I) c ]0(, I all closed non-zero ideal of OXA
( .

We note that if X is a Hilbert A-bimodule such that OXA
, (resp. C *(X)) is

prime or simple then clearly G×(X) 4T (resp. G(X) 4T) . Furthermore, by
Lemma 4.3 A (resp. the C *-subalgebra of A generated by the scalar products
if X is not full) is necessarily X-prime or X-simple. The following results are a
partial converse.

PROPOSITION 4.6. – Let X be a Hilbert A-bimodule with A X-prime.

a) If X is full and one of the conditions i) or ii) of 4.5 is satisfied and
furthermore and G(X) 4T then C *(X) is prime.

b) If ii) of 4.5 is satisfied and G×(X) 4T then OXA
is prime.

PROOF. – If C *(X) were not prime then the arguments that prove (ii)¨(i)
of Theorem 8.11.10 in [26] would prove the existence of two non-zero T-invari-
ant orthogonal ideals in C *(X), but this is impossible because by 4.5 C *(X) is
T-prime. We prove the second part of the Proposition. G×(X) 4T and OXA

nonprime imply the existence of two orthogonal T-invariant proper ideals of
OXA

hence the existence of two proper orthogonal X-invariant ideals of A again
by 4.5. r

The above Proposition can be used to prove the following result.

THEOREM 4.7. – Let X be a Hilbert A-bimodule with A X-simple.

a) If X is full and one of the conditions i) or ii) of 4.5 is satisfied and
furthermore G(X) 4T then C *(X) is simple.

b) If ii) of 4.5 is satisfied and G×(X) 4T then OXA
is simple.

PROOF. – By Lemma 8.11.11 of [26] it suffices to check that our assumptions
in a) and b) imply primeness and T-simplicity of C *(X) and OXA

respectively,
and this follows from Proposition 4.6 and Corollary 4.5. r
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