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Some Simple Nonlinear PDE’s Without Solutions.

HAÏM BREZIS - XAVIER CABRÉ

Sunto. – In questo articolo consideriamo alcune semplici equazioni a derivate parziali
elittiche nonlineari, per le quali il Teorema della Funzione Inversa, se applicato in
modo formale, suggerisce l’esistenza di soluzioni. Nonostante ciò, proviamo che
non esistono soluzioni neppure in vari sensi deboli. Un problema modello è dato da
2Du4 (u 2 ONxN2 )1c in V , u40 su ¯V, dove V%RN, NF2, è un dominio limitato
contenente 0. Per qualunque costante cD0, arbitrariamente piccola, proviamo che
questo problema non ammette soluzioni distribuzionali in D8 (V0]0(). Mostriamo
anche come, cercando di approssimare il problema mediante un certo procedimen-
to naturale, accada che le soluzioni dei problemi approssimati esplodano dapper-
tutto in V. Infine proviamo gli analoghi parabolici di questi risultati e, in partico-
lare, alcuni fenomeni di «blow-up» istantaneo e completo..

0. – Introduction.

The original motivation of this work is the following. Consider the simple
problem

.
/
´

2Du4a(x) u 2 1 f (x)

u40

in V ,

on ¯V ,
(0.1)

where V is a smooth bounded domain in RN , NF3 . If a(x) �L p (V) and pD

N/2 , then for any f�L p (V) with V f Vp small, problem (0.1) has a unique small
solution u in W 2, p (V). This is an easy consequence of the Inverse Function
Theorem applied to F (u) 42Du2a(x) u 2 which maps X4W 2, p (V)O
W 1, p

0 (V) into Y4L p (V) (recall that W 2, p (V) %L Q (V) by the Sobolev imbed-
ding theorem), since its differential at 0, DF (0) 42D is bijective.

As a special case suppose a(x) 4NxN2a in a domain V containing 0, with
0 EaE2. Then for any small constant c the problem

.
/
´

2Du4
u 2

NxNa
1c

u40

in V ,

on ¯V ,

(0.2)

has a unique small solution.
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The case a42 is interesting since a(x) 4NxN22 does not belong to L p (V)
for pDN/2 . One may then wonder what happens to the problem

.
/
´

2Du4
u 2

NxN2
1c

u40

in V ,

on ¯V .

(0.3)

On the one hand, a formal computation suggests that since the linearized
operator at 0 is 2D , which is bijective, problem (0.3) has a solution for small c.
On the other hand, the F above does not map X4W 2, p (V)OW 1, p

0 (V) into
Y4L p (V) for any 1 EpEQ. One may then try to construct other function
spaces, for example weighted spaces, where the Inverse Function Theorem
might apply. This is doomed to fail. In fact, our main results show that for any
constant cD0 (no matter how small) problem (0.3) has no solution, even in a
very weak sense. When cE0, problem (0.3) does, however, have a solution (see
Remark 1.4).

In Sections 1 and 4 we propose several notions of weak solutions and estab-
lish nonexistence. A basic ingredient in Section 1 is the following:

THEOREM 0.1. – Assume 0 �V . If u�L 1
loc (V), uF0 a.e. with u 2 ONxN2 �

L 1
loc (V) is such that

2DuF
u 2

NxN2
in D8 (V)(0.4)

then uf0.

The proof of Theorem 0.1 uses an adaptation of a method introduced in [4].
In Section 4 we prove a stronger result, namely:

THEOREM 0.2. – Assume 0 �V . If u�L 2
loc (V0]0( ) , uF0 a.e. is such

that

2NxN2 DuFu 2 in D8 (V0]0( )(0.5)

then uf0.

Theorem 0.2 is proved using appropriate powers of testing functions—an
idea due to Baras-Pierre [2]. As a consequence we obtain the nonexistence of
local solutions (i.e., in any neighborhood of 0, without prescribing any bound-
ary condition) for a very simple nonlinear equation:
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THEOREM 0.3. – Assume 0 �V and cD0. There is no function u�
L 2

loc (V0]0( ) satisfying

2NxN2 Du4u 2 1c in D8 (V0]0( ) .(0.6)

In Section 3 we examine what happens to a natural approximation proce-
dure of (0.3). Consider for example the equation

.
/
´

2Du4
min ]u 2 , n(

NxN2 1 (1 /n)
1c

u40

in V , cD0 ,

on ¯V .

(0.7)

For any n there is a minimal solution un . We prove that un (x) K1Q for every
x�V as nKQ , i.e., there is complete blow-up in the sense of Baras-Cohen
[1]. Again, this rules out any reasonable notion of weak solution for (0.3).

In Section 2 we extend the previous results to more general problems such
as

2Du4a(x) g(u)1b(x)

assuming only that gF0 on R , g is continuous and nondecreasing on [0 , Q)
and

s
Q

ds

g(s)
EQ ,

with a�L 1
loc (V), aF0 and

s a(x)

NxNN22
4Q .

The original motivation of our research came from observations made in [6]
and [4].

For any NF3 the problem

.
/
´

2Du42(N22) e u

u40

in B1 4 ]x�RN ; NxNE1( ,

on ¯B1 ,

admits the weak solution u(x) 4 log (1 /NxN2 ) . It was observed in [6] that when
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NF11 the linearized operator at u namely

Lv42Dv22(N22) e u v ,

42Dv2
2(N22)

NxN2
v ,

is coercive and thus formally bijective; this is a simple consequence of Hardy’s
inequality:

s N˜vN2 F
(N22)2

4
s v 2

NxN2
, (v�H 1

0 (B1 ) ,

(note that (N22)2 /4 D2(N22) when NF11). On the other hand the results
of [4] show that when NF10 the perturbed problem

.
/
´

2Du42(N22) e u 1c

u40

in B1 ,

on ¯B1 ,

has no solution even in a weak sense and no matter how small c is, provided
cD0.

This strange «failure» of the Inverse Function Theorem is only apparent.
As was pointed out in [6] this just means that there is no functional setting in
which it can be correctly applied. We have tried here, in the spirit of Open
Problem 6 in [6], to analyze the same phenomenon for simple examples in low
dimensions.

After our investigation was completed we learned about an interesting
work of N. J. Kalton and I. E. Verbitsky [8] (which was carried out indepen-
dently of ours). Consider for example the problem

.
/
´

2Du4a(x) u 2 1c

u40

in V ,

on ¯V ,
(0.8)

with a�L 1
loc (V), aF0 and c a positive constant.

Their result says that if (0.8) has a weak solution, then necessarily

G(ad 2 ) GCd in V(0.9)

for some constant C, where G4 (2D)21 (with zero boundary condition) and
d (x) 4dist (x , ¯V). In particular, if 0 �V and a(x) 41/NxN2 , then G(ad 2 ) C

NlogNxNN as xK0 and thus (0.9) fails; hence (0.8) has no weak solution.
We present in Section 5 a very simple proof of the main result of [8] using a

variant of the method developed in Section 1.
Finally, in Section 6 we present a parabolic analogue of Theorem 0.2. It ex-
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tends, in particular, a result of I. Peral and J. L. Vázquez [12]. Namely, the
problem

.
/
´

ut 2Du42(N22) e u

u40

u(x , 0 ) 4u0 ,

in B1 3 (0 , T) ,

on ¯B1 3 (0 , T) ,

with u0 Fu4 log (1 /NxN2 ) , u0 gu , has no solution uF u even for small time:
instantaneous and complete blow-up occurs.

The plan of the paper is the following:

(1) Proof of Theorem 0.1.

(2) General nonlinearities.

(3) Complete blow-up.

(4) Very weak solutions. Proofs of Theorems 0.2 and 0.3.

(5) Connection with a result of Kalton-Verbitsky.

(6) Evolution equations.

NOTATION. – Throughout this paper, V is a bounded smooth domain of RN ,
NF1, such that 0 �V . We write

d (x) 4dist (x , ¯V)

and L 1
d (V) 4L 1 (V , d(x) dx) . We denote by C Q

0 (V) the space of C Q functions
with compact support in V, and by D8 (V) the space of distributions in V . By C
we denote a positive constant which may be different in each inequality.

1. – Proof of Theorem 0.1.

In this section we prove Theorem 0.1 and its consequences. We first intro-
duce some terminology about weak solutions.

DEFINITION 1.1. – Let h(x , u) be a Carathéodory function in V3R , that
is, h(x , u) is measurable in x and continuous in u for a.e. x.

(a) We say that

2Du4h(x , u) in D8 (V)

if u�L 1
loc (V), h(x , u) �L 1

loc (V) and 2suDW4sh(x , u) W for any W�
C Q

0 (V).
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(b) We say that

2DuFh(x , u) in D8 (V)

if u�L 1
loc (V), h(x , u) �L 1

loc (V) and 2s uDWFs h(x , u) W for any W�
C Q

0 (V) with WF0.

(c) We say that u is a weak solution of

.
/
´

2Du4h(x , u)

u40

in V ,

on ¯V ,

if u�L 1 (V), h(x , u) �L 1
d (V) and 2s

V

u Dz4s
V

h(x , u) z for any z�C 2 (V)
with z40 on ¯V .

The following is the main result of this section; it is Theorem 0.1 of the
Introduction.

THEOREM 1.2. – Let NF1 and u�L 1
loc (V) satisfy uF0 a.e. in V , u 2 ONxN2 �

L 1
loc (V) and

2DuF
u 2

NxN2
in D8 (V) .(1.1)

Then uf0.

This theorem easily implies two nonexistence results. The first one deals
with the following boundary value problem.

COROLLARY 1.3. – Let NF1 and f�L 1
d (V) satisfy fF0 a.e. and f g0. Then

there is no weak solution of

.
/
´

2Du4
u 2

NxN2
1 f (x)

u40

in V ,

on ¯V ,

(1.2)

in the sense of Definition 1.1.

REMARK 1.4. – When ff0, problem (1.2) has uf0 as the only weak sol-
ution; this follows immediately from Theorem 1.2. When NF3 and f�L 1 (V)
satisfies fG0 and f g0, (1.2) has a weak solution uG0, which is the unique sol-
ution among nonpositive functions. This fact is a consequence of a more general
result of Gallouët and Morel [7], which extends work of Brezis and Strauss [5].
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As a consequence of Theorem 1.2, we may write down a simple PDE with-
out local solutions, i.e., no solution exists in any neighborhood of 0. Here, we do
not impose any boundary condition.

COROLLARY 1.5. – Let NF3 and cD0 be any positive constant. Then there
is no function u such that u 2 ONxN2 �L 1

loc (V) and

2Du4
u 2 1c

NxN2
in D8 (V) .(1.3)

REMARK 1.6. – In contrast with (1.3), the equation

2Du4
u 2

NxN2
1c(1.4)

has a weak solution in some neighborhood of 0, if NF3 and cD0 is a constant.
This solution is nonpositive and can be obtained from the results of [7] as
follows.

We introduce the new unknown v42u2cNxN2 so that (1.4) becomes

2Dv1
v 2

NxN2
12cv4c (2N21)2c 2 NxN2

fh(x) .(1.5)

We solve (1.5) on BR with the boundary condition v40 on ¯BR . Note that hF0
on BR provided R is sufficiently small (R 2 G (2N21) /c) . The results of [7]
give a unique solution vF0.

In Section 4 we will prove stronger nonexistence results for problems (1.2)
and (1.3).

The proof of Theorem 1.2 is based on the following variant of Kato’s in-
equality [9].

LEMMA 1.7. – Let u�L 1
loc (V) and f�L 1

loc (V) satisfy

2DuF f in D8 (V) .

Let f : RKR be a C 1 , concave function such that

0 Gf 8GC in R

for some constant C . Then f(u) �L 1
loc (V) and

2Df(u) Ff 8(u) f in D8 (V) .

The proof is standard, smoothing u, f and f by convolution; see also Lem-
ma 2 in [4].

The proof of Theorem 1.2 is a variant of a method introduced in [4]. Consid-
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er the function f(s) 4 (1 /e)2 (1 /s). It is nonnegative, bounded, increasing
and concave in the interval [e , Q), eD0. Note that if uFe satisfies

2DuF
u 2

NxN2

then

2Df(u) Ff 8(u)
u 2

NxN2
4

1

NxN2
.

This will lead to a contradiction with the fact that f(u) is bounded. The details
go as follows.

PROOF OF THEOREM 1.2. – Suppose that u is as in the theorem, and that ug0.
Since uF0, ug0, 2DuF0 in D8(V) and V is connected, we have that

uFe a.e. in Bh ,

for some eD0 and Bh4Bh (0) with closure in V . If NG2, this is already a con-
tradiction with u 2 /NxN2 �L 1

loc (V).
Suppose NF3. Let

f(s) 4
1

e
2

1

s
for sFe ,

and extend it by f(s) 4 (s2e) /e 2 for sGe . Note that f : RKR is C 1 , concave
and 0 Gf 8G1/e 2, so that f satisfies all the conditions of Lemma 1.7. Recall
that uFe in Bh , and consider

v4f(u) 4
1

e
2

1

u
in Bh .

It satisfies 0 GvG1/e in Bh and, by Lemma 1.7,

2DvFf 8(u)
u 2

NxN2
4

1

NxN2
in D8 (Bh ) .

Hence v2 (1 /(N22)) log 1/NxN) �L 1 (Bh ) and

2Dgv2
1

N22
log

1

NxN
hF0 in D8 (Bh ) ,
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which implies

v2
1

N22
log

1

NxN
F2C in Bh/2

for some constant CD0. In particular, v (x) K1Q as xK0, which is a contra-
diction with the fact that vG1/e . r

REMARK 1.8. – In the previous proof we could have used (in the spirit of [4])
the function

w4
u

eu11

for any eD0, instead of v41/e21/u . Note that

c(s) 4
s

es11

satisfies c 8(s) 4 (es11)22 and hence

c 8(s) s 2 4c(s)2 .

Moreover, c is bounded in [0 , Q) and satisfies all the conditions (for f) of
Lemma 1.7 in [0 , Q). In particular, if uF0, ug0 and 2DuFu 2 /NxN2

then

2DwFc 8(u)
u 2

NxN2
4

w 2

NxN2
,

and we can conclude as before, since w 2 /NxN2 Fn/NxN2 in a subdomain of V , for
some constant nD0.

Analogous versions of the functions f and c will appear, in Sections 2 and
5, when the nonlinearity u 2 is replaced by more general nonlinearities
g(u).

Finally, we use Theorem 1.2 to prove the nonexistence results of this
section.

PROOF OF COROLLARY 1.3. – Suppose that u is a weak solution of (1.2). Since
s

V

u(2Dz) F0 for any z�C 2 (V) with zF0 in V and z40 on ¯V , we easily de-

duce uF0 in V . Moreover, 2DuFu 2 /NxN2 in D8 (V). We obtain, by Theorem
1.2, uf0. This is a contradiction with (1.2), since f g 0. r

PROOF OF COROLLARY 1.5. – Suppose that u is a solution of (1.3) in D8 (V).
Then 2DuFc/NxN2 in D8 (Bh ), for some ball Bh4Bh (0) with closure in V . As
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in the proof of Theorem 1.2, we deduce that

u2
c

N22
log

1

NxN
F2C in Bh/2 ,

for some constant C . In particular, uF0 in Bn for some small nD0.
We therefore have

uF0 in Bn ,

2DuF
u 2

NxN2
in D8 (Bn ) .

By Theorem 1.2, uf0 in Bn , which is a contradiction with equation
(1.3). r

2. – General nonlinearities.

In this section we extend the previous nonexistence results to more gener-
al problems of the form

2Du4a(x) g(u)1b(x) .

We assume (here and throughout the rest of the paper) that g : RK [0 , Q) is
continuous on R , nondecreasing on [0 , Q), g(s) D0 if sD0, and

s
1

Q

ds

g(s)
EQ .(2.1)

Power functions g(u) 4u p for uF0, with pD1 are examples of such nonlin-
earities. We suppose that NF3.

For the function a(x) we assume in this section that a�L 1
loc (V), aF0 in V ,

and

s
Bh (0)

a(x)

NxNN22
4Q(2.2)

for some hD0 small enough (or, equivalently, for any hD0 small).

THEOREM 2.1. – Let g and a satisfy the assumptions above, with
NF3.

(a) Let uF0 a.e. in V satisfy

2DuFa(x) g(u) in D8 (V) .

Then uf0.
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(b) Let f�L 1
d (V) satisfy fF0 a.e. and f g 0. Then there is no weak sol-

ution of

.
/
´

2Du4a(x) g(u)1 f (x)

u40

in V ,

on ¯V .

(c) If b(x) satisfies the same conditions as a(x), then there is no weak
solution of

2Du4a(x) g(u)1b(x) in D8 (V) .

This theorem is proved with the same method as in the previous section.
We only need to adapt two points. First, f(s) 4 (1 /e)2 (1 /s) has to be re-
placed by a solution of

f 8 (s) 4
1

g(s)
if sFe ,

where eD0 is a constant.
We therefore define

f(s) 4s
e

s

dt

g(t)
if sFe ,

which satisfies 0 GfGs
Q

e
dtOg(t) EQ in [e , Q) (by assumption (2.1)), f(e) 4

0, f 8(e) 41Og(e), f is C 1, concave (since f 8 (s) 41Og(s) is nonincreasing) and
0 Gf 8G1Og(e) in [e , Q). Extending f by f(s) 4 (s2e) /g(e) for sGe , we ob-
tain a function f on all of R , satisfying the conditions of Lemma 1.7 and with f
bounded from above.

To complete the proof of Theorem 2.1, we only need to consider a solution
w�L 1

loc (Bh ), where Bh4Bh (0) with closure in V , of

2Dw4a(x) in D8 (Bh )

(a solution always exists since a�L 1 (Bh ) ) and show that

ess inf
B1/n (0)

wKQ1Q as nK1Q .(2.3)

For this purpose, we consider the convolution in Bh , wA4a ˜ CN NxN22N ,
where CN is chosen such that 2D(CN NxN22N ) 4d 0 . Then w2wA is harmonic in
Bh and hence bounded in Bh/2 . In particular, it suffices to show (2.3) for wA. But



HAÏM BREZIS - XAVIER CABRÉ234

this is true since, for NxNG1/n ,

wA(x) 4CNs
Bh

a(y)

Ny2xNN22
dyFC s

Bh

a(y)

NyNN22 1 (1 /n)N22
dyK1Q

as nKQ, by (2.2).

3. – Complete blow-up.

In Corollary 1.3 and Theorem 2.1 we have proved the nonexistence of weak
solutions of some problems of the form

.
/
´

2Du4a(x) g(u)1 f (x)

u40

in V ,

on ¯V .
(3.1)

In this section we prove that, under the same assumptions on a(x), g(u)
and f (x) made in Section 2, approximate solutions of (3.1) blow up everywhere
in V , that is, there is complete blow-up. More precisely, we have the
following.

Let g(u) and a(x) be as in Section 2. Suppose that f�L 1
d (V), fF0 a.e. and

fg0. Let (gn ) be a sequence of nonnegative, bounded, nondecreasing and con-
tinuous functions in [0 , Q) such that (gn ) increases pointwise to g. Let an and
fn be two sequences of nonnegative bounded functions in V, increasing point-
wise to a and f , respectively.

THEOREM 3.1. – Under the above assumptions, let un be the minimal non-
negative solution of the approximate problem

.
/
´

2Du4an (x) gn (u)1 fn (x)

u40

in V ,

on ¯V .
(3.2)n

Then, as nK1Q ,

un (x)

d (x)
K1Q uniformly in V .

In the proof of Theorem 3.1 we use two ingredients. First, the nonexistence
result of Theorem 2.1(b) (see also Corollary 1.3) and, second, the following es-
timate for the linear Laplace equation. It asserts that, for some positive
constant c,

G(x , y) Fcd(x) d(y) in V3V ,(3.3)

where G is the Green’s function of the Laplacian in V with zero Dirichlet con-
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dition. In an equivalent way, we can state this lower bound on G as
follows.

LEMMA 3.2. – Suppose that hF0 belongs to L Q (V). Let v be the
solution of

.
/
´

2Dv4h

v40

in V ,

on ¯V .

Then

v (x)

d (x)
Fc s

V

hd , (x�V ,(3.4)

where cD0 is a constant depending only on V .

Estimate (3.3) was proved by Morel and Oswald [11] (in unpublished
work), and by Zhao [13] (in a stronger form). For the convenience of the read-
er we give a simple proof of (3.3).

PROOF OF LEMMA 3.2. – We proceed in two steps.

Step 1. For any compact set K%V , we show

v (x) Fc s
V

hd , (x�K ,(3.5)

where c is a positive constant depending only on K and V . To prove (3.5), let
r4dist (K , ¯V) /2 , and take m balls of radius r such that

K%Br (x1 )NRNBr (xm ) %V .

Let z 1 , R , z m be the solutions of

.
/
´

2Dz i 4x Br (xi )

z i 40

in V ,

on ¯V ,

where x A denotes the characteristic function of A. The Hopf boundary lemma
implies that there is a constant cD0 such that

z i (x) Fcd (x) , (x�V , (1 G iGm .

Here and in the rest of the proof, c denotes various constants depending only
on K and V . Let now x�K , and take a ball Br (xi ) containing x. Then Br (xi ) %
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B2r (x) %V , and since 2DvF0 in V , we conclude

v (x) F s–
B2r (x)

v4c s
B2r (x)

vFc s
Br (xi )

v4c s
V

v (2Dz i ) 4c s
V

hz i Fc s
V

hd .

Step 2. Fix a smooth compact set K%V. By (3.5), vFc s
V

hd in K, so that it
suffices to prove (3.4) for x�V0K .

Let w be the solution of

.
/
´

2Dw40

w40

w41

in V0K ,

on ¯V ,

on ¯K .

The Hopf boundary lemma gives again

w(x) Fcd (x) , (x�V0K .

Since v is superharmonic and vFcs
V

hd on ¯K , the maximum principle
implies

v (x) Fcgs
V

hdh w(x) Fcgs
V

hdh d (x) , (x�V0K .

This completes the proof. r

PROOF OF THEOREM 3.1. – Consider the approximate problem

.
/
´

2Du4an (x) gn (u)1 fn (x)

u40

in V ,

on ¯V .
(3.6)n

Since 0 Gan (x) gn (s)1 fn (x) GCn in V3 [0 , Q) for some constant Cn , we
have that Cn z is a supersolution of (3.6)n where

.
/
´

2Dz41

z40

in V ,

on ¯V .
(3.7)

On the other hand, 0 is a subsolution of (3.6)n . We therefore obtain a minimal
solution un of (3.6)n by monotone iteration:

.
/
´

2Dum11 4an (x) gn (um )1 fn (x)

um11 40

in V ,

on ¯V ,

starting with u0 f0. In particular, since an (x) gn (s)1 fn (x) increases with n ,
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un11 is a supersolution of (3.6)n , and hence

un G un11 .

We claim that

s
V

an (x) gn (un ) d 6 1Q as n 61Q .

Lemma 3.2 then gives

un (x)

d (x)
61Q uniformly in V

as nK1Q ; this proves Theorem 3.1. Thus, it only remains to show the claim.
Suppose not, that

s
V

an (x) gn (un ) dGC , (n .(3.8)

Then, multiplying (3.6)n by the solution z of (3.7), we see that

s
V

un GC , (n

(we have used that 0 G fn G f�L 1
d (V) ) . Hence, un 6 u in L 1 (V), for some u, by

monotone convergence.
Since gn is a nondecreasing function, an gn (un )1 fn increases to ag(u)1 f

a.e. in V ; (3.8) also gives

an gn (un )1 fn 6 ag(u)1 f in L 1
d (V) ,

again by monotone convergence. We can now pass to the limit in the weak for-
mulation of (3.6)n (recall Definition 1.1(c)), and obtain that u is a weak
solution of

.
/
´

2Du4a(x) g(u)1 f(x)

u40

in V ,

on ¯V .

This is impossible by Theorem 2.1(b). r

4. – Very weak solutions. Proofs of Theorems 0.2 and 0.3.

In this section we return to the study of equation

2Du4
u 2

NxN2
1 f (x)



HAÏM BREZIS - XAVIER CABRÉ238

and its corresponding boundary value problem. We prove stronger versions of
the nonexistence results of Section 1 by considering a more general notion of
solutions, that we call very weak solutions. More precisely, we prove the fol-
lowing results.

THEOREM 4.1. – Let NF2 and u�L 2
loc (V0]0( ) satisfy uF0 a.e. in V

and

2NxN2 DuFu 2 in D8 (V0]0( ) ,(4.1)

in the sense that 2s uD(NxN2 W)Fs u 2 W for any WF0, W�
C Q

0 (V0]0( ) .
Then uf0.

Note that now we are testing (4.1) only against functions with compact sup-
port in V and vanishing in a neighborhood of 0. As a consequence of the previ-
ous theorem, we will prove the following stronger version of Corollary
1.3.

COROLLARY 4.2. – Let NF2 and f�L 1
loc (V0]0( ) , fd integrable near ¯V ,

fF0 a.e. in V , f g 0. Then there is no very weak solution of

.
/
´

2Du4
u 2

NxN2
1 f (x)

u40

in V ,

on ¯V ,

(4.2)

in the sense that u�L 2
loc (V0]0( ) , u and u 2 d are integrable near ¯V

and

2s
V

uD(NxN2 z)4s
V

u 2 z1s
V

fNxN2 z

for any z�C 2 (V), z40 on ¯V and zf0 in a neighborhood of 0.

REMARK 4.3. – Theorem 4.1 does not hold in dimension N41; a direct com-
putation shows that u(x) 4NxNa , for any 0 EaE1, satisfies (4.1) when V is a
small interval containing 0. Corollary 4.2 is also false in dimension N41; in
fact, for any pD1 and f�L p (21, 1 ), small in L p, there exists a very weak sol-
ution u of (4.2) in V4 (21, 1 ) which is continuous in [21, 1 ] and satisfies
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u(0) 40. This solution u is defined in (0 , 1 ) to be the solution of

.
/
´

2u 94
u 2

NxN2
1 f (x)

u(0) 4u(1) 40 ,

in (0 , 1 ) ,
(4.3)

and similarly in (21, 0 ); we obtain in this way a very weak solution u of (4.2)
in (21, 1 ).

Note that if V f VL p (0 , 1 ) is small then there is a solution u�C 2 (0 , 1 )O
C 1 ( [0 , 1 ] ) of (4.3). It can be obtained through the Inverse Function Theorem
applied to the operator 2u 92u 2 /NxN2 , which maps X4W 2, p (0 , 1 )O
W 1, p

0 (0 , 1 ) into L p (0 , 1 ); note that if u�X then u/NxN�L Q (0 , 1 ) and
u�C 1 ( [0 , 1 ] ).

We also extend the local nonexistence result of Corollary 1.5, now for all
NF1.

COROLLARY 4.4. – Let NF1 and cD0 be any positive constant. Then there
is no very weak solution of

2NxN2 Du4u 2 1c in D8 (V0]0( ) ,(4.4)

in the sense that u�L 2
loc (V0]0( ) , and 2s uD(NxN2 W)4s (u 2 1c) W for any

function W�C Q
0 (V0]0( ) .

The proofs of the results of this section consist of using appropriate powers
of testing functions; this is an idea due to Baras and Pierre [2] and employed
in [2] for the study of removable singularities of solutions of semilinear equa-
tions. In fact, the first step in our proof of Theorem 4.1 will be to use equation
(4.1) to show that u/NxN�L 2

loc (V); this can be interpreted as a «removable sin-
gularity» result. The second step of the proof is to show that 2DuFu 2 /NxN2 is
satisfied in D8 (V). We may then conclude that uf0 with the help of Theorem
1.2. We present here an alternative proof of Theorem 1.2 based on multiplica-
tion by a sequence of appropriate testing functions.

PROOF OF THEOREM 4.1.

Step 1. We prove that u/NxN�L 2
loc (V). For this purpose, let z n �

C Q
0 (V0]0( ) be such that 0 Gz n G1,

z n 4

.
/
´

0

1

z

if NxNG1/n ,

if NxNF2/n , x�v ,

if x�V0v ,

where v is open, 0 �v , v %V and z is a fixed «tail» for all z n . We take z n such
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that if 1 /nENxNE2/n then

˜z 4
n 44z 3

n ˜z n ,

Dz 4
n 44z 3

n Dz n 112z 2
n N˜z n N2 ,

and

NDz 4
n NGCn 2 z 2

n ,

for some constant C independent of n . Multiplying (4.1) by z 4
n ONxN2 yields

s u 2

NxN2
z 4

n G2s uDz 4
n GCu s

]1OnENxNE2On(

n 2 uz 2
nv1C .

Using the Cauchy-Schwarz inequality, we obtain

s u 2

NxN2
z 4

n GCnu s
]1OnENxNE2On(

u

NxN
z 2

nv1CG
C

n NO221
us u 2

NxN2
z 4

nv
1/2

1C .

Since NF2 we deduce that

s u 2

NxN2
z 4

n GC ,

and hence u/NxN�L 2
loc (V).

For later purposes, let us retain two more consequences of the previous
proof. First, we did not use uF0. Second, if carried out for N41, the proof
gives

s
3/n

2/n

u 2

NxN2
GCn1C , (N41) .(4.5)

Step 2. We show that

2DuF
u 2

NxN2
in D8 (V) .(4.6)

Indeed, let W�C Q
0 (V), WF0, and h n (x) 4h 1 (nNxN) be such that 0 Gh 1 G1

and

h 1 (x) 4
.
/
´

0

1

if NxNG1 ,

if NxNF2 .
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Multiplying (4.1) by (Wh n )ONxN2 yields

s u 2

NxN2
Wh n G2s uD(Wh n ) .

If we show that, as nKQ ,

s uN˜WN N˜h n NK0(4.7)

and

s uWNDh n NK0(4.8)

then we obtain 2s uD(Wh n ) K2s uDW and hence the statement of Step 2.
To prove (4.7) and (4.8), we use that u/NxN�L 2

loc (V)—which we established in
Step 1. Hence

s uN˜WN N˜h n NGCn s
]1OnENxNE2On(

uGC s
]1OnENxNE2On(

u

NxN
K0

and

s uWNDh n NGCn 2 s
]1OnENxNE2On(

uGCn s
]1OnENxNE2On(

u

NxN
G

C

n NO221
u s

]1OnENxNE2On(

u 2

NxN2
v1O2

K0 .

Note that, as in Step 1, we have not used uF0.

Step 3. We show that uf0 (it is only here where we use uF0). Let us sup-
pose that ug0. Then, since uF0, 2DuF0 in D8 (V) and V is connected, we
have that

uFe a.e. in Bh ,

for some eD0 and Bh4Bh (0) with closure in V . When N42 this is impossible
since u/NxNFe/NxN near 0 and hence u/NxN�L 2

loc (V)—a contradiction with
Step 1.

When NF3, we use that

2DuF
e 2

NxN2
42Dg e 2

N22
log

1

NxN
h in D8 (Bh )
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and we conclude (as in the proof of Theorem 1.2) that

uF
e 2

N22
Nlog NxNN2C near 0(4.9)

for some CD0.
Let us now choose a sequence of functions x n (x) 4x 1 (nNxN) such that

0 Gx n G1 and

x n (x) 4
.
/
´

1

0

if NxNG1/n ,

if NxNF2/n .

Mutiplying (4.6) by x 4
n yields

s u 2

NxN2
x 4

n Gs uNDx 4
n NGCn 2 s

]1OnENxNE2On(

ux 2
n G

Cn s u

NxN
x 2

n G
C

n NO221
us u 2

NxN2
x 4

nv
1/2

,

and therefore

s u 2

NxN2
x 4

n G
C

n N22
.

But, using (4.9), we have

s u 2

NxN2
x 4

n Fc s
]1O(2n) ENxNE1On(

n 2 Nlog nN2 A
Nlog nN2

n N22

which contradicts the previous statement. r

Finally we give the proofs of Corollaries 4.2 and 4.4.

PROOF OF COROLLARY 4.2. – Recall that Steps 1 and 2 of the previous proof
hold for any u satisfying (4.1)—without the assumption uF0. Therefore, since
fF0, Step 1 of the proof of Theorem 4.1 gives

u

NxN
�L 2

loc (V) .

Moreover, proceeding as in Step 2 of the same proof, we see that

2s
V

u Dz4s
V

u 2

NxN2
z1s

V

f z

for any z�C 2 (V), z40 on ¯V . In particular, 2s u DzF0 if, in addition, zF0
in V . We conclude that uF0 in V . Theorem 4.1 implies that uf0, which con-
tradicts (4.2) and f g 0. r
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PROOF OF COROLLARY 4.4. – Suppose that u satisfies

2NxN2 Du4u 2 1c in D8 (V0]0( ) .

The proof of Step 1 in Theorem 4.1 gives

u 2

NxN2
1

c

NxN2
�L 1

loc (V) when NF2 .

This is impossible when N42, since 1 /NxN2 is not integrable near 0.
When NF3 we get (as in the proof of Theorem 4.1, Step 2) that

2Du4
u 2

NxN2
1

c

NxN2
in D8 (V) .

We now proceed as in the proof of Corollary 1.5, i.e., we compare u with
log (1/NxN) . We obtain that uF0 in a neighborhood of 0 and hence, by Theo-
rem 4.1, uf0. This is a contradiction with equation (4.4).

We finally treat the case N41. We would have u�L 2
loc (V0]0( ) and

2x 2 u 94u 2 1c in D8 (V0]0( ) .

In particular, u belongs to C 2 (0 , a) for some aD0. Integrating the inequality
2u 9Fc/x 2 in (s , a/2 ), we obtain

u 8 (s) F
c

s
2C

for some constant C . Integrating again yields

2u(s) F2c log s2C .

Thus

Nu(s)NFcNlog sN2C near 0 .

On the other hand, we recall (4.5):

s
3/n

2/n

u 2

s 2
dsGCn1C ,

which was proved in Step 1 of the proof of Theorem 4.1. Using Nu(s)NF

cNlog sN2C , this inequality yields

c

6
Nlog nN2 n4cNlog nN2 s

3/n

2/n

ds

s 2
G s

3/n

2/n

u 2

s 2
dsGCn1C ,

which is a contradiction. r
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5. – Connection with a result of Kalton-Verbitsky.

In this section we consider the problem (for uF0)

.
/
´

2Du4a(x) u p 1 f (x)

u40

in V ,

on ¯V ,
(5.1)

where pD1, aF0 and fF0 in V . Recently, Kalton and Verbitsky [8] have
found an interesting necessary condition for the existence of a weak solution
of (5.1). Their result states that if (5.1) has a weak solution, then necessarily

G(aG( f )p )GCG( f ) in V(5.2)

for some constant C, where G4 (2D)21 (with zero Dirichlet boundary condi-
tion). In [8] the authors also prove (5.2) for more general second-order elliptic
operators.

In this section we give a simple proof of the necessary condition (5.2) (for
the Laplacian) using a refinement of the method that we have developed in
Section 1. Our proof gives (5.2) with constant C41O(p21). Next, we replace
f (x) by lf (x) in (5.1) (where lD0 is a parameter) and we study the problem of
existence of solution depending on the value of l .

As pointed out in the Introduction, condition (5.2) easily implies some of
our nonexistence results. For instance, it gives the result of Theorem 2.1(b)
when g(u) 4u p , for some pD1, and f�L Q , since in this case G( f ) Ad .

We recall that there is another necessary condition—due to Baras and
Pierre [3]—for the existence of a weak solution of (5.1). Its proof consists of
multiplying (5.1) by test functions and using Young’s inequality.

Throughout this section we assume that

a�L 1
loc (V) , aF0 a.e . , a g 0 ,(5.3)

and

f�L 1
d (V) , fF0 a.e. , f g 0 .(5.4)

A function u�L 1 (V), uF0 a.e. is a weak solution of (5.1) if au p �L 1
d (V) and

(5.1) is satisfied in the sense of Definition 1.1(c). Finally, for h�L 1
d (V) we de-

note by G(h) the unique function in L 1 (V) satisfying

.
/
´

2D(G(h) )4h

G(h) 40

in V ,

on ¯V ,

again in the sense of Definition 1.1(c)—see e.g. Lemma 1 of [4] for such result
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about the linear Laplace equation. We now give a necessary condition and a
sufficient condition for the existence of a weak solution of (5.1).

THEOREM 5.1. – Assume (5.3) and (5.4).

(a) If

.
/
´

2Du4a(x) u p 1 f (x)

u40

in V ,

on ¯V ,
(5.5)

has a weak solution uF0, then aG( f )p �L 1
d (V) and

G(aG( f )p )
G( f )

G
1

p21
in V .

(b) If aG( f )p �L 1
d (V) and

G(aG( f )p )
G( f )

Gg p21

p
hp 1

p21
in V ,

then (5.5) has a weak solution u satisfying G( f ) GuGCG( f ) in V for some
constant C .

The second result of this section is the following.

THEOREM 5.2. – Assume (5.3), (5.4) and

G(aG( f )p )
G( f )

�L Q (V) .

For l a positive parameter, consider the problem

.
/
´

2Du4a(x) u p 1lf (x)

u40

in V ,

on ¯V .
(5.6)l

Then there exists l x� (0 , Q) such that

(i) if 0 ElEl x , then (5.6)l has a weak solution ul satisfying

lG
ul

G( f )
GC(l) in V

for some constant C(l) depending on l .

(ii) if l4l x , then (5.6)l has a weak solution.

(iii) if lDl x , then (5.6)l has no weak solution.
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Moreover,

g p21

p
hp 1

p21
G (l x )p21

V

G(aG( f )p )
G( f ) V

L Q (V)

G
1

p21
.(5.7)

The main ingredient in the proof of the above theorems is the follow-
ing.

LEMMA 5.3. – Suppose u and v are C 2 functions in V , and that vD0. Let
f : RKR be a C 2 , concave function. Then

2Dkvfg u

v
hlFf 8g u

v
h(2Du)1 kfg u

v
h2

u

v
f 8g u

v
hl (2Dv) .

If, in addition, 2DvF0 in V , then

2Dkvfg u

v
hlFf 8g u

v
h[2Du1Dv]1f(1)(2Dv) .(5.8)

PROOF. – We simply compute and use that f 9G0 and vD0. We have (using
the notation ¯i v4vi)

2Dkvfg u

v
hl42 !

N

i41
kf 8g u

v
h vg u

v
h

i

1fg u

v
h vil

i

4

2f 9g u

v
h vN˜g u

v
hN

2
2 !

N

i41
mf 8g u

v
hkvg u

v
h

i
l

i

1 kfg u

v
h vil

i
nF

2 !
N

i41
mf 8g u

v
hkui 2

u

v
vil

i

1fg u

v
h vii 1f 8g u

v
hg u

v
h

i

vin4

f 8g u

v
h (2Du)1f 8g u

v
h ˜g u

v
h ˜v2

u

v
f 8g u

v
h(2Dv)1

fg u

v
h (2Dv)2f 8g u

v
h ˜g u

v
h ˜v4

f 8g u

v
h (2Du)1 kfg u

v
h2

u

v
f 8g u

v
hl (2Dv) ,

which is the first inequality of the lemma. From this, we deduce the second in-
equality, as follows. Since f is concave, we have

f(s)1 (12s) f 8 (s) Ff(1) , (s�R .
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Thus

fg u

v
h2

u

v
f 8g u

v
hF2f 8g u

v
h1f(1) ;

multiplying this inequality by 2Dv (which is nonnegative by assumption), we
easily deduce (5.8). r

To use the previous lemma, we will need (5.8) in its weak version for L 1

functions.

LEMMA 5.4. – Let f : RKR be a C 1 , concave function with f 8 bounded. Let
h and k belong to L 1

d (V), with kF0, kg0, and let u and v be the L 1 (V)
solutions of

.
/
´

2Du4h

u40

in V ,

on ¯V ,

and

.
/
´

2Dv4k

v40

in V ,

on ¯V .

Then

2Dkvfg u

v
hlFf 8g u

v
h (h2k)1f(1) k ,(5.9)

in the sense that vf(uOv) �L 1 (V), f 8 (uOv)(h2k)1f(1) k�L 1
d (V) and

2s
V

vfg u

v
h DzFs

V

mf 8g u

v
h (h2k)1f(1) kn z

for all z�C 2 (V), zF0, with z40 on ¯V .

PROOF. – We first point out that (5.8) holds when f is C 1 and concave—not
necessarily C 2. This follows immediately from Lemma 5.3 convoluting f with
mollifiers.

We approximate h and k in L 1
d (V) by sequences (hn ) and (kn ), respectively,

of C Q
0 (V) functions and with kn F0, kn g0. Let un , vn be the solutions of

.
/
´

2Dun 4hn

un 40

in V ,

on ¯V
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and

.
/
´

2Dvn 4kn

vn 40

in V ,

on ¯V .

It follows that un Ku and vn Kv in L 1 (V) (for this, subtract the equations for
un and u, multiply by G(1) and integrate). Moreover, un , vn�C 2 (V) and vnD0,
2Dvn F0 in V .

By (5.8) we have

2Dkvn fg un

vn
hlFf 8g un

vn
h (hn 2kn )1f(1) kn .

Moreover, using that f 8 is bounded, we see that

(5.10) Nvn fg un

vn
hN4Nvngfg un

vn
h2f(0)h1f(0) vnNGC(Nun N1Nvn N)

for some constant C. Hence, vn f(un /vn ) vanishes on ¯V and thus

2s
V

vn fg un

vn
h DzFs

V

mf 8g un

vn
h(hn 2kn )1f(1) knn z(5.11)

for all z�C 2 (V), zF0 in V and z40 on ¯V .
Note that vD0 a.e. in V , so that vf(u/v) is well defined a.e. Moreover,

vn f(un /vn ) converges a.e. to vf(u/v) — up to a subsequence. Since un and vn

converge in L 1 (V), they are dominated (also up to a subsequence) by an
L 1 (V) function. Thus, by (5.10), Nvn f(un /vn )N is also dominated by an L 1 func-
tion (for a subsequence). We conclude that

vn fg un

vn
hKvfg u

v
h in L 1 (V) .

Passing to the limit in (5.11), we finally obtain (5.9) and the lemma. r

We write explicitly the concave functions f that we use in this section. For
Theorem 5.1 we will use

f(s) 4s
s

1

dt

t p
4

1

p21
g12

1

s p21 h for sF1 .(5.12)

It satisfies

f 8 (s) s p 41 for sF1 ,
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and hence f is concave and f 8 is bounded in [1 , Q). Moreover,

f(1) 40 and 0 Gf(s) G
1

p21
for sF1 .

Since f 8(1) 41, we can extend f by f(s) 4s21 in (2Q , 1 ] obtaining a func-
tion f that satisfies the conditions of Lemma 5.4.

Note that the functions f above are analogous versions of the ones that we
employed in Sections 1 and 2, in the sense that they all satisfy f 8 (s) g(s) 41
(in an appropriate interval) where g is the nonlinearity.

In Theorem 5.2 we will be led to take f (that we denote now by c) satisfy-
ing another differential equation, namely: c 8 (s) s p 4c(s)p. Precisely, we will
take

c(s) 4
s

(es p21 11)1/(p21)
for sF0 .(5.13)

It satisfies

c 8(s) 4
1

(es p21 11)p/(p21)
for sF0

and hence

c 8(s) s p 4c(s)p for sF0 .

Note that c is concave and c 8 is bounded in [0 , Q);

c(1) 4g 1

11e
h1/(p21)

and 0 Gc(s) Gg 1

e
h1/(p21)

for sF0 .

Extending c by c(s) 4s in (2Q , 0 ], we obtain a function c which satisfies
the conditions (for f) of Lemma 5.4. Note that, for p42, c was already consid-
ered in Remark 1.8.

PROOF OF THEOREM 5.1.

Part (a). Let uF0 be a weak solution of

.
/
´

2Du4a(x) u p 1 f (x)

u40

in V ,

on ¯V .

We consider

v4G( f ) ;
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note that, since a(x) u p F0,

u

v
4

u

G( f )
F1 in V

by the weak maximum principle (which is an easy consequence of the weak for-
mulation of Definition 1.1(c) used here). In particular aG( f )p Gau p and hence
aG( f )p �L 1

d (V).
We take f, defined by (5.12), and apply Lemma 5.4 to obtain (we use u/vF

1 and the properties of f(s) for sF1)

2Dkvfg u

v
hlFf 8g u

v
h (au p 1 f2 f )1f(1) f4f 8g u

v
hau p 4av p 4aG( f )p

in the weak sense of the lemma. Hence (by the weak maximum principle)

G(aG( f )p )Gvfg u

v
hG

1

p21
v4

1

p21
G( f ) .

Part (a) is now proved.

Part (b). We assume that aG( f )p �L 1
d (V) and

G(aG( f )p )Gg p21

p
hp 1

p21
G( f ) .

It follows that the L 1 (V) function

uA»4g p

p21
hp

G(aG( f )p )1G( f )

satisfies

uAG
p

p21
G( f ) .

Therefore

2DuA4g p

p21
hp

aG( f )p 1 fFauA p 1 f

in the weak sense. That is, uA is a weak supersolution of (5.5). On the other
hand, 0 is a subsolution of the problem. It is then easy to obtain a weak sol-
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ution u of (5.5) by monotone iteration (see e.g. Lemma 3 of [4]). More-
over

G( f ) GuGuAG
p

p21
G( f ) .

This completes the proof of Theorem 5.1. r

PROOF OF THEOREM 5.2. – We assume that

G(aG( f )p )
G( f )

�L Q (V) ;

moreover, ag0 and f g0 and hence

0 EMQ »4
V

G(aG( f )p )
G( f ) V

L Q (V)

EQ .

Theorem 5.1 (applied with f replaced by lf ) implies that if (5.6)l has a weak sol-
ution then

l p21 MQG
1

p21
.

The theorem also gives that if

l p21 MQGg p21

p
hp 1

p21

then (5.6)l has a weak solution. Hence, defining

l x4sup ]lD0; (5.6)l has a weak solution( ,

we have 0 El xEQ, and also estimate (5.7) of Theorem 5.2. Note that part (iii)
of the theorem is now obvious.

To prove part (i), we have to show that if 0 ElEm and (5.6)m has a weak
solution u then (5.6)l has a weak solution ul satisfying

lG
ul

G( f )
GC(l) in V .(5.14)

For this purpose, we consider

v4G(mf ) 4mG( f ) ,
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and the function c defined by (5.13) with eD0 chosen small enough such
that

lGg 1

11e
h1/(p21)

m4c(1) m .

We apply Lemma 5.4 (with f replaced by c) to obtain

2Dkvcg u

v
hlFc 8g u

v
h(au p 1mf2mf )1c(1) mf4

av pkcg u

v
hlp

1c(1) mfFakvcg u

v
hlp

1lf

in the weak sense of the lemma. Hence vc(u/v) is a weak supersolution of
(5.6)l . Again by monotone iteration we deduce that (5.6)l has a weak solution
ul such that

ulGvcg u

v
hGCv4CmG( f ) .

This, together with the trivial bound ulFG(lf), gives (5.14) and proves
(i).

It remains to show part (ii). For lEl x we can take ul to be the minimal sol-
ution of (5.6)l, i.e., the solution obtained by monotone iteration starting from
the function 0. In this manner, ulGum if 0 ElEmEl x . Hence, in order to ob-
tain a weak solution of (5.6)lx , it suffices to show

s
V

[a(x) u p
l 1lf (x) ] dGC(5.15)

for some constant C independent of l .
To prove (5.15) we proceed as follows. Since aF0 and a g 0, there exists a

constant M� (0 , Q) such that

aM »4x ]aGM( a

satisfies 0 GaM GM and aM g 0 (here x ]aGM( denotes the characteristic func-
tion of ]aGM( ) .

It is well-known that the problem

.
/
´

2Dw4a 1/p
M w 1/p

wD0

w40

in V ,

in V ,

on ¯V ,

(5.16)

has a unique solution w�W 2, r (V) (for any 1 ErEQ) with w g 0. This sol-



SOME SIMPLE NONLINEAR PDE’S WITHOUT SOLUTIONS 253

ution can be obtained for example by minimizing in H 1
0 (V) the energy associ-

ated to (5.16):

E(v) 4
1

2
s

V

N˜vN2 2
p

p11
s

V

a 1/p
M (v 1 )(p11) /p ,

which is a coercive functional, bounded from below, in H 1
0 (V) (note that a 1/p

M �
L Q (V) and 1 E (p11) /pE2). We have that E(tW 1 ) E0 for t small, where W 1

denotes the first eigenfunction of 2D . In particular, the minimizer w of E sat-
isfies E(w) E0, and thus w g 0. The strong maximum principle then
gives

wFcd(5.17)

for some positive constant c.
Since Dw�L Q (V) we can multiply (5.6)l by w and integrate by parts. We

also use Young’s inequality—in the spirit of the ideas of Baras and Pierre [3].
We obtain

s
V

au p
l w1s

V

lfw4s
V

ul (2Dw) 4

s
V

a 1/p
M ul w 1/p Gs

V

a 1/p ul w 1/p G
1

p
s

V

au p
l w1

p21

p
s

V

1 ,

and therefore

s
V

au p
l w1s

V

lfwGC

for some constant C independent of l. Using (5.17), we conclude (5.15), and
hence the proof of part (ii). r

REMARK 5.5. – An analogous version of Theorem 5.2 also holds for the
problem

.
/
´

2Du4l(a(x) u p 1 f (x) )

u40

in V ,

on ¯V .

This follows from Theorem 5.2 rescaling the solution u, i.e., considering the
problem for au, for appropriate a.
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REMARK 5.6. – In Theorem 5.2 we have shown that, for lEl x, (5.6)l has a
weak solution ul satisfying

ul

G( f )
�L Q (V) .(5.18)

We point out that this property may not be true for the minimal solution ob-
tained for l4l x. To give an example of this, consider first the problem

.
/
´

2Dv4l(v11)p

v40

in B1 4 ]NxNE1( %RN ,

on ¯B1 .
(5.19)l

For N and p sufficiently large, (5.19)l has

v(x) 4NxN22/(p21) 21

as weak solution for a certain parameter l D0; moreover v is the pointwise, in-
creasing limit (as l6l) of the classical minimal solutions vl of (5.19)l for lEl
(see e.g. [6]). Let us define

f4 (v11)p 2v p ,

so that the problem

.
/
´

2Du4lu p 1lf (x)

u40

in B1 ,

on ¯B1 ,
(5.20)l

has u4v as weak solution for l4 l. Note that (5.20)l is of the form (5.6)l con-
sidered in Theorem 5.2. We claim that v is the minimal weak solution of (5.20)l .
This is shown as follows: for lE l, let ul be the minimal weak solution of
(5.20)l . Since ulGv , we have (ul11)p 2u p

l G f , and hence ul is a weak super-
solution of (5.19)l . Thus ulFvl , and since vl 6 v as l 6 l , we conclude that v
is the minimal weak solution of (5.20)l .

Finally, we have that

v

G( f )
�L Q (B1 ) ,(5.21)

since v ANxN22/(p21) near 0 and G( f ) GC log (1 /NxN) (note that fGp(v1

1)p21 4pNxN22 in B1 ). This proves that (5.18) does not hold for l4l and, in
particular, that l is the extremal parameter l x for problem (5.20)l .
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6. – Evolution equations.

In Section 4 we proved that uf0 is the only nonnegative very weak super-
solution of

2DuF
u 2

NxN2
in D8 (V0]0( ) .

Here we prove an analogous result for the equation

ut 2DuF
u 2

NxN2
in D8 ((V0]0( )3 (0 , T) ) .

More precisely, we have the following parabolic analogue of Theorem 4.1.

THEOREM 6.1. – Let NF2, TD0 and u�L 2
loc ((V0]0( )3 (0 , T) ) satisfy

uF0 a.e. in V3 (0 , T) and

NxN2 (ut 2Du) Fu 2 in D8 ((V0]0( )3 (0 , T) ) ,(6.1)

in the sense that

2s s u](NxN2 W)t 1D(NxN2 W)( Fs su 2 W

for any WF0, W�C Q
0 ((V0]0( )3 (0 , T) ) .

Then uf0.

As an immediate consequence of the theorem we obtain an extension of a
result of Peral and Vázquez (Theorem 7.1 of [12]). Here V4B1 , the unit ball of
RN, and NF3. We consider the function

u(x) 4 log
1

NxN2
,

which is a weak solution of

.
/
´

2Du 42(N22) e u

u40

in B1 ,

on ¯B1 .
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COROLLARY 6.2. – Let NF3, TD0 and u�L 1
loc ((B1 0]0( )3 (0 , T) ) be a

function such that e u �L 1
loc ((B1 0]0( )3 (0 , T) ) ,

u(x , t) F u(x) a.e. in B1 3 (0 , T) ,

and

ut 2Du42(N22) e u in D8((B1 0]0( )3 (0 , T) ) ,(6.2)

in the sense that

2s s u(W t 1DW) 42(N22) s s e u W

for any W�C Q
0 ((B1 0]0( )3 (0 , T) ) .

Then u(x , t) f u(x).

Note again that we only assume equation (6.2) to be satisfied in the distri-
butional sense and away from ]x40(3 [0 , T]. In particular, given any
u0 (x) F u(x) a.e. in B1 , u0 g u, and any TD0, there is no weak solution u,
with

u(x , t) Fu(x) in B1 3 (0 , T) ,

of the problem

.
/
´

ut 2Du42(N22) e u

u40

u(x , 0 ) 4u0

in B1 3 (0 , T) ,

on ¯B1 3 (0 , T) ,

on B1 ,

(6.3)

(as stated in [12]).
A second consequence of Theorem 6.1 is the following nonexistence and

complete blow-up result. For any u0 F0, u0 g 0 (say u0 �C Q
0 (V) ) and for any

TD0, the problem

.
`
/
`
´

ut 2Du4
u 2

NxN2

u40

u(x , 0 ) 4u0

in V3 (0 , T) ,

on ¯V3 (0 , T) ,

on V ,

(6.4)

has no weak solution (by Theorem 6.1). Using similar ideas as in the elliptic
case (see Section 3), we prove that approximate solutions of (6.4) blow up com-
pletely. More precisely, let gn be a sequence of nonnegative, nondecreasing
and globally Lipschitz functions in [0 , Q) such that gn (u) increases pointwise
to u 2. Let an be a sequence of nonnegative bounded functions in V , increasing
pointwise to 1 /NxN2 .
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THEOREM 6.3. – Under the above assumptions, let un be the solution
of

.
`
/
`
´

¯un

¯t
2Dun 4an (x) gn (un )

un 40

un (x , 0 ) 4u0

in V3 (0 , 1Q) ,

on ¯V3 (0 , 1Q) ,

on V .

(6.5)n

Then, for any 0 EeET ,

un (x , t)

d (x)
K1Q uniformly in (x , t) �V3 [e , T](6.6)

as nKQ .

To prove Theorem 6.1 we adapt the method given in Section 4 for the ellip-
tic case; it consists of using appropriate powers of testing functions.

PROOF OF THEOREM 6.1. – We proceed as in the proof of Theorem 4.1; we
use the same notation as there. We also fix a cut-off function in time:

c�C Q
0 ((0 , T) ) , 0 GcG1 ,

with cf1 in a given compact sub-interval of (0 , T).

Step 1. We prove that u/NxN�L 2
loc (V3 (0 , T) ) . For this purpose, we

multiply (6.1) by z 4
n (x) c 2 (t) /NxN2 ; it yields

s s u 2

NxN2
z 4

n c 2 G2s s u(Dz 4
n ) c 2 2s s uz 4

n (c 2 )t .

Let us denote by C different constants independent of n , but that may
depend on V , T and the cut-off c . We have

2s s u(Dz 4
n ) c 2 GCnus s

]1OnENxNE2On(3 (0 , T)

u

NxN
z 2

n cv1C

and

2s s uz 4
n (c 2 )t GCs s u

NxN
z 2

n c .
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Hence we can conclude, as in Section 4, that

s s u 2

NxN2
z 4

n c 2 GC .

Thus u/NxN�L 2
loc (V3 (0 , T) ) .

Step 2. We show that

ut 2DuF
u 2

NxN2
in D8 (V3 (0 , T) ) .(6.7)

This is done exactly as in the proof of Theorem 4.1, where now W4W(x , t) be-
longs to C Q

0 (V3 (0 , T) ) .

Step 3. We finally prove uf0. We suppose u g 0. Since uF0, ut 2DuF0
in D8 (V3 (0 , T) ) and V is connected, we have that

uFe a.e. in Bh3 (t , T) ,

for some 0 EtET , eD0 and Bh4Bh (0) with closure in V. When N42 this is
a contradiction with u/NxN�L 2

loc (V3 (0 , T) ) .
When NF3, (6.7) gives

ut 2DuF
e 2

NxN2
4 (¯t 2D)g e 2

N22
log

1

NxN
h in D8 (Bh3 (t , T) ) .

We deduce that

uF
e 2

N22
log

1

NxN
2C in Bh/2 3 (t 8 , T)(6.8)

for some CD0 and tEt 8ET .
Following the proof of Theorem 4.1, we now multiply (6.7) by x 4

n (x) c 2 (t),
with c a cut-off as in the beginning of this proof, and with cf1 in (t 8, T 8) for
some T 8 with t 8ET 8ET . We have

s s u 2

NxN2
x 4

n c 2 Gs s uNDx 4
n Nc 2 1s s ux 4

n N(c 2 )t N

(where we are integrating on ]NxNE2/n(3 (0 , T), since it contains the sup-
port of x 4

n c 2 ). Hence

s s u 2

NxN2
x 4

n c 2 GCn s s u

NxN
x 2

n c ,
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where C is independent of n . From the Cauchy-Schwarz inequality, we
deduce

s s u 2

NxN2
x 4

n c 2 G
C

n N22
.

But using (6.8), we have

s s u 2

NxN2
x 4

n c 2 Fc
Nlog nN2

n N22
,

which contradicts the previous statement. This proves the theorem. r

REMARK 6.4. – Step 3 of the previous proof, (i.e., to show uf0 from uF0
and (6.7)) could have been done using a parabolic analogue of the method of
Section 1. That is, one considers

v4
1

e
2

1

u

in a subcylinder where uFe . Then (with the aid of the parabolic Kato’s in-
equality) v satisfies

vt 2DvF
1

NxN2
,

which leads to contradiction since v is bounded (vG1/e).

Corollary 6.2 follows immediately from Theorem 6.1:

PROOF OF COROLLARY 6.2. – Let u be as in the corollary. Consider v(x , t) 4

u(x , t)2u(x). It satisfies, from our assumptions,

vF0 a.e. in B1 3 (0 , T) .

Moreover, in the distributional sense D8 ((B1 0]0()3 (0 , T) ) ,

vt 2Dv4ut 2Du1Du42(N22)(e u 2e u ) 42(N22) e u (e v 21) 4

2(N22)

NxN2
(e v 21) F

(N22)

NxN2
v 2

since vF0. Hence (N22) vF0 satisfies (6.1). By Theorem 6.1 we deduce vf

0, that is ufu . r

We finally give the proof of the complete blow-up result.
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PROOF OF THEOREM 6.3. – We proceed in three steps. Recall that 0 Gun G

un11 , by the maximum principle.

Step 1. We prove that, for any tD0,

s
t

0

s
V

an gn (un ) dK1Q .

Suppose not, that s
t

0

s
V

an gn (un ) dGC for some tD0. We multiply (6.5)n by
the solution of

.
/
´

2Dz41

z40

in V ,

on ¯V .

We obtain

s
t

0

s
V

un 1s
V

un (x , t) z2s
V

u0 z4s
t

0

s
V

an gn (un ) zGC

and, in particular

s
t

0

s
V

un GC .

Hence un and an gn (un ) d are bounded in L 1 (V3 (0 , t) ) . By monotone con-
vergence, we obtain that un Ku in L 1 (V3 (0 , t) ) with u satisfying the as-
sumptions of Theorem 6.1. By this theorem, uf0. Thus u1 f0 and u0 (x) 4

u1 (x , 0 ) f0, a contradiction.

Step 2. We show that

s
V

un (x , t) d(x) dxK1Q uniformly in t� [e/2 , T] .

Indeed, let us multiply (6.5)n by e l 1 t W 1 , where W 1 is the first eigenfunction of
2D in V with zero Dirichlet condition and l 1 its corresponding eigenvalue.
We then integrate in space and time, to obtain

e l 1 t s
V

un (Q , t) W 1 2s
V

u0 W 1 4s
t

0

s
V

an gn (un ) W 1 e l 1 t .
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Hence, if t� [e/2 , T],

s
V

un (x , t) d (x) dxFce 2l 1 T s
e/2

0

s
V

an gn (un ) dK1Q

by Step 1.

Step 3. We finally prove (6.6). For this purpose, we use a parabolic analogue
of Lemma 3.2 due to Martel (see Lemma 2 of [10]). It asserts that if WF0 in V
(say, W�L Q (V) ) then

T(t) QW(x)

d (x)
Fc (t) s

V

Wd , (x�V ,

for any tD0, where c(t) D0 is a constant depending on t, and where T(t) is
the heat semigroup at time t. We apply this estimate with t4e/2 , and
obtain

un (x , t)

d (x)
Fc (e/2 ) s

V

un (x , t2e/2 ) d(x) dxK1Q

uniformly in t� [e , T] by Step 2, since t2e/2 Fe/2 . r
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