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Numerical Methods for Phase Transition Problems.

CLAUDIO VERDI

Sunto. – Nel presente articolo si illustrano alcuni dei principali metodi numerici per
l’approssimazione di modelli matematici legati ai fenomeni di transizione di fase. Per
semplificare e contenere l’esposizione ci siamo limitati a discutere con un certo detta-
glio i metodi più recenti, presentandoli nel caso di problemi modello, quali il classico
problema di Stefan e l’evoluzione di superficie per curvatura media, solo accennando
alle applicazioni e modelli più generali.

1. – Introduction.

The classical model for phase transitions is the so-called Stefan problem,
where the heat equations in the liquid and solid phases are coupled with the Ste-
fan jump condition at the phase change interface. Tracking numerically the free
boundary and decoupling the corresponding heat equations presents various dif-
ficulties in several space dimensions, that can be avoided using the weak formula-
tion of the Stefan problem in terms of energy density. The interface disappears
as an explicit unknown and the ensuing fixed domain methods are very attractive
numerically. However the lack of regularity across the free boundary is responsi-
ble for global numerical pollution that degrades accuracy for fixed quasi-uniform
meshes and constant time-steps. The proper remedy is adaptivity, that is mesh
and time-step modification, which makes accurate computations feasible.

We consider first the simplest two-phase Stefan problem in enthalpy form

¯t u2Du4 f , u4b (u) , in Q4V3 (0 , T) ,(1.1)

where u and u are scaled temperature and enthalpy, and the constitutive relation
b(s) 4min (s , 0 )1max (s21, 0 ) corresponds to an ideal material with constant
thermal properties and unit latent heat. A number of physically justified general-
izations of the basic Stefan model describing undercooling and surface tension ef-
fects can be considered [83], [85]. They include diffuse interface models, like
phase relaxation and phase field systems, Gibbs-Thomson laws, and mean curva-
ture flows.

The finite element analysis of (1.1) with a quasi-uniform mesh of size h and
backward finite differences with constant time-step t was started by Jerome and
Rose [41] and is widely reviewed in [54], [80]. An essentially linear rate of conver-
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gence h1t in two space dimensions for both temperature and energy density in
the natural energy spaces was proven recently by Rulla and Walkington [76]. The
numerical schemes of [41], [76] provide the best scenario for error analysis, but
are difficult to implement and solve because they do not include quadrature. Nu-
merical integration has been extensively studied by Nochetto and Verdi [67], who
obtained an optimal rate of convergence h 1/2 under minimal regularity of data;
see also [29], [79]. Linearization and extrapolation methods were analyzed in [51],
[68] and [53].

Locally refined meshes for Stefan problems in two space dimensions were
first used by Nochetto, Paolini, and Verdi [55], [56]. See also [57]. The adaptive
strategy reflects the regularity of the underlying solutions and is based on
equidistributing pointwise a priori interpolation errors in space and balancing
with the truncation errors in time. This is accomplished by extracting information
about discrete derivatives as well as by predicting free boundary evolution. A
typical triangulation is coarse away from the discrete interface, where meshsize
and time-step satisfy a parabolic relation, whereas it is locally refined in the
vicinity of the discrete interface for the relation to become hyperbolic. The thick-
ness of the refined region is of order t 1/2 so as to contain the discrete interface for
about t21/2 time-steps. Mesh changes incorporate an interpolation error which
eventually accumulates in time. Its control imposes several constraints on admis-
sible meshes and allowable mesh modifications and leads to the mesh selection
algorithm. A new triangulation is completely regenerated upon failure of the
mesh admissibility tests; thus consecutive meshes are noncompatible. In turn, an
interpolation theory for noncompatible meshes is developed. The proposed adap-
tive scheme is stable and a rate of convergence of essentially t 1/2 is derived. The
main drawback of this methodology is the accurate computation of interface vel-
ocity, needed only for a priori mesh design, which is rather problematic for de-
generate situations and diffuse interfaces.

Recently Nochetto, Schmidt, and Verdi [63], [64], [65] have analyzed and im-
plemented a different approach to mesh and time-step modification, which is
based on a posteriori error estimates with computable bounds and refine-
ment/coarsening strategies. See also [19]. The adaptive method is stable and con-
vergent upon restricting coarsening. After a localization step in space and time
for the estimators to be practical, the adaptive algorithm of [63] equidistributes
space discretization errors for a uniform error distribution in time. This strategy
leads to optimal meshes, which possess fewer degrees of freedom than those of
[55], [56], and requires no estimate of interface velocity nor restrictions in the
number of mesh changes.

Mesh adaptation is extremely important also for diffuse interface models in
phase transitions. Prototype problems are the phase relaxation model of Visintin
[82]

¯t (u1x)2Du4 f , e t ¯t x1¯I[21, 1] (x) �u , in Q ,(1.2)
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and the phase field system of Caginalp [16] based on Landau-Ginzburg the-
ory [1]

¯t (u1x)2Du4 f , e t ¯t x2e l Dx1
1

e l

x (x 2 21) 4u , in Q .(1.3)

Here x is the phase variable, e t is a time relaxation, e l is a lenght scale, and
¯I[21, 1] is the subdifferential of the indicatrix function and acts as a double obsta-
cle. Term x(x 2 21) in (1.3) could be replaced by a potential with obstacle
¯I[21, 1] (x)2x . Then the phase variable x ranges between 21 and 1, is constant
in most of the domain, and varies abruptly within a narrow transition layer of
width of order e l . It is worth to mention the application of phase relaxation mod-
els to the process of polymer crystalization. Numerous variants of phase field sys-
tems, including anisotropic effects, has been considered; it is worth to mention in
particular the thermodinamically consistent Penrose-Fife model [38]. The finite
element analysis of (1.2) was started by Verdi and Visintin [81] and extended var-
iously to generalized phase relaxation models in [20], [42], [43], [44]. For the nu-
merical approximation of phase field systems we refer to [13], [46], but adaptivity
and rigorous a posteriori error analysis are still to be investigated.

Surface tension effects with kinetic undercooling can be described by the Ste-
fan model with the Gibbs-Thomson law at the phase transition interface

u42s k k1s V V on S .(1.4)

Here s k is the surface tension, k is the sum of the principal curvatures of S(t) (po-
sitive for a convex solid phase I(t) ) , s V is a dynamic coefficient, and V is the nor-
mal velocity of S(t) (positive for melting). An adaptive finite element method for
the Stefan-Gibbs-Thomson model has been implemented by Schmidt [77]. Re-
cently Visintin [83], [84] has modified this law by u42s k k1a(V), where a is
the cut-off function a(s) 4max(21, min (1 , s V s) ), to include phase nucleation
and annihilation.

The Gibbs-Thomson law (1.4) is a mean curvature flow for the interface
S(t)

V4k1g ,(1.5)

where g is a given kinetic term. Since (1.5) possesses an intrinsic geometric inter-
est, we present some results on its numerical approximation and refer to [62] for
an overview. The formulation of (1.5) in terms of the Laplace-Beltrami operator
[40] is the base for the parametric finite element method introduced by Dziuk
[26], [27], [28]. However the onset of singularities and topological changes re-
strict the applicability of the parametric method to the smooth regime and de-
mand a proper notion of weak solution.

The level set approach of Osher and Sethian [73] represents S(t) as the zero
level set of a continuous function w(Q , t), all whose level sets evolve formally in
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the inward normal direction n according to (1.5); thus w solves in the viscosity
sense

1

N˜wN
¯t w2divu ˜w

N˜wN
v2g40 in Rd 3 (0 , T) .(1.6)

The set S(t) 4 ]x�V : w(x , t) 40( defines uniquely the generalized evolution by
mean curvature [18], [35] and coincides with (1.5) as far as the classical flow
exists. An equivalent definition in terms of De Giorgi’s barriers is presented in
[9].

Based on De Giorgi’s G-convergence, the flow S(t) can be approximated by the
zero level set S e (t) 4 ]x�V : x e (x , t) 40( of the solution x e of the singularly
perturbed reaction-diffusion equation with double obstacle

e¯t x e2eDx e2
1

e
x e1¯I[21, 1] (x e ) �

p

4
g in Q .(1.7)

This equation is also suggested by Landau-Ginzburg theory of phase transitions
and has to be compared with the phase field equation in (1.3). The set S e (t) is
known to converge to S(t) as eK0 provided S(t) has empty interior [69] (see also
[6], [34]). The proof is based on constructing barriers for (1.7) in terms of the
signed distance function to suitable level sets of the solution w of (1.6).

Since the solution x e attains the values 21 and 1 outside a thin noncoinci-
dence set Te (t) of width of order e, problem (1.7) has to be solved only within Te .
This approach thus retains the geometric structure of the original problem (1.5)
while being insensitive to singularity formation. Conforming piecewise linear fi-
nite elements combined with mass lumping and forward differences are further
used to discretize (1.7) in space and time. Since the discrete problem exhibits both
the same local structure of (1.7) and finite speed of propagation, it can be effi-
ciently solved and implemented as a dynamic mesh method [61]. This algorithm
only triangulates the transition layer and then updates it, after having computed
the discrete solution at the current time-step, to advance the evolution. Such a
simple but crucial idea results in savings of computing time and memory alloca-
tion and shows the potentials to handle stiffs systems, as phase field and Stefan-
Gibbs-Thomson models. In addition enhanced singularity resolution can be ob-
tained via a space-time dependent relaxation parameter and locally refined
meshes [60]. Convergence and error estimates of discrete interfaces have been
proven by Nochetto and Verdi [71], [72].

The evolution law (1.5) does not depend on the orientation of the surface.
However in many physical situations formation of patterns are observed that
clearly imply the existence of preferred directions; typical examples are dendritic
growth and crystal growth. Bellettini and Paolini [10] have studied the anisotrop-
ic interface law V4fi (n)(k f1g). Here f is a strictly convex Finsler metric, fi

is the dual metric, and k f is the anisotropic curvature. The unit balls of f and fi
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are usually referred to as «Wulff shape» and «Frank diagram», respectively.
Crystalline curvature is then obtained as a by-product of lack of strict convexity.
The dynamic mesh algorithm can be implemented also in the anisotropic setting
[74]; we refer to [37] for simulations with nonconvex anisotropies.

2. – Continuous and discrete Stefan problems.

Let V%Rd (dF1) be a bounded convex polyhedral domain; set Q4V3 (0 , T)
for TD0. Let u0 denote the initial enthalpy, let u 0 4b(u0 ) �W 1, Q

0 (V) be the in-
itial temperature, and let f be sufficiently smooth. The vanishing Dirichlet bound-
ary condition on u is assumed only for simplicity; thus the free boundary S(t) 4

]x�V : u(x , t) 40( does not include ¯V. Hereafter aQ , Qb stands for either the in-
ner product in L 2 (V) or the duality pairing between H 21 (V), H 1

0 (V) and aaQ , Qbbl

denotes the L 2 inner product on a (d21)-dimensional manifold l.

CONTINUOUS PROBLEM. – Find u , u such that u�L Q (0 , T ; H 1
0 (V) )O

H 1 (0 , T ; L 2 (V) ) , u�W 1, Q (0 , T ; H 21 (V) ) , uNt40 4u0 ,

u(x , t) 4b(u(x , t) ) a.e. (x , t) �Q ,

and for a.e. t� (0 , T) and all h�H 1
0 (V) the following equation holds

a¯t u , hb1 a˜u , ˜hb 4 a f , hb .(2.1)

Existence and uniqueness for this problem are known [83].
We introduce the fully discrete problem, which combines continuous piece-

wise linear finite elements and mass lumping in space with backward differences
in time. For other time discretization, like linearization or extrapolation, see [54],
[80].

We denote by t n the time-step at the n-th step t n and let t N FT .
Let M n be a uniformly regular partition of V into simplices S [21] with mesh-

size density hn and let Bn be the collection of interior interelement boundaries e
of M n in V; hS (resp. he) stands for the diameter of S� M n (resp. e� B n ).

Let Vn %H 1
0 (V) be the usual space of continuous piecewise linear finite ele-

ments over M n. Let I n be the usual Lagrange interpolation operator over Vn .
The discrete inner product aQ , Qbn is defined by the vertex quadrature rule
[21]

aW 1 , W 2 bn 4s
V

I n (W 1 W 2 ) dx , (W 1 , W 2 �Vn ,

which leads to mass lumping. Set VWVn 4 (aW , Wbn )1/2 for all W�Vn.
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DISCRETE PROBLEM. – Given U n21 , U n21 �Vn21, then M n21 and t n21 are
modified to get M n and t n so as suitable local estimators are kept under toler-
ance, and thereafter U n , U n 4I n b(U n ) �Vn computed by

1

t n

aU n 2I n U n21 , Wbn 1 a˜U n , ˜Wb 4 aI n f (Q , t n ), Wbn , (W�Vn .(2.2)

Using mass lumping and enforcing the constitutive relation only at the nodes
introduces some consistency errors but amounts to having a monotone problem.
Thus (2.2) is easy to implement and solve via an optimized nonlinear SOR [56] or
monotone multigrid methods [47].

We now conclude with further notation. The jump Je
n of ˘U n across e� Bn

is

Je
n 4 e˜U n fe Qn e 4 (˜U n

NS1
2˜U n

NS2
) Qn e ,

which is well defined if the unit normal vector n e to e always points from S2 to S1 .
Let U be the piecewise constant extension of ]U n ( defined by U(Q , 0 ) 4U 0 (Q)
and U(Q , t) 4U n (Q) for all t n21 E tG t n with nF1. Let eu 4u2U, eu4u2b(U),
and E4Veu VL 2 (Q) 1Veu VL Q (0 , T ; H 21 (V) ) be the errors. The interior residual R n is

R n (Q) 4I n f (Q , t n )2
1

t n

(U n (Q)2I n U n21 (Q) ) .

2.1. Stability and convergence. Arbitrary mesh changes may lead to conver-
gence to a wrong solution or divergence even for the heat equation [25]. If mesh
M n is completely regenerated, as in [55], [56], then M n and M n21 are noncompat-
ible and the interpolation process used in (2.2) to transfer information between
consecutive meshes incorporates an error over all triangles of M n . Time accumu-
lation of this error imposes several restrictions to mesh modification in order to
preserve stability and convergence of the discrete scheme (2.2). In [55] the num-
ber of mesh changes was limited and triangles crossed by the free boundary were
kept fixed. On the other hand if M n is obtained from M n21 by refining/coarsen-
ing, and thus M n and M n21 are compatible, the only loss of information between
M n21 and M n is due to coarsening. In [64] it is shown that (2.2) remains stable
and convergent if coarsening is restricted, whereas refinement operations are al-
ways allowed. Precisely, for all 1 GnGN and an arbitrary constant A, the con-
straints read

VI n U n21
Vn

2 2VU n21
Vn21

2 Gt n21 V˜U n21
VL 2 (V)

2 ,(2.3)

VU n21 2I n U n21
VH 21 (V) Gt n21 AVhn21 ˜U n21

VL 2 (V) .(2.4)

The constraint (2.3) accounts for the increase in time of the L 2
x energy due to

mesh coarsening and is required for weak stability, whereas (2.4) is required for
convergence and limits coarsening in H 21

x . Since I n does not superconverge in
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H 21
x , (2.4) imposes a restriction on the number of mesh coarsenings reminiscent

of the mesh constraints in [55], [56]. Both constraints can be imposed locally on
each element S� M n and thus can be checked in practice.

Assuming that M n is acute (weakly acute in two space dimensions), then (2.3)
guarantees the weak stability of the discrete scheme (2.2) [64]

1

2
max

1 GnGN
VU n

Vn
2 1 !

n41

N

VU n 2I n U n21
Vn

2 1 !
n41

N

t n V˜U n
VL 2 (V)

2 GC .(2.5)

To prove (2.5) we take W4t n U n �Vn in (2.2) and add over n. Since

2 !
n41

N

aU n 2I n U n21 , U n bn 4VU N
V

2
N 2VU 0

V

2
0 1 !

n41

N

VU n 2I n U n21
V

2
n 1

!
n41

N

(VU n21
V

2
n21 2VI n U n21

V

2
n ) ,

the effect of mesh modification is apparent in the last term, which incorporates
the interpolation error and comes under control via (2.3).

If in addition (2.4) is imposed then, for C independent of T and Hn 4 max
x�V

hn ,
the following error estimate holds [64]

EGCT 1/2 max
1 GnGN

ut n 1Hn 1T 1/2 Hn
2

t n

v .(2.6)

The proof of (2.6) is based upon taking the difference between the time-discrete
form of (2.1) and (2.2) and selecting the test function h4G(u(Q , t n )2U n )4Geu

n,
where G is the Green operator. The usual choice for W�Vn is a discrete Green’s
operator G n, that produces the main effect a˜U n , ˜(Geu

n 2G n eu
n )b 40. Cancella-

tion of this term comes at the expense of dealing with the global character of G n.
A different choice for W, that complicates this term but leads to local estimates
and deals with minimal regularity of h, is the Clément interpolation operator P n.
It satisfies, for all h�H k (V) and k41, 2,

.
/
´

Vh2P n hVL 2 (S) 1hS V˜(h2P n h)VL 2 (S) GCAhS
k NhNH k (SA) ,

Vh2P n hVL 2 (e) GCAhe
k21/2 NhNH k (S

A
) ,

(2.7)

where SA is the union of all elements surrounding S� M n or e� B n [22]. Constants
CA depend solely on the minimum angle of the mesh M n. An important by-product
of uniform mesh regularity is that the number of adjacent simplices to a given el-
ement is bounded by a constant independent of n, meshsizes, and time-
steps.

From (2.6) we infer that if Hn 4o(t n
1/2 ), which allows for highly graded mesh-

es, the discrete scheme (2.2) with variable meshes and time-steps converges.
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Moreover if Hn 4O(t n ) then the following error estimate is valid

EGC max (T , T 1/2 ) max
1 GnGN

Hn .

This result extends the error analysis of [67], thereby incorporating mesh and
time-step changes, but does not take full advantage of the underlying structure
of the Stefan problem. Such a structure is hidden into (2.6) and is exploited
in [64].

2.2. A posteriori error estimates. We first represent the error E for any nu-
merical method in terms of parabolic residuals and next exploit Galerkin orthogo-
nality to express the finite element residuals in terms of computable quantities. A
detailed proof of the rigorous a posteriori error estimates can be found in
[63].

2.2.1. Er r o r r e p r e s e n t a t i o n f o r m u l a . The discrete solution U of (1.1)
satisfies

¯t U2Db(U) 4 f2 R in Q ,(2.8)

where the parabolic residual R is a distribution with singular components and os-
cillatory behavior; thus it should be measured in negative norms that quantify os-
cillations better. We subtract (2.8) from (1.1) and integrate by parts over Q
against a smooth test function z vanishing on ¯V3 (0 , T). The error eu

satisfies

aeu , zbNt4T 2s
0

T

aeu , ¯t z1bDzb 4 aeu , zbNt40 1 R (z) ,(2.9)

where 0 Gb(x , t) G1 is the vanishing discontinuous function

b(x , t) 4
b(u(x , t) )2b(U(x , t) )

u(x , t)2U(x , t)
if u(x , t) cU(x , t) , b(x , t) 41 otherwise ,

and the parabolic residual R (z) is the distribution

R (z) 4 aU , zbNt40 2 aU , zbNt4T 1s
Q

( fz1U¯t z1b(U) Dz) .(2.10)

We can represent the error E in terms of R(z) if z (Q , T) and ¯t z1bDz in (2.9)
comes from the backward parabolic problems with operator in nondivergence
form

¯t c1 (b1d) Dc42b 1/2 x in Q , c(Q , T) 40 in V ,(2.11)

¯t f1 (b1d) Df40 in Q , f(Q , T) 4r in V ,(2.12)
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where dD0 is a regularization parameter to be chosen later, c , f40 on ¯V3

(0 , T), and x�L 2 (Q), r�H 1
0 (V) [48]. Evaluation of R(z) depends on regularity

of z which, in turn, dictates the weights (powers of meshsize and time-step) of
the a posteriori error estimators of § 2.3. In contrast to the heat equation, prob-
lems (2.11) and (2.12) do not exhibit any regularizing effect and are not comput-
able in that b is discontinuous and depends on both u and U. It is easy to check
that [52], [63]

(2.13) 2 sup
0 G tGT

V˜c(Q , t)VL 2 (V)
2 ,

1

11d
V¯t cVL 2 (Q)

2 , 4ds
0

T

NcN2
H 2 (V) GVxVL 2 (Q)

2 ,

(2.14) sup
0 G tGT

V˜f(Q , t)VL 2 (V)
2 ,

2

11d
V¯t fVL 2 (Q)

2 , 2ds
0

T

NfN2
H 2 (V) GV˜rVL 2 (V)

2 .

We define the negative norms of the residuals R(c) and R(f) for k41, 2 ,

C 2k 4 sup
x�L 2 (Q)

NR(c)N

VD (k) cVL 2 (Q)

, F 2k 4 sup
r�H 1

0 (V)

NR(f)N

VD (k) fVL 2 (Q)

,

and set R21 4C 21 1F 21 , R22 4C 22 1 (1Ok2) F 22 , and a4111Ok2 . On
using that

c (Q , T) 40 , 2s
0

T

aeu , ¯t c1bDcb 4 aeu , b 1/2 xb1d aeu , Dcb ,

f(Q , T) 4r , 2s
0

T

aeu , ¯t f1bDfb 4d aeu , Dfb ,

and that eu b 1/2 4 (eu eu )1/2 FNeuN , Neu NG11Neu N , from (2.9) we get alterna-
tively

u12
a

k2
d 1/2v Veu VL 2 (Q) 1Veu (Q , T)VH 21 (V) GaVeu

0
VH 21 (V) 1R21 1

a

k2
NQN1/2 d 1/2 ,

(22ad 1/2 ) Veu VL 2 (Q) 1Veu (Q , T)VH 21 (V) Gk2 aVeu
0
VH 21 (V) 1R22 d21/2 1aNQN1/2 d 1/2 .

The first estimate uses only first space derivatives of c and f, whereas the sec-
ond one exploits the additional, but nonuniform in d, H 2 space regularity of c and
f. Either sending dK0 or optimizing d with d 0 4R22 /aNQN1/2, we obtain the two
representation formulae valid for any numerical method (Approaches I
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and II)

EGaVeu
0
VH 21 (V) 1R21 ,(2.15)

EGk2 aVeu
0
VH 21 (V) 12

.
/
´

(aNQN1/2 R22 )1/2

aR22

if a 2 d 0 G1 ,

if a 2 d 0 D1 .
(2.16)

We expect d 0 to be small, and thus Approach II to work best, because it involves
R (c) and R (f); however this cannot be guaranteed a priori.

2.2.2. A po s t e r i o r i e r r o r e s t i m a t e s. Integrating (2.10) by parts, R (z)
becomes

(2.17) R(z) 4 !
n41

N

s
t n21

t n

(aR n , zb2 a˜b(U n ), ˜zb )1

!
n41

N

aU n21 2I n U n21 , z (Q , t n21 )b1

!
n41

N

s
t n21

t n

1

t n

aU n 2I n U n21 , z2z (Q , t n21 )b1

!
n41

N

s
t n21

t n

a f2I n f (Q , t n ), zb .

We next use Galerkin orthogonality, that is we rewrite the discrete problem (2.2)
as

aR n , Wb2 a˜b(U n ), ˜Wb 4consistency terms (W�Vn ,(2.18)

where c.t. 4 (aR n , Wb2 aR n , Wbn )1 a˜(I n b(U n )2b(U n ) ) , ˜Wb. Note that c.t.
would be 0 without variational crimes (mass lumping and lumped constitutive re-
lation). Upon subtracting (2.18) from the right hand side of (2.17) we arrive
at

R(z) 4 !
n41

N

s
t n21

t n

(aR n , z2Wb2 a˜I n b (U n ), ˜(z2W)b )1

!
n41

N

aU n21 2I n U n21 , z (Q , t n21 )b1

!
n41

N

s
t n21

t n

1

t n

aU n 2I n U n21 , z2z(Q , t n21 )b1c.t. .
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We now estimate each term I to IV separately and argue with z4c solution of
(2.11). We decompose the integral a˜U n , ˜(c2W)b over all elements S� M n

2a˜I n b(U n ), ˜(c2W)b 4 !
e� B

n
%Je

n , c2W!e (W�Vn .

Selecting W (Q , t) 4P n c(Q , t) for t n21 E tG t n and using (2.7) and H 1
x regularity

of c, we get (Approach I)

NINGC1 !
n41

N

s
t n21

t n

g !
S� M

n
hS

2
VR n

VL 2 (S)
2 h1/2

V˜c(Q , t)VL 2 (V) ,

NIINGC2 !
n41

N

s
t n21

t n

g !
e� B

n
he VJe

n
VL 2 (e)

2 h1/2
V˜c (Q , t)VL 2 (V) .

Alternatively, on using H 2
x regularity of c, we can also write (Approach II)

NINGC1 !
n41

N

s
t n21

t n

g !
S� M

n
hS

4
VR n

VL 2 (S)
2 h1/2

Nc(Q , t)NH 2 (V) ,

NIINGC2 !
n41

N

s
t n21

t n

g !
e� B

n
he

3
VJe

n
VL 2 (e)

2 h1/2
Nc(Q , t)NH 2 (V) .

Term III is simply bounded via H 21 (V)2H 1
0 (V) duality and

NIVNGg !
n41

N

t n VU n 2I n U n21
VL 2 (V)

2 h1/2us
0

T

V¯t cVL 2 (V)
2 v1/2

.

Similar estimates are valid for z4f solution of (2.12). Neglecting the consistency
terms just for simplicity and using the a priori extimates (2.13) and (2.14), we get
the following bounds for the residuals R(c) and R(f)

NR (c)N

VxVL 2 (Q)

G
1

k2
E 3 1 (11d)1/2 E 4 1

.
/
´

(E 1
I 1 E 2

I )Ok2 ,

d21/2 (E 1
II 1 E 2

II )O2 ,

NR (f)N

V˜rVL 2 (V)

G E 3 1
1

k2
(11d)1/2 E 4 1

.
/
´

E 1
I 1 E 2

I ,

d21/2 (E 1
II 1 E 2

II )Ok2 ,
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where the error indicators for Approach I are given by

E 1
I 4C1 !

n41

N

t ng !
S� M

n
hS

2
VR n

VL 2 (S)
2 h1/2

interior residual ,

E 2
I 4C2 !

n41

N

t ng !
e� B

n
he VJe

n
VL 2 (e)

2 h1/2
jump residual ,

E 3 4 !
n41

N

VU n21 2I n U n21
VH 21 (V) coarsening ,

E 4 4g !
n41

N

t n VU n 2I n U n21
VL 2 (V)

2 h1/2

time residual ,

and for Approach II by

E 1
II 4C1u !

n41

N

t n !
S� M

n
hS

4
VR n

VL 2 (S)
2 v1/2

interior residual ,

E 2
II 4C2u !

n41

N

t n !
e� B

n
he

3
VJe

n
VL 2 (e)

2 v1/2

jump residual .

Setting E 0 4Vu0 2U 0
VH 21 (V) (initial error), we can argue as in deriving (2.15) and

(2.16) and conclude with the a posteriori error estimates for Approaches I
and II

Veu VL 2 (Q) 1Veu VL Q (0 , T ; H 21 (V) )G Ek (u0 , f , T , V ; U , h , t) ,(2.19)

where

E I 4a(E 0 1 E 1
I 1 E 2

I 1 E 3 1 E4 ) ,

EII 4k2 a(E 0 1 E 3 )13aE 4 12a
.
/
´

NQN1/4 (E 1
II 1 E 2

II )1/2

a(E 1
II 1 E 2

II )

if a 2 (E 1
II 1 E 2

II ) GNQN1/2 ,

if a 2 (E 1
II 1 E 2

II ) DNQN1/2 .

The indicators E k can be evaluated explicitly in terms of the computed solution
U, initial datum u0, and source term f. They are essential and are also present for
the heat equation, but with different weights and cumulative effect in time [33],
thereby reflecting the degenerate nature of (1.1). The indicators associated to the
consistency terms are not essential and could in principle be removed at the ex-
pense of complicating the implementation of (2.2).

It is not obvious that E k K0 and so EK0 as h , tK0, because E k in (2.19) de-
pends on discrete quantities that change with h and t. On the other hand, the sta-
bility and error analysis of § 2.1 demonstrate that this goal is achievable. Conver-
gence of the adaptive algorithm remains a challenging open problem.
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2.3. Adaptive algorithm and simulation. Since the error estimators E k in
(2.19) entail an L 1 or L 2 accumulation in time, they are impractical in that the en-
tire evolution history would be needed to control the error. In [63], [65] we over-
come this hurdle upon equidistributing the errors in time in the L Q norm and op-
timizing the error distribution in space at each time-step. Let E0 (S) denote the
initial error and Eh

n (S) the spatial error at the element S� M n and let Et
n denote

the time residual. Let M n 4card Mn. Given an error tolerance e, refinement G
and coarsening g parameters satisfying G 0 1G t1G h G1, g tEG t , g h EG h , for
Approach I the adaptive algorithm selects time-steps and mesh densities as fol-
lows. Starting with t n 4t n21 , the algorithm checks whether Et

n DG t e or Et
n E

g t e . In the first case t n is reduced, whereas in the second one (corresponding to
t n being too small) t n is accepted but the initial guess for the next time-step size
is enlarged. Next, starting from M n 4 M n21, for any S� M n the algorithm
checks whether M n Eh

n (S) DG h
2 e 2 or M n Eh

n (S) Eg h
2 e 2. Then refinement and

coarsening operations are performed accordingly, with the precaution of choos-
ing g h bG h properly to prevent from alternating such operations over the same
elements. The initial mesh is created from a coarse mesh M0 upon bisecting all
S� M0 such that M 0 E0 (S) DG 0

2 e 2 . Elements are either refined or coarsened via
«bisection» [15].

EXAMPLE. – We conclude this section with an intriguing example with persis-
tent corner singularity for a one-phase Stefan problem in two space dimensions,
for which the use of adaptive local refinements has been essential. The key ques-
tion, posed by Athanasopoulos, Caffarelli, and Salsa [5], is whether or not pO2 is
the critical angle beyond which the interface immediately regularizes. The simu-
lations in [66] seem to indicate that the critical angle is actually larger than
pO2.

Let V4 (20.1 , 0.1 )2, T40.1, and g(t) 42.1210 t . The function

u 1 (r , v , t) 4r g(t) cos (vg(t) ) if g(t) NvNE
p

2
, u 140 otherwise ,

in polar coordinates (r , v), is a supersolution provided 2g 3 (t) rg(t)221pg 8(t) G0.
This can only be enforced for g(t) D2 in a shrinking domain as g(t) I2, and pro-
vides some support to the above conjecture that the opening pO2, and thus v 0 4

pO4, could be critical. Function u 1 is only used to set up initial and boundary con-
ditions for the simulations, with an angle shift v20.2 to avoid grid orientation
effects.

Figure 2.1 displays the interfaces and zooms with scaling factors 1, 4, 16, 64
for a quite accurate run with e41. The solution shows a corner at the origin
which persists for some time, while the angle widens. The corner seems to regu-
larize when the angle is already larger than pO2. Figure 2.2 contains a represen-
tative locally refined mesh and zoom with scaling factor 16. It is clear that the in-
terface is correctly captured by the algorithm even though the solution is very
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Fig. 2.1 – Zoom of interfaces with scaling factors 1, 4, 16, 64 for tolerance e41, at times
t40.01 k, 0 GkG10 (top) resp. 3 GkG10 (bottom).

degenerate near the origin. We stress that the minimum value of the meshsize is
1.231025 , which would require 108 triangles in V for a fixed quasi-uniform mesh
to capture the singularity: adaptivity and local mesh refinement are thus
essential.

The stationary corner singularity above is a hyperbolic effect and reveals that
the Stefan problem possesses a hyperbolic behavior near the interface. This is a
structural property already used in [55], [56] for a priori design of locally refined
meshes and a consequence of the a posteriori mesh design of [65], [66].

2.4. Stefan problem with surface tension. Let the free boundary S(t) be
parametrized by local charts F i (t): Si KRd , i�I , with parameter domains
Si %Rd21 independent of t and let D denote the Laplace-Beltrami operator on
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Fig. 2.2 – Mesh and zoom with scaling factor 16 for tolerance e44, at time t40. 06
(number of triangles M415, 273).

S(t). Upon integrating the heat equations by parts over V against a test
function h�H 1

0 (V) and using Stefan and Gibbs-Thomson laws, the solu-
tion u , S of the Stefan problem with surface tension and kinetic unsercooling sat-
isfies [17], [77]

(2.20) a¯t u , hb1a˜u , ˜hb1%
1

s V

u , h!S(t)1%
s k

s V

k , h!S(t)40 (h�H 1
0 (V) ,

(2.21)
s V

s k

¯t F i 2DF i 4u 1

s k

unv i F i in S i 3 (0 , T) , i�I .

An adaptive finite element algorithm for (2.20), (2.21) based on Dziuk’s paramet-
ric finite element method for mean curvature flow [26] and a heat equation solver
has been implemented by Schmidt [77]. The nonlinear system (2.20), (2.21) is con-
verted into a sequence of decoupled linear equations via a semi-implicit time dis-
cretization. Using a global parametrization F n �H 1 (S n21 )d of the next manifold
S n over the previous one S n21, namely S n 4F n (S n21 ) with F n independent of
the choice of local charts, the semidiscrete problem with s V 4s k41 reads

(2.22)
1

t n

%F n2idSn21 , j!Sn211%˜n21 F n , ˜n21 j!Sn214%u n21 n n21 , j!Sn21 ,

(2.23)
1

t n

au n 2u n21 , hb1 a˜u n , ˜hb1 %u n , h!Sn 42 %k n , h!Sn ,

for all j�H 1 (S n21 )d and h�H 1
0 (V). Here ˜n21 denotes the covariant (tangen-

tial) derivative on S n21. Given u n21 , S n21, first (2.22) moves the interface S n21
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to the new position S n using u n21 and the Laplace-Beltrami operator on S n21

and next (2.23) computes the new temperature field u n using S n and its curvature
k n. Equations (2.22) and (2.23) are actually discretized by finite elements. To deal
with (2.22), a discretization S n21

h of the manifold S n21 by a conforming triangular
mesh is generated by adapting the previous mesh; the displacement of the grid
nodes on the discrete surface obeys to a suitable mesh quality criterium, e.g., it
minimizes the difference between the angles around any vertex via a conformal
energy. A discretization S 0

h of S 0 is based on triangulations of the parameter do-
mains Si , i�I . The key point for the discretization of (2.23) is the computation of
the mean curvature k n

h of the piecewise polynomial interface S n
h .

To this end a finite element approximation of the identity %k n n n , j!Sn 4

2 %˜n idSn , ˜n j!Sn is used again to define a vector-valued discrete curvature; then
the discrete mean curvature k n

h is defined as the piecewise linear interpolant
against the approximate normals n n

h to S n
h. The temperature meshes and the sur-

face meshes are both adaptively generated using the corresponding a posteriori
estimates but they are not in direct relation. The implementation of the adaptive
algorithm in three space dimensions, including anisotropy in the surface tension
law, is fully discussed in [77] together with several simulations of dendritic
growth.

The Gibbs-Thomson law (1.4) does not account for nucleation or annihilation.
Such effects are included in the modified law introduced by Visintin [83], [84]
which, with scaled coefficients and cut-off function a(s) 4max (21, min (1 , s) )
reads

g42k1a(V) .(2.24)

Existence of a weak solution of (2.24) in terms of the characteristic function of
the evolving set is proven via implicit time discretization; see also [2], [50]. A
backward difference approximation of (2.24) with time-step t is the problem of
finding a displaced surface S n 4¯I n having mean curvature k n 42g n 1

a(2d n21 Ot) . Here d n21 stands for the distance from the old surface S n21 4

¯I n21 that is negative in I n21. This is equivalent to a prescribed curvature prob-
lem which translates into the variational problem I n 4argmin An (E) of minimiz-
ing the surface energy

An (E) 4 P (E)1s
E

(g n (x)2a(2d n21 (x)Ot)) dx

over the sets E of finite perimeter P (E). The implementation of an adaptive finite
element algorithm for (2.24) can be found in [36]. The minimization step is based
on a convex minimization algorithm [12]. The numerical approximation of the cor-
responding modified Stefan model is an interesting applicative problem.
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The Stefan problem with surface tension in local thermal equilibrium, that is
s V 40, has been investigated by Luckhaus [49] via a fully implicit time discretiza-
tion for otherwise instabilities occur. At any time-step the front is moved via min-
imization of a surface energy involving the new temperature field that, in turn,
depends on the latent heat released during phase transition. Numerical simula-
tions via finite differences and a front-tracking algorithm inspired to [11] are
given in [3].

3. – Diffuse interfaces and mean curvature flow.

The purely geometric evolution (1.5) exhibits singularities, topological
changes such as breaking and merging, extinction, and even nonuniqueness [4],
[7]. This restrict the applicability of front-tracking [45] and parametric methods
[26] to the smooth regime. Since (1.5) may be viewed as a scaled version of front
propagation in phase transitions, where additional energy conservation laws give
rise to g, the continuation of the flow past singularities and the design of conver-
gent fully discrete methods insensitive to singularity formation are relevant sci-
entific issues.

3.1. Level set formulation. The evolution (1.5) can be defined in a generalized
sense, even past singularities, via level set approach [18], [35], [39], [73]. Given a
smooth manifold S 0 4¯I0 %Rd , let d0 denote the signed distance function to S 0

that is negative in I0 . Let w be the (continuous) viscosity solution of (1.6) with
w(Q , 0 )4d0 (Q) [23]. Since S(t)4]x�Rd : w(x , t)40( is defined uniquely provided
]x�Rd : w(x , 0 ) 40( 4S 0 and coincides with the classical flow for as long as the
latter is smooth, S(t) defines the generalized evolution (1.5). Let I(t) 4 ]x�V :
w(x , t) E0( and O(t) 4 ]x�V : w(x , t) D0( be the inside and outside of S(t).
Let V be a convex bounded polyhedron on Rd that contains S(t) for all tGT . The
signed distance function d(x , t) 4dist (x , I(t) )2dist (x , O(t) ) satisfies in the vis-
cosity sense [6], [34]

¯t d(x , t)2Dd(x , t)2g(x2d(x , t) ˜d(x , t), t)F0 in ]dD0( .(3.1)

We say that x�S(t) is a regular point if w is C 1 in a neighborhood of (x , t) and
˜w(x , t) c0; this may occur even past singularities [4]. In any event the level set
formulation provides a stable representation of the geometric flow (1.5), in the
sense that there exists a Lipschitz constant L such that VwVW 1, 1

Q (Q) GL . This, in
turn, yields a Lipschitz dependence of w under perturbation of data [72]. If w 1

denotes the solution of (1.6) with w 1 (Q , 0 ) 4d0 (Q)1pa and g1a , then wGw 1G

w1Ga. An immediate consequence is convergence of the perturbed fronts
S1 (t) 4 ]x�Rd : w 1 (x , t) 40( to S(t) as aK0, even past singularities, along
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with a linear rate of convergence in a vicinity of regular points x�S(t)

dist (x , S1 (t) )GC
V˜w(Q , 0 )VL Q (V)

N˜w(x , t)N
a .

In fact, since w(x1dn , t) G2(1O2) dN˜w(x , t)N for d small and n42

˜w(x , t)ON˜w(x , t)N , then w 1 (x1dn , t) G2(1O2) dN˜w(x , t)N1Ga40 pro-
vided dN˜w(x , t)N42Ga. Since also w 1 (x , t) Fw(x , t) 40 and w 1 is continu-
ous, we realize that w 1 (Q , t) has a zero on the straight segment joining x1dn
and x. This result sheds some light on stability properties of the flow (1.5) that
make it computable. The idea goes back to [14], and expresses the geometric fact
that nondegeneracy together with maximum norm error estimates for solutions
lead to interface error control.

A number of applications of the level set approach and corresponding numeri-
cal simulations are reviewed in [78].

3.2. Allen-Cahn approach. A formulation of (1.5) that is insensitive to singu-
larity formation and very appealing from a numerical viewpoint consists of diffus-
ing the interface S(t) via a singularly perturbed reaction-diffusion equation [1].
Let C(s) 412s 2 1 I[21, 1] (s) be a double well potential with obstacles and c0 4

s
21

1

kC(s) ds4pO2; another typical example is the quartic C(s) 4 (s 2 21)2 . It is

known, via De Giorgi’s G-convergence [24], that the sequence ]Fe(e

Fe (W) 4s
Rd

ueN˜WN2 1
1

e
C (W)2c0 gWv dx (W�H 1 (Rd ) ,

G-converges to c0 F , with F a surface energy functional whose minimizers are
characteristic functions x V0I corresponding to surfaces ¯I of mean curvature
k42g. Since (1.5) is the gradient flow of F, say the fastest way to decrease sur-
face energy, and (1.7) is the gradient flow in L 2 of Fe , we can infer that the singu-
lar perturbed reaction-diffusion equation (1.7) represents an approximation of
the flow (1.5).

3.3. Convergence analysis. Let x e be the solution of (1.7) with initial datum
sign d0 . The zero level set S e (t) of x e (Q , t) is known to converge to S(t) as eK0
provided S(t) has empty interior. We present here a formal proof for g40 and
refer to [69] for a rigorous proof in the general case. See also [6], [34] for the
quartic potential and [8], [58], [59] for optimal interface error estimates for
smooth flows.

Let g�C 1, 1 (R) be the absolute minimizer of the scaled functional F1 in one
space dimension such that g(0) 40. Thus g(s) 4sin s for s� (2pO2, pO2) and
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NgN41 otherwise. The following function is a viscosity supersolution of (1.7)

ve
1 (x , t) 4g(i(x , t) ) , i(x , t) 4

d(x , t)

e
2

p

2
, ((x , t) �Q .(3.2)

Since ve
1F21 and g 9 (i(x , t) ) is a bounded function, we only have to show

that

Jve
14e¯t ve

12eDve
12

1

e
ve

142
1

e
(g 91g)1g 8(¯t d2Dd) F0 ,

for 21 Gve
1 (x , t) E1, that is i(x , t) EpO2. If iE2pO2 then g421 and Jve

14

1OeD0. If 2pO2 E iEpO2 then g 91g40, g 8D0, and dD0, whence (3.1) yields
Jve

1D0.
Now let ve

1 be the supersolution defined in (3.2) but in terms of the signed dis-
tance function d 1 to S1 (t), where S1 (t) is the perturbed flow defined in § 3.1
with aFe . Since ve

1 (Q , 0 ) 4g(d 1 (Q , 0 )Oe2pO2)4g(d0 (Q)Oe1pO2)Fx e (Q , 0 ) in
V and ve

14x e41 on ¯V3 (0 , T), then x eGve
1 in Q and the following conver-

gence results of S e (t) to S(t) as eK0, even past singularities, can be easily
proven.

For x�I(t) then x e (x , t) 421 for e small. In fact, if w(x , t) E0 then
w 1 (x , t) G0 and thus d 1 (x , t) G0 for a small. On using that i1 (x , t) 4

d 1 (x , t)Oe2pO2 G2pO2, we deduce 21 Gx e (x , t) Gve
1 (x , t) 421 for e small.

If S(t) has empty interior, then this result establishes convergence past singular-
ities of S e (t) to S(t) as eK0. Without additional assumptions on S(t) we cannot
expect a rate of convergence.

Let x�S(t) be a regular point. Let thick (Te (t); x , n) denote the thickness of
the transition layer Te (t) 4 ]x�V : Nx e (x , t)NE1( in the direction n at x. For e
small

dist (x , S e (t) ) , thick (Te (t); x , n)GC
V˜w(Q , 0 )VL Q (V)

N˜w(x , t)N
e .

Let a4e so that w 1 (x1dn , t) G0 for dN˜w(x , t)N42Ge. Then i1 (x1dn , t) G

2pO2, which yields 21 Gx e (x1dn , t) Gve
1 (x1dn , t) 421. Similarly x e (x2

dn , t) 41. Then there exists a point on the straight segment connecting
x1dn and x2dn where x e (Q , t) vanishes; hence dist (x , S e (t) )Gd and
thick (Te (t); x , n) G2d .

We can simply say that S e (t) lies between the surfaces S1 (t) and S2 (t). Reg-
ularity of S(t) at x is clearly reflected via N˜w(x , t)N21 , which illustrates how the
interface error estimate deteriorates as x moves toward a singularity. It is then
the profile of w near a singularity that determines the rate of convergence.

Similar convergence results for the anisotropic Allen-Cahn equation to the
anisotropic motion by mean curvature have been proven in [30], [31], [32].
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3.4. Dynamic mesh algorithm. In contrast to the reaction-diffusion equation
with a cubic nonlinearity, the solution x e (Q , t) of (1.7) varies between the obstacles
21 and 1 within the transition layer Te (t) and attains the values 21 and 1 else-
where, irrespective of g. Upon discretizing (1.7) by conforming piecewise linear fi-
nite elements combined with mass lumping and forward differences, the discrete
problem exhibits both the same local structure of (1.7) and finite speed of
propagation.

Let t be the time-step and let M h be a regular partition of V into simplices
with meshsize h and internal nodes ]xi (i41

I . Let Vh be the space of continuous
piecewise linear finite elements over M h and Kh 4 ]W�Vh : NWNG1 in V , W41
on ¯V(. Let aQ , Qbh be the usual discrete inner product and let K and M denote the
stiffness and lumped mass matrices. The discrete approximation of (1.7) reads as
follows.

DISCRETE PROBLEM. – Set X 0 4Ih g(d0 Oe). For 1 GnGN seek X n �Kh such
that

(3.3)
e

t
aX n 2X n21 , W2X n bh 1e a˜X n21 , ˜(W2X n )b2

1

e
aX n21 , W2X n bh F

p

4
ag(Q , t n ), W2X n bh (W�Kh .

If we identify any function W�Kh with the vector ]W i 4W(xi )( of its nodal
values, the discrete problem (3.3) equivalently reads

.
/
´

XAn
i 4u11

t

e 2
v X n21

i 2 (M21 KX n21 )i 1
t

e

p

4
g(xi , t n ) ,

X n
i 4max (21, min(1 , XAn

i ) ) , (1 G iGI .

(3.4)

The actual computation of X n is thus a trivial two-step algebraic process that re-
duces to a matrix-vector product followed by a componentwise truncation to meet
the obstacle constraint. Consequently there is no iteration involved.

The discrete solution exhibits a finite speed of propagation, in the sense that if
xi is a node of M h such that X n21

j 41 for all adjacent nodes xj to xi , including xi ,
then X n

i 4X n21
i 41. Hence the discrete transition layer (or noncoincidence set)

T n21
h cannot enlarge faster than one triangle per time-step and X n does not have

to be computed at vertices lying outside T n21
h . Thus the dynamic implementation

of (3.4) only triangulates the transition layer and then updates it, after having
solved the discrete problem, to advance the algorithm in time [61]. This dynamic
mesh algortihm exhibits the complexity typical of Rd21 without having the draw-
backs of front-tracking strategies. In addition, enhanced singularity resolution
can be obtained via a space-time dependent relaxation parameter e(x , t) 4
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a(x , t)e [75]

e¯t (ax e )2e˜ Q (a ˜x e )2
1

ae
x e1¯I[21, 1] (x e ) �

p

4
in Q .

Local transition layer thickness is now expressed in terms of the effective relax-
ation parameter a(x , t)e, which is graded towards singularities. The underlying
finite element mesh is locally refined according to the mesh density function
ha(x , t). Enhanced local accuracy in terms of a(x , t)e has been confirmed both
numerically and theoretically by rigorous convergence results and error esti-
mates [60], [61], [70].

Discretization and dynamic implementation of the anisotropic reaction-diffu-
sion equation are similar to the isotropic case [74].

3.5. Convergence analysis for discrete interfaces. Let Ue , h , t , S e , h , t , and
Te , h , t indicate the discrete solution and its zero level set and transition
region

S e , h , t (t) 4 ]x�V : Ue , h , t (x , t) 40( , Te , h , t (t) 4 ]x�V : NUe , h , t (x , t)NE1( .

Convergence and error estimates of both S e , h , t (t) and Te , h , t (t) to S(t) past sin-
gularities provided S(t) does not develop interior have been proven by Nochetto
and Verdi [71] under various relations among e , h, and t. We now discuss briefly
the main steps of the discrete convergence analysis, which is based on the con-
struction of discrete barriers. The finite element mesh Mh over V%R 2 is sup-
posed to be quasi-uniform and weakly acute. Under the usual stability condition
tGC * h 2 for explicit time-stepping, the explicit scheme (3.3) satisfies the dis-
crete maximum principle, the key tool for convergence analysis.

Let x e
1 be the solution of (1.7) with g1a, eGa4o(1). Arguing as in § 3.3 and

using the perturbed distance d 1, we construct a supersolution ve
1 of (1.7),

whence

x eGx e
1Gve

1 in Q .(3.5)
Let Hh , t (x e

1 ) denote the approximation of x e
1 obtained via the discrete heat oper-

ator with continuous piecewise linear finite elements and mass lumping in space
and forward differences in time. If t , h satisfy the stability constraint
tGC * h 2 , the quasi-optimal, up to factors Nlog hN and Nlog eN, L Q error estimate
holds [71]

Vx e
12Hh , t (x e

1 )VL Q (Q) GChVx e
1

VC 0, 1 ; 0 , 1 /2 (Q) GC
h

e
.(3.6)

The discrete solution Ue , h , t has a prescribed quadratic growth away from S e , h , t

(discrete nondegeneracy), which for all (x , t) � ]21 EUe , h , tE21O2( means

max
Ny2xNGr , 0 G t2sGr 2

Ue , h , t (y , s) FUe , h , t (x , t)1C
r 2

e 2
D211C

r 2

e 2
.(3.7)
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We combine (3.5) to (3.7) as follows. We first project x e
1 and next lift Hh , t (x e

1 )
by the small amount Che21 FVx e

12Hh , t (x e
1 )VL Q (Q) for the resulting function

V 1
e , h , t to be a candidate for discrete supersolution. However we must compensate

for the antimonotone nature of the potential 2(1Oe) x e in (1.7), which gives rise
to an error of order he22 , and perturb g by the amount a4Che22. We take
a4o(1) and conclude that the parabolic relations t , h 2 4o(e 4 ) imply that V 1

e , h , t

is a discrete supersolution, and thus V 1
e , h , tFUe , h , t . Exploiting the continuous

dependence of w with respect to g, this is next used to infer convergence of level
sets. In fact, if x�I(t) then w 1 (x , t) E0 for a small, and thus ve

1421 in a vicin-
ity of (x , t) results from the explicit construction (3.5). This, in turn, yields

Ue , h , tGV 1
e , h , tGx e

11C
h

e
Gve

11C
h

e
4211C

h

e
E2

1

2
,(3.8)

for all Ny2xNGr , 0 G t2sGr 2 . We finally conclude Ue , h , t (x , t) 421 for oth-
erwise (3.7) and (3.8) would lead to a contradiction for r 2 FChe, C large. We
would like to point out the importance of dealing with maximum norm estimates
for solutions which lead, via nondegeneracy, to convergence of interfaces, the
only objects of interest for the geometric problem (1.5). This is a substantially
more subtle issue than convergence of solutions [14].

Interface error estimates for regular points x�S(t) can be derived using the
Lipschitz properties of viscosity solutions of (1.6). For a4Ce and dN˜w(x , t)N4

Ce we get w 1 (x1dn , t) G2e . The Lipschitz regularity of w 1 yields w 1E0,
and also ve

1421 by (3.5), in an e-vicinity of (x1dn , t). Upon arguing as above
but with a4Ce, we infer that Ue , h , t (x1dn , t) 421 and

dist (x , S e , h , t (t) ) , thick (Te , h , t (t); x , n)GC
1

N˜w(x , t)N
e ,

under the more severe (parabolic) constraints t , h 2 4O(e 6 ). These ideas are also
used to explore how discrete solutions behave near certain singularities, where
discrete transition layer thickness becomes of order e 1/2. This quantifies a smear-
ing effect observed in computations [61].

For smooth flows an optimal e 2 interface rate of convergence is valid provided
t , h 2 4O(e 5 ) and exact integration is used for the linear but rather singular anti-
monotone term 2(1Oe) x e [71].

Convergence of discrete interfaces for the anisotropic curvature flow is a
challenging open problem.
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