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Bollettino U. M. I.
(8) 1-B (1998), 71-81

Stefan Problems with a Concentrated Capacity.

ENRICO MAGENES

Sunto. – Vengono brevemente studiati i problemi di Stefan su «capacità concentrate»,
seguendo l’approccio recentemente introdotto di G. Savaré e A. Visintin.

1. – Introduction. The basic transmission problem.

Following A. N. Tichonov [21], a partial differential equation problem mode-
ling a physical phenomenon is a problem with a «concentrated capacity», if the
order of the boundary conditions is higher or equal to the order of the partial dif-
ferential equation.

In this paper we address a class of problems for the heat conduction in a n-di-
mensional body V 1, during the time interval [0 , T]. Given a subset G of ¯V 1 (G is
the «concentrated capacity»), the classical second order parabolic heat equation
in V 1 3]0 , T[ is coupled with an initial condition at t40 and boundary conditions
on ¯V 1 3]0 , T[, that are reduced to another second order parabolic equation on
G3]0 , T[.

In fact this is a «limit problem» for the mathematical model of the heat con-
duction in two disjoint bodies V 1 and V 2 , whose boundaries share the concentra-
ted capacity G, where the usual «transmission conditions» for the temperature
and for the thermal flux are satisfied. Changes of phases in one or both the bodies
V 1 and V 2 , modeled by the two-phase Stefan problem, have been studied first by
L. Rubinstein [16, 17] and by many Authors [1, 5, 8-13, 18-20].

In order to simplify the present exposition, here we will first consider the case
where the concentrated capacity G coincides with ¯V 1 . Let V 1 be a bounded
and regular (say C 2) open set of Rn, nF2; let G denote the boundary of V 1 and
let n(x) be the outward unit normal to G at the point x�G. Let V 2 be another
bounded regular open set of Rn, sorrounding V 1, such that ¯V 2 4GNG 2 and
GOG 2 4¯; let n 2 be the outward unit normal to G 2 .

For a fixed time interval ]0 , T[, we introduce the sets

Qi »4V i 3]0 , T[ , i41, 2 ; S »4G3]0 , T[ , S 2 »4G 2 3]0 , T[ .

For i41, 2 let r i be a strictly positive continuous function defined on Vi (which
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stands for the heat capacity per unit volume of the two bodies) and let Ki be a
n3n symmetric matrix (which stands for the thermal conductivity), whose ele-
ments belong to C 0 (Vi ) and which satisfies the uniform ellipticity condition

)m , MD0: mNtN2 GKi (x) t QtGMNtN2 , (t�Rn , (x� Vi .(1)

Let ui denote the enthalpy (or energy density) and u i the temperature in V i ,
i41, 2. They are related by the constitutive equations

u i 4b i (ui ), or equivalently ui �a i (u i ) ,(2)

where b i : RKR is a monotone function satisfying the conditions

.
/
´

(b i (j)2b i (h) )(j2h) Fc1 Nb i (j)2b i (h)N2 ,

b i (0) 40, b i (j) Fc2 j2c3 ,

c1 , c2 , c3 positive numbers ,

(j , h�R ,

(j�R ,(3)

and a i is the maximal monotone graph inverse of b i . Finally we denote by u0, i the
initial enthalpies and by fi the source terms.

According to the usual weak formulation of the two phase Stefan problems
(see [23], section I.4), we shall consider the following transmission problem:

PROBLEM (T.P.). – Find ui and u i, i41, 2, which satisifes the state equation
(2), the differential equations

r i
¯ui

¯t
2div (Ki ˜u i ) 4 fi , in Qi , i41, 2 ,(4)

the transmission conditions on S

u 1 4u 2 , ˜u 1 QK1 n4˜u 2 QK2 n , on S ,(5)

the initial conditions

ui (Q , 0 ) 4ui , 0 , in V i ,(6)

and a lateral boundary condition on S 2 , say, in order to fix the ideas, the homo-
geneous Neumann condition

˜u 2 QK2 n 2 40 , on S 2 .(7)

Problem (T.P.) is written here in a formal way, but it could be made precise
considering the equations (4) in the sense of distributions on Qi and the other
conditions in the sense of «trace theorems» in suitable Sobolev spaces.

The most convenient weak formulation of problem (T.P.) is suggested
by the general theory of monotone operators in Hilbert spaces as developed
by H. Brezis in [2, 3] (different formulations can be given by other types
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of techniques, as for the usual Stefan problem: see Section I.4 of [23] and
the book [22], ch. II and IV).

DEFINITION 1.1. – Under the assumptions

fi �L 2 (Qi ) , u0, i �L 2 (V i ) , i41, 2 ,(8)

we say that ](ui , u i )(i41, 2 is a weak solution of problem (T.P.) if

ui �L 2 (Qi ), u i �L 2 (0 , T ; H 1 (V i ) ) , with u i 4b i (ui ) a.e. in Qi ,(9)

u 1 4u 2 on S ,(10)

and

!
i41

2

s
Qi

{2r i ui
¯vi

¯t
1Ki ˜u i Q˜vi} dx dt4 !

i41

2 { s
V i

r i ui , 0 vi (x , 0 ) dx1s
Qi

fi vi dx dt} ,

for every couple of test functions vi �H 1 (0 , T ; H 1 (V i ) ), i41, 2, with

v1 4v2 on S , v1 (Q , T) 4v2 (Q , T) 40 .(12)

Here the conditions (10) and (12) are in the sense of the trace theorems respect-
ively in the spaces L 2 (0 , T ; H 1 (V i ) ) and H 1 (0 , T ; H 1 (V i ) ).

Then it is possible to prove the

THEOREM 1.1. – There exists a unique weak solution of problem (T.P.); in
addition

ui : ]0 , T[KL 2 (V i ) is uniformly bounded and weakly continuous .(13)

2. – «Blow up» of the normal conductivity.

As we said before, Stefan problems with «concentrated capacity» appear as
«limit problems» of the transmission problem (T.P.). Here, following G. Savaré -
A. Visintin [19], we will consider two important situations. In order to simplify
the exposition, let us introduce further assumptions and notations.

For every x�Rn, let dG (x) be the distance of x from G; we shall assume
that

dG (x) is a function of class C 2 in V2 .(14)

This assumption is equivalent to suppose G of class C 2 and V 2 contained in a sui-
table neighborhood of G, depending on its curvatures (see e.g.[4]). In particular,
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(14) implies that for every x�V 2 there exists a unique projection xG on G,
satisfying

Nx2xG N4dG (x) ,(15)

so that we can define a unit vector field

n(x) »4
x2xG

dG (x)
, (x� V2(16)

which is normal to (each manifold parallel to) G at every points of V 2 NG.
The tangent and the normal spaces to G at the point x�G are defined, as usual

in differential geometry, by

(17) Tx »4 ]t�Rn : n(x) Qt40(, Nx »4 ]t�Rn : t4ln(x) for some l�R( ,

and the orthogonal projection onto Tx is

Px t»4 [I2n(x) n T (x) ] t .(18)

The principal curvatures of G at x are the eigenvalues, besides 0, of the differen-
tial matrix of n(x) (see e.g. [6])

S(x) »42 Dn(x) .(19)

If v * is a regular extension to V 2 of a regular function v : GKR, then the tangen-
tial gradient of v at x�G is well defined by

˜G (x) »4 Px (˜v *(x) ) ,(20)

and it is independent of the extension v * of v.
We also define the divergence on G as follows: for every tangential vector

field t(x) �Rx we set

divG t»4 div t*2
¯(t* Qn)

¯n
,(21)

where t* is a regular extension of t to V 2 (as before, divG t does not depend on the
particular extension t*). In this framework, the usual Laplace-Beltrami operator,
induced by the Euclidean metric on G has the simple form

D G v4 divG (˜G v) .

Let us also recall that the well known Hilbert space H 1 (G) (cf. e.g. [7]) can be de-
fined as the completion of C 1 (G) with respect to the norm induced by the scalar
product

(u , v)H 1 (G) »4s
G

[u(x) v(x)1˜G u(x) Q˜G v(x) ] ds(x) ,

where s is the usual n21 geometric measure on G.
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Finally, we will assume that there exists a strictly positive regular function
l : GKR such that

V 2 4 ]x�RN 0 V1 : dG (x) E l(xG )((22)

and

det (I2lS(x) )D0 , (x�G , 0 GlG l(x) .(23)

We consider now the situation which originally motivated the introduction of Ste-
fan problems with a «concentrated capacity», assuming r 1 4r 2 41 for simplicity.
For every eD0, we perturb Problem (T.P.) by replacing the matrix K2 (x)
by

K e
2 (x) »4K2 (x)1

1

e
n(x) n T (x) ,(24)

which expresses the «blow up» of the normal conductivity.
We want to study the «limit problem», as e goes to 0, of the family of these

perturbed transmission problems. To this aim it is natural to introduce the sub-
space H 1

n (V 2 ) of H 1 (V 2 ) consisting of the functions which are constant along the
normal directions to G, i.e.

H 1
n (V 2 ) »4 ]v�H 1 (V 2 ): n Q˜vf0( .(25)

We also denote by L 2
n (V 2 ) the closure of H 1

n (V 2 ) in L 2 (V 2 ) and by P n the ortho-
gonal projection of L 2 (V 2 ) on L 2

n (V 2 ).

THEOREM 2.1. – Let ](ui
e , u i

e )(i41, 2 be the weak solution of the perturbed
(T.P.); let ](ui , u i )(i41, 2 be the solution of the «limit problem», which is formal-
ly obtained by replacing L 2 (V 2 ) and H 1 (V 2 ) by L 2

n (V 2 ) and H 1
n (V 2 ) respect-

ively in Definition 1.1. Then as eK0 we have

ue
i Ku i strongly in L 2 (Qi ) and weakly in L 2 (0 , T ; H 1 (V i ) ) ;(26)

.
/
´

u1
e (Q , t) � u1 (Q , t)

P n u2
e (Q , t) � u2 (Q , t)

weakly in L 2 (V 1 ), (t�]0 , T] ,

weakly in L 2 (V 2 ), (t�]0 , T] ,
(27)

the latter convergences being also strong if u0, 2 �L 2
n (V 2 ).

Finally we can give the interpretation of this «limit problem» as a Stefan pro-
blem in the concentrated capacity G:

THEOREM 2.2. – Let ](ui , u i )(i41, 2 be the solution of the «limit problem» defi-
ned by Theorem 2.1. Let (uA2 , u

A
2 ) denote the traces on S of (u2 , u 2 ). Then

](u1 , u 1 ), (uA2 , u
A

2 )( is the unique solution (in the same weak sense as in Defini-
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tion 1.1) of the following Stefan problem in the concentrated capacity G:

.
`
/
`
´

u 1 4b 1 (u1 )

¯u1

¯t
2div (K1 ˜u 1 ) 4 f1

u1 (x , 0 ) 4u0, 1 (x)

in Q1 ,

in Q1 ,

in V 1 ,

(28)

u 1 4 u
A

2 on S ,(29)

.
`
/
`
´

u
A

2 4b 2 (uA2 )

¯uA2

¯t
2divG (K×2 ˜G u

A
2 ) 4 f2 2˜u 1 QK1 n

uA2 (x , 0 ) 4 u×0, 2 (x)

on S ,

on S ,

on G ,

(30)

where f×2 , u×0, 2 , K×2 can be explicitely computed from the corresponding values of
f2 , u0, 2 , K2 , by using the matrix S(x) (and therefore they depend on the curvatu-
res of G).

REMARK 2.1. – We refer to [19] for the explicit computation of f×, u×0, 2 , K×2 . As an
example, let us consider the case of n43, K2 (x) fI. Let us denote by Hm and Hg

respectively the mean and the Gaussian curvature of G at the point x, and let us
introduce the standard parametrization of the segment sx starting from x�G and
pointing towards V 2 along the normal direction n(x),

xl »4x1ln(x), 0 GlG l(x) ,

together to the deformation measure m x on it

dm x (l) »4 [122Hm (x) l1Hg (x) l 2 ] dl .

Then we have

f×2 (x , t) »4 s
0

l(x)

f2 (xl , t) dm x (l) , u×0, 2 (x) »4 s
0

l(x)

u0, 2 (xl ) dm x (l) ,

K×2 (x) »4 s
0

l(x)

(I2lS(x) )22 dm x (l) .

The proofs of Theorems 2.1 and 2.2 are given in [19] by using in a suitable way the
variational convergence in the sense of Mosco [14, 15].

REMARK 2.2. – The system (28), (29), (30) can be studied independently of the
asymptotic approach given by Theorems 2.1 and 2.2. In this case f×2 , u×0, 2 , and K×2

are «a priori» given data and the operator divG (K×2 ˜G ) can be replaced by a more
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general elliptic operator on G. Thus problem (28), (29), (30) can be directly stu-
died by using the same methods as for (T.P.) (cf. Theorem 1.1). Another approach,
followed in [8, 9, 10], is to reduce the system (28), (29), (30) to a unique evolution
equation in the unknown uA2. In fact, taking into account equations (28), (29), we
can consider u 1 as a function of u

A
2 ; consequently also the co-normal derivative of

u 1 on S can be viewed as depending on u
A

2 through a non local operator R of «Diri-
chlet-Neumann» type:

R : u
A

2 O R(uA2 ) »4˜u 1 QK1 n , on S .(31)

In this way it is possible to reduce the system (28, 29, 30) to a single equation on S
in the unknown uA2 :

.
/
´

u
A

2 4b 2 (uA2 ) ,

r× 2
¯uA2

¯t
2divG (K×2 ˜Gu

A
2 ) 4 f2 2R(uA 2 ) ,

on S ,(32)

with the initial Cauchy condition

uA2 (x , 0 ) 4u×0, 2 (x) on G .(33)

Nevertheless, this approach seems to be more complicated, because the study of
the nonlinear and nonlocal operator R requires some non standard estimates in
the Hilbert spaces H s , r (S) of negative and fractional order s , r (for these spaces
see [7]).

3. – «Blow up» of the «global» conductivity.

The asymptotic approach of [19], described in the previous sections, can also
be applied to study the Stefan problem in a concentrated capacity arising when
the global conductivity blows up and V 2 shrinks to G.

Still following [19], let us consider a family of contractions in the direction of
the vector field 2n(x)

G e (x) »4ex1 (12e) xG , 0 EeG1 ,

and let us introduce the shrinked sets

V 2
e »4G e (V 2 ) , sx

e »4G e (sx ) .

If in the transmission problem (T.P.) we replace the set V 2 by V 2
e and the data

r 2 , K2 , f2 , u0, 2 by a family of functions r 2
e , K2

e , f2
e , u0, 2

e defined in V 2
e and satisfying

similar assumptions as r 2 , K2 , f2 , u0, 2 , we obtain a correponding family of tran-
smission problems depending on the parameter e. In order to study the «limit
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problem» as e goes to 0, let us assume that there exists

r G�C 0 (G), strictly positive , fG�L 2 (S) , u0, G�L 2 (G) ,

and a symmetric matrix KG , whose elements belong to C 0 (G) and which satisfy (1)
for every point x�G, such that

lim
eK0

e21s
Q2

e

N f 2
e (x , t)2 fG (xG , t)N2 dx dt40, lim

eK0
e21s

V 2
e

Nu0, 2
e (x)2u0, G (xG )N2 dx40 ,

lim
eK0

sup
x�V 2

e
[NeK e

2 (x)2KG (xG )N1Ner 2
e (x)2r G (xG )N] 40 .

If ](ui
e , u i

e )(i41, 2 is the family of solutions of these transmission problems, then
for a.e. x�G we define ue

2 and u2
e as the mean value on sx

e of u2
e , u 2

e :

u2
e (x) »4as

sx
e

u2
e (y) ds(y) , u2

e (x) »4as
sx

e

u e
2 (y) ds(y) .

We can characterize the limit, as eK0, of (u1
e , u 1

e ) in Q1 and of (u2
e , ue

2 ) on S. More
precisely we have the following result:

THEOREM 3.1. – Let eK0; then

u 1
e Ku 1 strongly in L 2 (0 , T ; H 1 (V 1 ) ) , u2

e K u2 strongly in L 2 (0 , T ; H 1 (G) )

and, for every t�]0 , T],

u1
e (Q , t) � u1 (Q , t) weakly in L 2 (V 1 ), u2

e (Q , t) � u2 (Q , t) weakly in L 2 (G) ;

moreover ](u1 , u 1 ), (u2 , u2 )( is the unique weak solution of the following Stefan
problem

.
`
/
`
´

u 1 4b 1 (u1 )

r 1
¯u1

¯t
2div (K1 ˜u 1 ) 4 f1

u1 (x , 0 ) 4u0, 1 (x)

in Q1 ,

in Q1 ,

in V 1 ,

(34)

u 1 4 u2 on S ,(35)

.
`
/
`
´

u2 4b 2 (u2 )

r G

¯u2

¯t
2 l 21 divG (lKG ˜Gu2 ) 4 fG2 l 21 ˜u 1 QK1 n

u2 (x , 0 ) 4u0, G (x)

on S ,

on S ,

on G ,

(36)

where l is the thikness of V 2 defined by (22).
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REMARK 3.1. – In the simplest case of constant coefficients of order of magni-
tude e21, i.e. r 2

e »4r 2 /e , K e
2 »4K2 /e , we obtain

r G (x) 4r 2 , KG (x) 4K2 , (x�G .

4. – Final comments.

4.1. Under stronger regularity assumptions on the data, it is possible to prove
stronger regularity properties for the solutions of the problems considered in the
previous sections. E.g. let us refer to the problem (28), (29), (30); if we assume
that

.
/
´

u0, 1 �L 2 (V 1 ),

u×0, 2 �L 2 (G),

b 1 (u0, 1 ) �H 1 (V 1 ),

b 2 (u×0, 2 ) �H 1 (G) ,
with b 1 (u0, 1 ) 4b 2 (u×0, 2 ) in G ,(37)

then we have

.
/
´

u 1 �H 1 (0 , T ; L 2 (V 1 ) )OL Q (0 , T ; H 1 (V 1 ) ) ,

u×2 �H 1 (0 , T ; L 2 (G) )OL Q (0 , T ; H 1 (G) ) .
(38)

As in the standard Stefan problem (cf. e.g. [22, IV, 10]) another important que-
stion to be addressed is the continuity of the temperature: for the problem (28),
(29), (30) we refer to [11] and the references therein.

4.2. As we said in Section 1, the concentrated capacity G could be only a part of
the boundary ¯V 1 of V 1 . More precisely, let us assume that V 1 and V 2 are two
adjoining open bounded and regular sets of Rn, such that ¯V 1 O¯V 2 is the closu-
re G of a regular (n21)-submanifold G with boundary G 8 »4 G0G and let us deno-
te by G i »4¯V i 0 G, i41, 2, the remaining part of the two boundaries and by
n i (x), n(x) the outward unit vector normal to G i , G at the point x respectively. Fi-
nally, let us introduce the sets

Qi »4V i 3]0 , T[, S i »4G i 3]0 , T[, i41, 2 ; S»4G3]0 , T[ .

Then we can consider, instead of Problem (T.P.) of section 1, the new transmis-
sion problem: find ui and u i which satisfy again (2), (4), (5), (6) and the homogene-
ous Neumann conditions on both S 1 and S 2

˜u i QKi n i 40 in S i , i41, 2 .

The same ideas, techniques and results of sections 2, 3, and 4.1 apply also to this
new case (see [19, 12, 13]). We emphasize that the approach suggested by Re-
mark 2.2 presents in this case new difficulties, because it is harder to study the
properties of the operator R(uA2 ) (see [12, 13]). Also the question of the continuity
of the temperature is not yet completely solved (see [12], sec. 4).
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4.3. The asymptotic approach of the Stefan problem with a concentrated capa-
city, described in sections 2, 3, and 4.2, has been developped in [19] in a very inte-
resting and elegant abstract form, which applies to several other problems, as the
porous media equations, homogeneization of nonlinear diffusion equations, self
contact domains, reinforcements problems in the Calculus of Variations, pro-
blems where the concentrated capacity lies on manifolds of codimentions higher
than 1; we refer to [19] and the references therein.

4.4. Regularity properties of the free boundaries, «mushy» regions, non dene-
geracy of the solution, classical solutions, have been studied for the standard two-
phase Stefan problem (see the references in [22]). It would be interesting to stu-
dy all these topics also for the Stefan problems discussed in the sections 2, 3, and
4.2 (note in particular that here we have two free boundaries, one in Q1 and the
other one on S).

It would also be interesting to consider the generalizations of the usual Stefan
model and the related questions described in [23, sections II, III, and IV] and [22,
Chap. VI-IX] in connection with the concentrated capacity problems.
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