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Phase Transition with Supercooling.

A. FASANO

Sunto. – L’articolo riassume il quadro dei risultati noti circa il cosiddetto problema di
Stefan con sopraraffreddamento. Con ciò si intende in senso lato l’estensione del mo-
dello di Stefan a quei casi in cui la temperatura della fase liquida (solida) non è confi-
nata al di sopra (sotto) di quella di cambiamento di fase, supposta costante. La nostra
discussione è prevalentemente rivolta allo sviluppo di singolarità (non limitatezza
della velocità dell’interfaccia, ecc.), al modo di prevederle, di prevenirle (regolarizza-
zione), alla loro interpretazione termodinamica e alla descrizione del comportamento
delle soluzioni in vicinanza dei punti singolari.

Introduction.

The paper by A. Visintin published in this same issue provides a rather exhaus-
tive description of the complex and diversified world of the mathematical models de-
scribing phase change processes. His recent monograph [27] is an excellent and
comprehensive review of classical and modern approaches to the problem.

Here we want to deal more specifically with some aspects of phase change in
the presence of undercooling. Roughly speaking we can distinguish several class-
es of problems. Undercooling due to surface tension as well as kinetic undercool-
ing and phase relaxation have been discussed at length in Visintin’s paper. Also
in nucleation driven phase change processes the formation of crystals occurs in
the presence of substantial undercooling. In such processes phase change takes
place not at a sharp interface but in a region where the temperature ranges in an
interval depending on the physical system and on the pressure. We still refer to
Visintin’s paper for some general remarks about the complexity of nucleation.
The dominant effect of nucleation is particularly evident in many polymers in
which the kinetics of the formation of nuclei and of crystal growth is still a sub-
ject of intensive theoretical and experimental investigation. We refer to [8] and to
the recent survey paper [2] for a description of various mathematical models and
for the relevant literature, as well as for a discussion on the so-called additivity
rules [11] and on classes of travelling wave solutions [13].

The specific aim of this paper is the decription of the so-called supercooled Stefan
problem (SSP), mainly in one space dimension and in one phase. SSP differs from the
ordinary Stefan problem in the only fact that the temperature in the heat conducting
phase, here specified as the liquid, is below the melting point.
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We will illustrate the main results known in the literature, referring for sim-
plicity of exposition to the 1-dimensional model problem stated in Section 1. First
of all we will recall the general properties concerning existence and the possible
development of a singularity (Sect. 2) [16]. Then we consider the critical influence
of initial data not matching the melting temperature at the interface [12], a ques-
tion which is crucial in understanding the possibility of continuing the solution
after the occurrence of a blow-up point (a singular point of the free boundary ac-
compained by a discontinuity of the temperature). Continuation beyond blow-up
and regularization procedures to prevent it are discussed in Sect. 4 [15, 14]. The
following two sections present a discussion of blow-up on a thermodynamical ba-
sis, addressing the concept of bulk nucleation according to M. Gurtin’s theory
[18] (Sect. 5) and the way it can be obtained as a limit case of kinetic undercooling
(Sect. 6), the basic reference being [17].

Finally, Sect. 7 is devoted to the study of the way blowing-up solutions ap-
proach their singularity. Besides the 1-D case [20], we discuss very briefly also
the 2-D and 3-D cases [25], emphasizing the fact that they can exhibit a qualitat-
ive behaviour substantially different from the one-dimensional case as it was al-
ready conjectured long ago in [22].

Acknowledgements. The author thanks Professors D. Andreucci, M. Gurtin,
J. J. Velázquez for their valuable comments.

1. – The one phase one-dimensional Stefan problem.

In 1970 B. Sherman [24] showed that the one-phase one- dimensional Stefan
problem with supercooling may have solutions which blow up in a finite time.
About ten years later Fasano and Primicerio performed a more systematic analy-
sis of the problem with the aim of characterizing the occurrence of singularities
[16] and of investigating the criticality of initial discontinuities at the interface
for the existence of solutions [12]. The question of the development of a singulari-
ty has been analyzed under various points of views: possible thermodynamical in-
terpretations [18, 17], possible continuation of the solutions and alternative regu-
larized models in which the singularity is prevented [15, 14], a finer description of
the solutions when the singularity is approached [20, 25].

We will touch very briefly these subjects.

2. – Characterization of finite time extinction, blow up and global existence.

Let us summarize some of the results of [16], referring to the following one-
phase model problem for the solidification of a liquid:

¯2 u

¯x 2
2

¯u

¯t
40 in DT »4 ](x , t): 0 ExEs(t), 0 E tET( ,(2.1)
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s(0) 41 ,(2.2)

u(x , 0 ) 4h(x) , 0 ExE1,(2.3)

¯u

¯x N
x40

40 ,(2.4)

u(s(t), t)40 , 0 E tET ,(2.5)

¯u

¯x N
x4s(t)

42 s(t) , 0 E tET ,(2.6)

in its strong formulation, where h(x) is a given continuous function in [0 , 1 ]. Of
course we are interested in the case in which the initial data are negative, at least
in part of the interval (0 , 1 ). In (2.1)-(2.6) we use nondimensional and normalized
variables. Therefore the quantity

Q411s
0

1

h(x) dx(2.7)

can be interpreted as the total thermal «energy» stored in the system for t40
(the term 1 being the normalized latent heat). Such a quantity plays a crucial role
in discriminating among the following cases:

(A) the problem is solvable for arbitrarily large T,

(B) there exists a finite extinction time T0 such that lim
tHT0

s(t) 40,

(C) there exists a blow up time T * such that

inf
t� (0 , T *)

s(t) D0 , lim
tHT *

s
.
(T) 42Q .

The fact that a singularity can occur only in the way described under (C) was
pointed out in [24].

Leaving aside for the moment the question of existence of solutions to (2.1)-
(2.6), we state a theorem establishing a 1-1 correspondence between the values of
Q and the occurrence of the cases above.

THEOREM 2.1. – Let h verify the following assumptions:

(H1) there exists a positive constant H such that

h(x) F2 H(12x) ,(2.8)

(H2) the equation h(x) 42 1 has at most one root in [0, 1].

Then for any solution of (2.1)-(2.6) we have

(A) ` QD0 ,(2.9)

(B) ` Q40 ,(2.10)

(C) ` QE0 .(2.11)
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The proof goes through the following lemmas.

LEMMA 2.1. – For any solution of (2.1)-(2.6)

s(t) 4Q2 s
0

s(t)

u(x , t) dx , ( t� (0 , T) .(2.12)

This is nothing but energy balance.

LEMMA 2.2. – Assume (H1) and let (T , s , u) be a solution of (2.1)-(2.6) such
that

ST 4 inf
t� (0 , T)

s(t) D0 ,(2.13) ( i )

( ii ) there are two constants d� (0 , sT ) and u 0 � (0 , 1 ) such that

u(s(t)2d , t)D2 u 0 , t� (0 , T) .(2.14)

Then

s
.
(t) F min{2

H

u 0

,
ln (12u 0 )

d
} , t� (0 , T) .(2.15)

PROOF. – The proof consists in showing that the function

w(x , t) 42 u 0 (12e 2ad )21 ]12exp [a(x2s(t))](

for a suitable choice of the constant a is a barrier in the domain V d »4

](x , t): s(t)2dExEs(t), 0 E tET(. Indeed if aFHOu 0 we have wGu on the
parabolic boundary of V d . If in addition a is such that a1s

.
(t) F0 in (0 , T), then

v xx 2v t F0 in V d . Therefore u(x , t) Fv(x , t) in V d and Ns
.
(t)NGv x (s(t), t).

Thus either s
.
D2H/u 0 , and (2.15) is satisfied, or we put a42 inf

t� (0 , T2e)
s
.
(t) (to

avoid a possible singularity at T) and we conclude that aGu 0 a(12e 2ad )21, i.e.
aG (1Od) logN12u 0 N, which again leads to (2.15). Finally, let eK0. r

LEMMA 2.3. – Suppose h(x) satisfies (H2) and that it takes the value 21 once
in (0,1). Then u(0 , t) E21 and if QF0 the level curve u421 is separated by a
positive distance from the free boundary at all points such that s(t) D0.

PROOF. – The proof is based on the fact that the level curve u42 1 is unique
and cannot meet the axis x40 before extinction, nor the free boundary before
blow up. Moreover if the curve u42 1 approaches the free boundary as tHT *
we can see that this is consistent with (2.12) only if QE0. r
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Next we introduce the quantity

S0 411s
0

1

max [0 , h(x) ] dx

and the solution Z(x , t) of

¯2 Z

¯x 2
2

¯Z

¯t
40 ,

Z(x , 0 ) 4Nh(x)N ,

Z(x , 0 ) 40 ,

Zx (0 , t) 40 , Z(S0 , t) 40 ,

0 ExES0 , tD0 ,

0 ExE1 ,

1 GxES0 ( if S0 D1) ,

tD0 ,

which provide more comparison elements for the solutions of our free boundary
problem:

LEMMA 2.4. – For any solution (T , s , u) of (2.1)-(2.6) we have

s(t) GS0 , t� (0 , T) ,(2.16)

Nu(x , t)NEZ(x , t) in DT .(2.17)

The proof is omitted.

PROOF OF THEOREM 2.1. – The proof is rather straightforward with the help of
the lemmas above. First we observe that when for some T0 D0 inf

t� (0 , T0 )
s(t) 40

then lim
tHT0

s(t) exists (and is zero). If s(t) had no limit, then it would be nonmono-

tone in any interval (T0 2e , T0 ), implying that s
.

changes its sign infinitely many
times. It is not difficult to realize with the use of the maximum principle that in
that case the domain DT is crossed by an infinite number of zero level curves of
u(x , t), which is not permitted for the solutions of the heat equation [hint: two
distinct zero level curves starting from the free boundary cannot hit x40, nor
converge to the point (0 , T0 ); a zero level curve cannot touch the free boundary
twice, R].

Now we see that the implication (B) ¨ Q40 is a trivial consequence of
(2.12). In order to obtain the reverse implication Q40 ¨ (B) remark that
Z(x , t) K0 as tKQ uniformly w.r.t. x, implying in particular (Lemma 2.4) that if
(A) occurs then u(0 , t) K0 as tKQ, which contradicts Lemma 2.3 (note that
Q40 requires h11 vanishing somewhere). Case (C) is likewise excluded because
of Lemmas 2.2, 2.3.

Showing that (A) ¨ QD0 is easy: Lemma 1.4 implies u(x , t) K0 as tK1Q

uniformly and Lemma 2.1 that sKQ, which cannot be zero (we already know that
Q40 ¨ (B) ) .
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The converse QD0 ¨ (A) is obtained by excluding (C), that is possible
on the basis of Lemmas 2.2, 2.3.

The equivalence (C) ` QE0 is now proved automatically. r

REMARK 2.1. – Note from the proof of Theorem 2.1 that the implications

(A) ¨ QF0 , lim
tKQ

s(t) 4Q ,

(B) ¨ Q40 ,

QE0 ¨ (C)

do not require any additional assumption beside continuity for h.

In the same paper [16] there are several extensions of this theorem, which we
do not describe. More cases are illustrated in the papers by D. Andreuc-
ci [1].

3. – The largest admissible discontinuity for the initial data.

It is well known [9, 23] that in the one-dimensional case there is a strict rela-
tionship between the one-phase supercooled Stefan problem and the so-called
oxygen diffusion-consumption problem, first introduced by Crank and Gupta [7]
(for the multidimensional case see [25]). If c(x , t) denotes the concentration of a
diffusing substance which is consumed by a chemical reaction at a constant rate
and uniformly throughout the region in which the substance is present, then the
problem can be put in the following nondimensional form

¯ 2 c

¯x 2
2

¯c

¯t
41 , 0 ExEs(t) , 0 E tET ,(3.1)

s(0) 41 ,(3.2)

c(x , 0 ) 4c0 (x) , 0 ExE1 ,(3.3)

c(0 , t) 4F(t) , 0 E tET ,(3.4)

c(s(t), t)40 , 0 E tET ,(3.5)

¯c

¯x N
x4s(t)

40 , 0 E tET ,(3.6)

or with (3.4) replaced by a flux condition

¯c

¯x N
x40

4G(t) , 0 E tET .(3.48)

By a solution of (3.1)-(3.6) we mean a classical solution, whose definition is evi-
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dent. Assuming that c(x , t) is sufficiently regular at the boundary, setting u4

¯cO¯t, we see that the triple (T , s , u) satisfies (2.1), (2.2), (2.3), (2.5), (2.6) and a
boundary condition of the type

u(0 , t) 4 F
.
(t) , 0 E tET ,(3.7)

or of the type

¯u

¯x N
x40

4 G
.
(t), 0 E tET .(3.78)

Conversely if we start from a solution (T , s , u) of (2.1), (2.2), (2.3), (2.5), (2.6)
and

u(0 , t) 4 f (t), 0 E tET ,(3.8)

or

¯u

¯x N
x40

4g(t), 0 E tET ,(3.9)

the transformation

c(x , t) 4s
x

1

s(t) dj s
j

s(t)

dh]u(h , t)11((3.10)

leads to the system (3.1)-(3.6) with

F(t) 4s
0

t

f (t) dt(3.11)

if (3.8) is the boundary condition for u, while if (3.9) is prescribed, the correspond-
ing boundary condition for c is of the form (3.48) with

G(t) 4s
0

t

g(t) dt .(3.12)

This equivalence was first observed by Schatz [23] and further investigated in
[9, 10] and [16] for a case of non-compatible data for c (namely G(0) cc08 (0)). The
oxygen diffusion-consumption problem has been extensively treated in many pa-
pers (see e.g. [7], [6]).

The equivalent form (3.1)-(3.6) of the supercooled one- phase Stefan problem
can be conveniently exploited in order to prove a number of properties. For in-
stance the following non-existence theorem [12].

THEOREM 3.1. – If in a left neighbourhood of x41 the function c0 (x) does not
take positive values, the problem (3.1)-(3.6) has no solutions.
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PROOF. – Let c0 G0 in (12e , 1 ) and take x0 � (12e , 1 ). Then if a solution
(T , s , c) of (3.1)-(3.6) exists we can find some time t0 such that s(t) Dx0 in [0 , t0 ]
and c(x , t) E0 for x0 GxEs(t), 0 E tG t0 . Indeed, either c0 takes some negative
value in (12e , 1 ), or, if c0 f0 in this same interval, then ¯c/¯t42 1 for t40 in
(12e , 1 ). In such a case there exists some interval (0 , t0 ) in which c(x0 , t) E0
and the negativity of c(x , t) for x0 GxEs(t), 0 E tG t0 is then obvious. Hence, by
standard arguments we conclude that ¯cO¯x is positive on the free boundary for
0 E tG t0 , thus contradicting (3.6). r

REMARK 3.1. – Although this theorem is physically intuitive, we can indeed
construct solutions of (3.1)-(3.6), whose initial data are negative somewhere in
(0 , 12e), or which start positive and take negative values at later times. As we
shall see this behaviour is crucially connected with the development of singulari-
ties. r

Clearly the theorem above implies that problem (2.1)-(2.6) has no solutions if
h(x) G2 1 in a left neighbourhood of x41.

On the contrary, assume that

h(x) F2 1, h(x) g2 1 in (12e , 1 ) for some e� (0 , 1 ) ,(3.13)

then we can prove uniqueness [12]:

THEOREM 3.2. – If h(x) satisfies (3.13) problem (2.1)-(2.6) has at most one
solution.

PROOF. – Taken two solutions (Ti , si , u i ), i41, 2 of (2.1)-(2.6) and the corre-
sponding solutions (Ti , si , ci ) of (3.1)-(3.6), we define the curves x4g i (t) setting
g i (t)40 if u i (x , t)D21, ( x�(0 , s(t) ), and g i (t)4sup ]x�(0 , s(t) ) : u(x , t)42

1(
otherwise. In this way we define two domains Di

1 , i41, 2 in which u i D2 1.
It is an easy consequence of the maximum principle and of (3.13) that the curves
g i must keep a positive distance from each point of the interval (12e , 1) on t40.
Thus the intersection D1

1OD2
1 must have a connected component D× confined by

this same interval. The right hand boundary of such a domain is the curve x4

min (s1 (t), s2 (t) )»4a(t). We note that in Di
1 both the associated functions ci are

positive, so that on x4a(t) either c1 D0 and c2 40 or viceversa, at least as long as
x4a(t) is part of ¯D×. Moreover we can also say that ¯ci O¯x are negative in Di

1 .
At this point we remark that w(x , t) 4c1 (x , t)2c2 (x , t) satisfies the heat equa-
tion in 0 ExEa(t), 0 E tE t× for some t× and the conditions w(0 , t) 40 (or the zero
Neumann condition), w(x , 0 ) 40 in (0 , 1 ). If (a(t0 ), t0 ) is a point of positive maxi-
mum for w, it means that w(a(t0 ), t0 )4c1 (a(t0 ), t0 ), a(t0 ) 4s2 (t0 ) and that
¯wO¯xD0 at this point. However ¯wO¯x4¯c1 O¯xE0 because of (3.6) and we
have a contradiction. r
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Note that the proof makes no use of the «physical» condition cF0, which is
not imposed to the solution.

In [12] the following existence theorem is proved

THEOREM 3.3. – A sufficient condition for the (local) existence of a classical
solution is that

h(x) D2 1 in some interval (12e , 1 ) .(3.14)

The proof is quite long and is omitted. Theorems 3.1 and 3.3 point out that, in
the adopted normalization, 21 is the lowest allowable value for the critical tem-
peratures in the vicinity of the initial interface. On the contrary it is well known
that there is no bound to admissible positive values for h(1), the corresponding
behaviour of the free boundary near t40 being of the type akt with aD0. In the
supercooled case a discontinuity of the temperature at x41, t40 will again pro-
duce a singularity of the free boundary of type akt (with aE0) as long as
lim inf h(x) D2 1 and a singularity of higher order in the critical limit case.

4. – The nature of blow up points. Regularization procedures monitored by
the mean energy.

In the previous section we have mentioned the equivalence between problem
(2.1)-(2.6) and problem (3.1)-(3.6) under suitable regularity assumptions. The lat-
ter problem is usually associated to the simultaneous diffusion and consumption
(at a constant rate) of a substance whose (normalized) concentration is denoted
by c. However, if we want to keep such an equivalence, we must allow c to take
negative (i.e. unphysical) values. The real diffusion-consumption problem is in-
stead formulated with the addition of the constraint

cF0 .(4.1)

In [15, 14] Fasano, Howison, Ockendon, Primicerio proved that the onset of a sin-
gularity for the supercooled one-phase Stefan problem is related to the violation
of the constraint (4.1) for the corresponding diffusion-consumption problem.
They also proved that there are limit cases of singular solutions having a natural
continuation beyond the blow up point.

The specific boundary condition (2.4) (zero flux) was considered, with the cor-
responding data

c0 (x) 4s
x

t

djs
j

1

[u 0 (h)11] dh(4.2)

¯c

¯x N
x40

4c08 (0) 42s
0

1

[u 0 (h)11] dh42 Q .(4.3)
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Using the notation of [14], we refer to problem (2.1)-(2.6) as (SSP) and to problem
(3.1)-(3.6) as (UDCP), U standing for «unconstrained», while (CDCP) is the diffu-
sion-consumption problem with the constraint (4.1), which is the solution of a
variational inequality.

REMARK 4.1. – The transition from (UDCP) to (CDCP) must be introduced ar-
tificially at the first time instant (if it exists) at which (UDCP) develops a negativ-
ity set. The latter is replaced in (CDCP) by the appearance of a dead core con-
fined between two free boundaries carrying zero Cauchy data.

In order to state the main result of [15, 14] we discriminate between essential
and non-essential blow-up points.

DEFINITION 4.1. – A solution of (SSP) or (UDCP) is said to have an essential
(or proper) blow-up at t4 t *D0 if s(t *) D0, liminf

tH t *
s
.
(t) 42Q, and it cannot be

continued beyond t *.
If the solution can be continued beyond the blow-up point we say that it has

a non-essential blow-up.

By continuation we mean that t * is an isolated singularity of the free bound-
ary and that for tD t * (SSP) has a solution with the data inherited as limits for
tH t *.

The analysis of [14] is based on the study of the negativity set of the solution
c(x , t) of (UDCP).

THEOREM 4.1. – Let c(x , t) be the solution of (UDCP) and

N(t) »4 ]x : 0 GxEs(t), c(x , t) E0( .(4.4)

If for some t1 F0 N(t1 ) c¯, then

(i) N(t1 ) is strictly contained in N(t) for t� (t1 , T), i.e. the negativity set
expands,

(ii) if for some t *D t1 the boundary ¯N(t *) touches the free boundary,
then lim

tH t *
s
.
(t) 42Q

(iii) the time instant t * must exist.

On the basis of this theorem the following result is proved

THEOREM 4.2. – The appearance of a negativity set for (UDCP) is a necessary
and sufficient condition for the occurrence of essential blow-up.

We omit proofs for the sake of brevity. It is interesting to comment on the re-
lationship between the appearance of the negativity set for (UDCP) and the pres-
ence of the curve u42 1 for (SSP), which we know from [16] to generate a singu-
larity when it approaches the free boundary.
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PROPOSITION 4.1. – Let t be such that N(t) c¯ and define x×(t) »4 sup]x�
N(t)(. If x×(t) Es(t), then there exists at least one point x0 (t) � (x×(t), s(t) ) such
that u(x0 (t), t) 421.

PROOF. – The proof is elementary since x0 (t) is nothing but an inflection point
for the function c(x , t). r

Thus the expansion of N(t) pushes the level curve u42 1 towards the free
boundary. The intersection of N(t), of ]u42 1( and of x4s(t) occurs at the es-
sential blow-up point.

However one can conjecture that even if the set N(t) is always empty, the lev-
el curve u421 exists and meets the free boundary at some time t *. This event
will produce a singularity of the free boundary, but the solution will exist also for
tD t *, i.e. we have a non- essential blow- up.

In [14] using piecewise constant initial data u 0 (x) it is shown that such a case
is possible:

THEOREM 4.3. – (UDCP) admits global classical solutions with a singular
free boundary.

We remark that a classical solution of (UDCP) need not have a continuously
differentiable free boundary. In the case described by Theorem 4.3 we mean that
the free boundary is continuous for all tD0 (and continuously differentiable for
almost all tD0), but there exists at least one time t0 such that lim

tKt0
s
.
(t) 42Q.

Therefore, the basic distinction between essential and non-essential blow-up
is the behaviour of u(x , t) [and of c(x , t)] near the singularity: in the essen-
tially singular case we have u(x , t *) G21 [c(x , t *) E0] in a neighbourhood
of the point x4s(t *), t * being the blow-up time; in the other case we find
u(x , t *) D21 near the blow-up point and Theorem 3.1 allows to continue the
solution for tD t *.

On the basis of the results above it has been suggested that (SSP) can be reg-
ularized just shifting from the corresponding (UDCP) to (CDCP), i.e. letting a
dead core appear any time that (UDCP) would develop a negativity set. Is is
worth noting that the sign of c(x , t) coincides with the sign of the «average en-
ergy» contained in the interval (x , s(t) ) at time t. The regularization procedure
suggested amounts in preventing such a quantity to take negative values.

In [15] an extension to the two-phase problem is considered. However sugges-
tive, regularization is not the only option. We may pose the question to provide a
physical interpretation of blow up and to formulate a more general approach in
which the free boundary is allowed to be discontinuous, thus accounting for in-
stantaneous solidification of a whole layer of supercooled liquid. We will discuss
briefly these more recent developments in the next sections.



A. FASANO60

5. – Supercooled and super-supercooled liquids. Bulk nucleation.

Here we summarize some aspects of an interesting theory due to M. E. Gurtin
[18]. Gurtin’s theory is rich and elegant, but for the necessity of being concise we
extract just the remarks concerning the one-dimensional one-phase supercooled
Stefan problem. Using the symbols (and the pictures) of [18], we consider the
constitutive equations for the solid (index i41) and for the liquid (index
i42)

h4 h×i (e), u4 u×i (e) 4 [h×i8 (e) ]21 , i41, 2(5.1)

e being the thermal energy, h the entropy and u the temperature, to which the
usual Fourier law has to be added.

The functions h×1 (e), h×2 (e) are assumed as in fig. 5.1, i.e. having negative sec-
ond derivatives and one unique intersection at some energy e*. The common tan-
gent line L defines two energies e 1 (for the solid) and e 2 (for the liquid) such
that

u×1 (e 1 ) 4 u×2 (e 2 ) »4u 0(5.2)

which is the transition temperature, while e 2 2e 1 is the latent heat.

Figure 5.1. – entropy and temperature vs. internal energy.
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The free energy in each phase is defined by

c×i (e) 4e2u×i (e) h×i (e)(5.3)

and it is easy to check that

c×1 (e 1 ) 4 c×2 (e 2 )(5.4)

and that the simultaneous coincidence of temperatures and free energies of the
two phases occurs only at the phase transition temperature.

The crossing energy e* marks a stability change of the phases: if the liquid
finds itself at an energy below e* then its entropy is less than the corresponding
entropy of the solid, thus favouring isoenergetic phase change. Then we say that
the liquid is not just supercooled (eEe 2 ) but super-supercooled (eEe*).

We can also introduce the Gibbs functions for the two phases

W i 4 W×i (e) 4e2u 0 h×i (e), i41, 2(5.5)

and the corresponding temperature deviations (u4u2u 0 Ou)

u4 u×i (e) 4 W×i8 (e) , i41, 2 ,(5.6)

for which we have

u×1 (e 1 ) 4 u×2 (e 2 ) 40 .

Consistently with the assumptions on the entropy functions h×(e), we see that
W×1 (e), W×2 (e) are strictly convex, that they cross only at e4e* and that take equal
minimum values for e4e 1 , e4e 2 respectively (we can take W×i (e i ) 40).

For a super-supercooled liquid W×2 (e) D W×1 (e) (see fig. 5.2, which refers to
quadratic Gibbs functions).

Starting from this thermodynamical setting, Gurtin derives the Stefan prob-
lem on the basis of the so-called local equilibrium hypothesis (u continuous in
space for almost all times) and then he discusses with some detail the question of
«nucleation» with specific reference to the blow-up case (case (C)), here de-
scribed in section 2.

By nucleation he means a bulk phase-change of a super-supercooled liquid oc-
curring instantaneously and in which energy does not change, thus increasing
entropy and decreasing the Gibbs function. As a consequence there will be a sud-
den increase of temperature. According to this model, considering precisely
problem (2.1)-(2.6) with initial data such that QE0 (see (2.7)), it is suggested that
at the blow-up there is an instantaneous solidification isoenergetic over the entire
neighbourhood of the free boundary in which the temperature is below the criti-
cal value 21. Indeed in this model problem we may select the physical constants
so that 21 represents the limit temperature between super and super-super-
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Figure 5.2. – Gibbs function and temperature deviations vs. internal energy.

cooled liquid. The corresponding temperature increase is 1. In this way after
blow-up the new data for the temperature are no longer incompatible for continu-
ation (in the sense of the non-existence Theorem 3), but the free boundary expe-
riences a jump.

I repeat that this section has a very limited aim and does not render justice to
Gurtin’s paper which is much more extended and profound.

6. – Bulk nucleation as the limit of kinetic undercooling.

Concluding his discussion on bulk nucleation Gurtin conjectures that the sol-
ution he proposed should also be obtained from the kinetic undercooling scheme
(see Sect. II.2 of Visintin’s paper) in the limit that takes it back to the Stefan
problem. In a note added in proof he quotes a preprint by Götz and Zaltzman [17]
in which precisely that procedure had been investigated.

In [17] the authors consider the two-phase problem (here we set all the coeffi-
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cients equal to 1)

u t 4u xx in QT
2NQT

1 ,(6.1)

u(x , 0 ) 4u 0 (x) , 0 ExE1 ,(6.2)

u(i , t) 4u i (t) , 0 E tET , i40, 1 ,(6.3)

s
.
(t) 4u x (s(t)2 , t)2u x (s(t)1 , t) ,(6.4)

s(0) 4s0 , 0 Es0 E1 ,(6.5)

u(s(t), t)40 , 0 E tET ,(6.6)

where QT
6 »4](x , t): 6(x2s(t) )D0, 0 E tET , 0 ExE1( denote the solid

(QT
2 ) and the liquid (QT

1 ) regions, together with the family of problems obtained
by replacing (6.6) with

ue (s e (t), t)42 es
. e (t) , 0 E tET(6.7)

(kinetic undercooling). Problem (6.1)-(6.6) is formulated in a weak form introduc-
ing the functions

U4u1H(x2s(t) ) ,

U0 4u1H(x2s0 ) ,

H being the Heaviside function, and saying that s�BV(0 , T), u�
L2 (0 , T ; H 1 (0 , 1 ) )OLQ (QT ) be such that (6.3) is satisfied, u(x , t) K0 as
xKs(t) for a.a. t� (0 , T), and

ss
QT

U(x , t) c t (x , t) dx dt1ss
QT

u x (x , t) c x (x , t) dx dt4s
0

1

U0 (x) c(x , 0 ) dx

( c�W 1, 1
2 (QT ), c(i , t) 40, i40, 1 , tF0, c(x , t) 40, 0 ExE1.

The question of the existence of weak solutions (s e , ue ) and the analysis of the
limit (s e , ue ) K (s , u) as eK0 was performed (in a slightly different context) by
Visintin [26]. Götz and Zaltzman perform a deeper investigation of the limit
eK0, obtaining several interesting qualitative results for the weak solutions of
(6.1)-(6.6), particularly in the presence of supercooling.

For instance the following global existence result.

THEOREM 6.1. – If u 0 �C 1 [0 , s0 ]OC 1 [s0 , 1 ]OC[0 , 1 ] and u i are C 1 and
bounded for tD0, satisfying compatibility conditions for t40 and moreover
u 0 E2g , u 1 Dg for some gD0, then both Stefan problem and the kinetic under-
cooled problem have global weak solutions with the free boundary strictly sepa-
rated from the lateral boundary.

Concerning regularity, we have the following theorem.
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THEOREM 6.2. – Under the same assumptions as in Theorem 6.1 the free
boundary of the Stefan problem can have at most a countable set of isolated
singularities.

Another interesting result for the Stefan problem concerns the disappearance
of the supercooled liquid in a finite time.

THEOREM 6.3. – Adding to the previous hypotheses the assumption that for
t40 the solid region is not supercooled and u 0 (x) in the interval (s0 , 1 ) is such
that u 0 E0 in (s0 , s 0 ), u 0 D0 in (s 0 , 1 ) for some s 0 � (s0 , 1 ) (the liquid is super-
cooled near the interface and not supercooled near the external wall), then there
exists a time t * beyond which uE0 and uD0 a.e. in the solid and in the liquid
region, respectively. Moreover the free boundary is nondecreasing up to
t4 t *.

The proofs are based on uniform estimates obtained for the pairs (s e , ue ).
Next they come to the question of bulk nucleation, introducing the further as-
sumption that the interval (s0 , 1 ) contains an interval (r0

2 , r0
1 ) with s0 Er0

2E

r0
1E1, in which u 0 (x) E21. Then they prove the following theorem.

THEOREM 6.4. – Under all the assumptions stated above the free boundary of
the Stefan problem has at most one isolated singularity which occurs at some
time t between 0 and the disappearance time t *. Moreover

s(t 1 ) Fs(t 2 ) ,(6.8)

u(x , t 2 ) G2 1 for x� (s(t 2 ), s(t 1 ) ) ,(6.9)

u(x , t) D2 1 for x� (s(t 1 ), 1) .(6.10)

Thus the theorem states that at t4 t the free boundary jumps exactly across
the interval over which u(x , t2 ) G21, meaning that bulk nucleation has
occurred.

A basic point in the proof of Theorem 6.4 is the study of the critical set M»4

](x , t): u(x , t) E2 1(, which is shown to be bounded by two curves x4r 2 (t),
x4r 1 (t). The curve x4r 2 (t) necessarily meets the free boundary at its singu-
lar point.

As a byproduct of the proof of Theorem 6.4 it comes out that the function
U(x , t) 4u(x , t)1H(x2s(t) ) is actually continuous across the nucleation inter-
val, meaning that

u(x , t1 ) 4u(x , t2 )11 ,(6.11)

thus confirming Gurtin’s conjecture.
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7. – The behaviour of solutions near blow-up points.

In the preceding two sections we have illustrated some attempts to interpret
blow-up on a physical basis. Now we go back to the investigation of the blow-up
points with the aim of describing the admissible singularities of a blowing-up
solution.

The reference paper is M. A. Herrero and J. L. Velázques [20], where problem
(2.1)-(2.6) is considered with the following conditions on the initial data: h(x) G0,
h�C 1 [0 , 1 ], h 8 (0) 40.

The study performed there is heavily technical in its details, but very appro-
priately the authors point out that the underlying philosophy is transparent.
Therefore we confine ourselves to summarizing the main ideas (as the authors
did in the preliminary sections), emphasizing the conceptual simplicity and the
ingenuity of their approach.

Assuming that blow-up occurs at t4T and x0 4s(T) D0, the following theo-
rem provides a complete classification of the blow-up profiles.

THEOREM 7.1. – If (x0 , T), x0 D0, is a blow-up point for (2.1)-(2.6) the pair
(s , u) behaves in one of the following ways

(i) logarithmic behaviour

u(x , T) B2 12
1

2 logNlogNx2x0 NN
(7.1)

for x approaching x0 , and

s(t)2s(T) 42[ (T2 t) logNlog(T2 t)N]1/2 1o(1)(7.2)

for t approaching T;

(ii) for some integer kF3 there exist positive constants C , K such
that

u(x , T) B2 12C(x2x0 )k22(7.3)

in a left neighborhood of x0 , and

s(t)2s(T) 4K(T2 t)121/k 1o(1)(7.4)

as tHT.

REMARK 7.1. – Formulas (7.1), (7.3) are clearly consistent with the theory il-
lustrated in Sections 2,4 according to which blow-up is characterized by the fact
the the level set u42 1 approaches the free boundary. In addition, in view of the
results of Section 3 it is clear that the solutions behaving as in (7.1) cannot be con-
tinued, and that the same is true for the case (7.3) with k even (see Theo-
rem 3.3).
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REMARK 7.2 (again from [20]). – A small refinement of (7.3), (7.4) is needed
when x0 40, namely k has to be even.

On the line of the discussion made in Sect. 4 about the relationship between
the supercooled Stefan problem (SSP) and the oxygen diffusion-consumption
problem (with (CDCP) or without (UDCP) the positivity constraint) another re-
sult is proved for (CDCP), concerning extinction points. If T is the extinction
time (the inf of times for which c(x , t) vanishes identically for x� [0 , 1 ]), then
x0 � [0 , 1 ) is an extinction point if (x0 , T) is the limit of a sequence (xn , tn ) such
that c(xn , tn ) D0. Such a result describes the structure of the positivity set of c
near the extinction point.

THEOREM 7.2. – Let (x0 , T) be an extinction point for (CDCP), x0 D0. For t
close enough to T there exist two continuous functions x4j 1 (t), x4j 2 (t) such
that cD0 in (x0 2j 1 (t), x0 1j 2 (t) ) and c vanishes in a left and in a right neigh-
bourhood of the same interval. Moreover either

lim
tHT

j i (t)[2(T2 t) logNlog(T2 t)N]1/2 41, i41, 2 ,(7.5)

or

lim
tHT

j i (t)[C(T2 t)121/k ]21 41, i41, 2(7.6)

for some CD0 and some integer kD3 and even.
Finally, if x0 40 we just have the right hand side interface.

Let us now describe the main ideas of the proofs. For Theorem 7.1 the start-
ing point is to consider the (UCDP) version of (SSP), namely (3.1)-(3.6), denoting
as usual its solution by (s , c). Next a smooth function h(x) is introduced such that
h40 for xE (1O4) x0 , h41 for xD (1O2) x0 , h 8F0, and a Cauchy problem is
considered for the function

w(x , t) 4c(x , t) h(x)(7.7)

with zero extension outside the domain of definition of c. The further change of
variables

w(x , t) 4 (T2 t) f(y , t), y4 (x2x0 )(T2 t)21/2 , t4 log (T2 t) ,(7.8)

and

l(t) 4 (s(t)2x0 )(T2 t)21/2(7.9)

leads to the following equation for f

¯f

¯t
4Af2x l(t) 1 f (y , t) ,(7.10)
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where

Af4
¯ 2 f

¯y 2
2

1

2
y

¯f

¯y
1f ,(7.11)

x l(t) 41 for yEl(t) and zero elsewhere, and f is a bounded function.
Thus the analysis of the solution near the blow-up point is reduced to the

study of the asymptotic behaviour of the pair (l , f) as tKQ.
Noting that the operator A in (7.11) is self-adjoint in a suitable weighted

space (1), the function

c(y , t) 4f(y , t)21

is represented in the form

c(y , t) 4 !
k40

Q

bk (t) Hk (t) ,(7.12)

where Hk (t) is the normalized k-th Hermite polynomial. Indeed the Hk are the
eigenfunctions of A with the corresponding eigenvalues

l k 412
k

2
, k40, 1 , 2 , R .(7.13)

It is proved that asymptotically only one of the modes in (7.12) dominates. The
modes k40, k41 are not candidates for becoming dominant, because it is not
difficult to see that they produce a behaviour for the pair (s , c) contrasting with
the occurrence of blow-up. At this point a finer analysis of l(t), f(y , t) and of
¯2 fO¯y 2 for tc1 leads exactly to the conclusions of Theorem 7.1.

The proof of Theorem 7.2 goes along the same lines. Here the odd values of k
are ruled out by imposing that the asymptotic solution satisfies the additional
constraint

c(x , t) GC(T2 t)(7.14)

for some CD0, which has been proved for (CDCP) by the same authors in
[19].

What is particularly remarkable in the paper so shortly summarized so far is
that results of the kind presented were indeed expected at least since the appear-
ance of [16], but the proof came only after some fifteen years: this is an indirect
evidence of how non-trivial the whole question is. The authors made use of the
large experience accumulated in the study of singular problems such as the rate
of collapse of a melting ice ball [21] or degeneracies in mean curvature flow (see
[4] and the corresponding literature and [5] in which the scaling (7.2) appears for
the first time), or blow-up in reaction-diffusion system (see e.g. [3] and the quot-
ed literature).

(1) A key point is the choice of the weight exp (2y 2 /4 ), which is crucial in determining
the length scale (7.2).
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Soon after [20] another paper appeared by J. J. Velázques [25] in which singu-
larities of SSP in two and three space dimensions are studied. Although the
asymptotic techniques are similar to the 1-D case the extension is far from being
trivial since the qualitative behaviour of the solutions is different. For instance,
while in the 1-D (SSP) (in normalized variables) the undercooling at a blow-up
point must be 1 (blow-up occurs when the level curve u421 hits the free bound-
ary), in the multidimensional case the development of a cusp may be accompanied
by an undercooling which can be anywhere in (0 , 1 ). Cusps profiles are obtained
in the 2-D and 3-D case, again making use of the relationship between (SSP) and
(UDCP). However such a relation is no longer obvious as in the 1-D case and is
discussed at length, providing basically an alternative proof of the existence of
regular solutions to (SSP) in more than one space dimension.

The typical cusp profile in 2-D is

Nx2 NBk(c)(x1 )1 [ logNlogNx1 NN]21/2 as Nx1 NK0(7.15)

where c is a constant varying in (0 , 2k2p) and determining the degree of super-
cooling at the cusp, while k(c) is a function increasing from 0 to Q in the same
interval.

The behaviour of the free boundary in the vicinity of the cusp can be estimated
by

Nx2 NGk(c)
Nx1 N

2kNlog(T2 t)N
(7.16)

where T is the time of cusp formation.
In the 3-D case Nx2 N is replaced by kx2

2 1x3
2.
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[19] M. A. HERRERO - J. J. VELÁZQUEZ, Approaching an extinction point in one-dimen-
sional semilinear equation with strong absorption, J. Math. Anal. Appl., 170 (1992),
353-381.
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