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Quasi-Symmetrization of Hyperbolic Systems
and Propagation of the Analytic Regularity.

Pi1ERO D’ANCONA - SERGIO SPAGNOLO

Sunto. — Dopo aver introdotto la nozione di quasi-simmetrizzatore per sistemi del pri-
m’ordine debolmente iperbolici, si dimostra che ad ogni sistema di tipo Sylvester,
cioe proveniente da un’equazione scalare di ordine superiore, si puo associare in
modo regolare un quasi-simmetrizzatore. Come applicazione di questo risultato si
prova che, per qualunque sistema semi-lineare N X N debolmente iperbolico, le so-
luzioni Gevrey in x di ordine s < N/(N — 1) restano analitiche non appena lo siano
all’istante iniziale.

1. — Introduction.
The main purpose of this paper is to investigate the notion of smooth
quasi-symmetrizer for a hyperbolic system
SGu+At, x, D)u=f,

where D=1"19,,t=0, xeR", and A(t, x, &) is a N x N matrix-valued sym-
bol, homogeneous of order one in &£. By hyperbolic we mean here weakly hy-
perbolic, i.e.,

(1.1) A(t, x, &) has pure imaginary eigenvalues

for all ¢, x and £eR".
We call quasi-symmetrizer for A any family of N X N matrix-valued
symbols

Q.(t, x, &) eCH([0,T]; 8%, &>0,

with the following properties: for some positive constants 6, > 0, C indepen-
dent of ¢, %, &,

0. I<Q.=Q7<I,
AQ. +Q.A*<Ce(§) Q.

where (&) =V/1+ |&|?, I is the identity matrix, and A < B (with A, B matri-
ces) means (Av, v) < (Bv, v) for all ve CV.
This is clearly an extension of the classical concept of symmetrizer for a
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system of first order, which corresponds to the case when @, = @ is indepen-
dent of ¢, so that AQ + QA * = 0. A similar notion was introduced for the first
time by E.Jannelli in [J], where he constructed a non-smooth quasi-sym-
metrizer for systems depending only on time (see also [DS]).

The notion of quasi-symmetrizer is connected to energy estimates in spaces
of analytic or Gevrey functions. We mention, e.g., the local stability of the ana-
Iytic solutions to nonlinear weakly hyperbolic systems (see [DS], [Ki]).

In the first part of the paper we shall construct a smooth quasi-symmetrizer for
a special class of hyperbolic systems, namely the systems of Sylvester type (or,
more generally, of block Sylvester type); these are the systems arising after reduc-
tion of a higher order scalar equation to a system of first order, see Section 2 for a
precise definition. This result is contained in Proposition 1 below.

In the second part we shall apply the preceding construction to prove the ana-
Lytic regularity for a class of semilinear weakly hyperbolic systems. More precise-
ly, we consider the systems

1.2 u+A(t, D)yu=f(=, x, u)

where A(t, &) are N X N matrix-valued symbols of order one in & and of class CV in
t, hyperbolic in the sense of (1.1). Denote by y7,2(R") the space of the so called uni-
formly Gevrey functions on R", i.e., the functions u(x): R"— CV satisfying

D ul,: < CA el

for some C, A = 0; for s =1 we obtain the space A;:(R") of uniformly analytic
functions. Moreover, we assume that f(¢, x, u) is of class CV in ¢, with time deriva-
tives & f(t, x, ) uniformly analytic in x and entire analytic in u, for
7=0,1, ..., n. Then we shall prove:

THEOREM 1. — Let u(t, x) be a solution of the system (1.2), belonging to the
Gevrey class CN ([0, T1, y5,2(R")) for some 1 <s < N/N — 1), and assume that
u(0, -) € Az2(R™). Then u(t, x) 1s uniformly analytic in x for all t, more precisely
ueCN (0, T, A,:(R")).

The condition s < N/(N — 1) is connected to the fact that for these values of s,
system (1.4), and more generally any nonlinear hyperbolic first order system, is
well-posed in the Gevrey class y7:(R") (see [B], [Kal), while for s > 1/(N — 1) the
local existence may not hold. Compare with the case of strictly hyperbolic nonlin-
ear systems, for which the analytic regularity propagates for any C'* solution
([AM]).

We mention that a result similar to Theorem 1, concerning second order
scalar equations, was proved in [S].
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2. — Construction of a quasi-symmetrizer.

In the following we shall construct a smooth quasi-symmetrizer for a special
class of hyperbolic operators A, which we shall eall operators of Sylvester type. By
this we mean that A(t, x, &) = (§)B(t, x, §) where B is a Sylvester matrix, i.e.,

(0 1 0)
0 1
0
2.1 B=
0 1
U o bAJ

Here b;(t, x, &) are symbols of order 0. Typically such matrices are obtained
after reduction of a higher order scalar equation to a first order system.

More generally, we shall say that B is a N-block Sylvester type matrix if it is
a block matrix of dimension vN of the form

B, 0

0 B,

where the v blocks B, are N X N identical matrices and have the form (2.1).
Then we can prove:

PROPOSITION 1. — Assume that A(t, x, E)eC*([0,T]; SY) (k=2) and
that

2.2) A(t,x, &) has only pure imaginary eigenvalues ;
2.3) (&)'A(t,x, &) is a uniformly bounded N-block Sylvester matrix.
Then there exists a quasi-symmetrizer

Q.= Q.(t, x, &) e C*([0, T1; S°)

satisfying the following conditions for all (t, x, &) e [0, T1 X R" X R" and all
e>0:

2.4) EN-V1<Q =Q*<]I,
(2.5) AQ, + Q. A*<Ceé)Q,,
2.6) —Ce'Y¥Q, <Q/<Ce'7VQ,,
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where Q' is the time derivative of @ and C a positive constant independent of
8’ t’ x’ g'
More precisely, Q. has the form

N-1
(27) Qs = ]20 82h qh/ (al (t’ 90’ E)(S)il, ey a/N(ty 90, §)<§>71 )
where q,, (21, ..., 2y) are matriz-valued polynomials on CV, depending only on N.

REMARK 1. — We do not know if Proposition 1 can be extended to any
hyperbolic matrix A(t, x, &) not of Sylvester type. However, the nonsmooth
quasi-symmetrizer constructed in [J], [DS] is sufficient to handle analytic solu-
tions for nonlinear systems with constant coefficients (but is not useful to get
Theorem 1).

The core of the proof of Proposition 1 is the following algebraic lemma.

LEMMA. — Let N be an integer greater than 1. There exists a N X N matrix-
valued polynomial in N complex variables, Py(zy, ..., zy) such that
(i) detPy= (-1}
(ii) for any N X N Sylvester matrix B, denoting with (1., ..., Ay) its (re-

peated) eigenvalues in any order, the matrix Py(A) = Py(44, ..., 1) triangu-
lates B, more precisely,
(2.8) Py(A) BPy(A) ' =diag[Aq, ..., An]+ K
with

0 -1 0 0)

0 -1
2.9) K= 0
-1
L 0 )
We remark that, by (i), also the inverse P ~! is polynomial in 21, ..., zy.

ProoF OF THE LEMMA. — The first part of the proof is inspired by the paper of
E. Jannelli [J2]. Let

nh(zl,...,zN)=Hthf‘l...zA‘}N, h=1,...,N,
o =
a; <1

be the elementary symmetric polynomials, and e¢; = (0, ..., 0,1,0, ...,0),7=
1, ..., m, the canonical row vectors of CV; it is convenient to set 7, = 1. Then, if
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B is given by (2.1) and 44, ..., Ay are its (repeated) eigenvalues, we have, set-
tlng bN+1 = _15

bh:(_l)N_hﬂNJrl,h(/ll,...,/1N), 1<shsN+1.

This shows in particular that there is a unique Sylvester matrix B with given
eigevalues. On the other hand, if 7 is any one of such eigenvalues the row
vector

N N-j
w=2 2 Thbj+h,+1ej
j=1h=0
is a left eigenvector of B for 1, i.e., wB = Aw, as it can be easily checked. Thus,
the vector

N N-j )
(210) ’I)(Z) E?)(Z'l, ey zN) =i§1 h§=:0 ZZ}\}(_1)N_(]+h+1)7tN7(j+h)(zla ey ZN) 6]',

which is a polynomial in z € CV, has the following property: if B is the (unique)
Sylvester matrix with repeated eigenvalues z, ..., zy, then v(2) is a left eigen-
vector of B with eigenvalue zy.

We now argue by induction on N. The conclusion of the Lemma is trivial in
the case N = 1, where we can take simply P, = 1. Let Py _1(#y, -.., 2y _1) be the
(N —1) X (N — 1) matrix given by the Lemma at step N — 1, and let

Py_1(z1, ..., 2y_1) = .
N -1\#1 N -1 0 1}
We define now the matrix-valued polynomial
S(z1, ..., 2y) =TOoW[eq, ..., ey _1, V(21, ..., 2n)],

with v(z) given by (2.10); we claim that the matrix

PN(zh ceey zN) :pN—l(zla sy ZN—I)S(ZD ceey ZN)

is the required triangulator for B. To prove this, we first remark that
detS = —1, since the last entry of the vector v is vy = —1 (see (2.10)). Moreover
we have S "' = S, indeed, by the definition of S we have

e, S=e¢ fori=1,..., N—-1,
enS=v
and hence

N-1
e;,S?=¢; for i<SN-1, eNS2=vS='Zlvjej+va=eN.
J=
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Now, if B has eigenvalues z,, ..., 2y, then S(z) BS(z) = S(z) BS(z) ! has the
form

r 0 1 0
0 1
0
. T : B’(Z)
S(z) BS(z) = -

1 0 -1
v, (2) vy _1(2) vy (2) 0 0 =2y
L 0 0 iy

Indeed, recalling that ¢;B =¢;,, for i< N — 1, and v(z) B = 1 yv(z), we have
e;S(z) BS(z) =¢;BS(z) =e; . 18() =e;,1, i=1,...,N—-2,
en_19(2) BS(z) =en_1BS(z) =exnS(z) =v(z),
enS(z) BS(z) = Bu(z) S(z) = z2yv(z) S(z) = zyey .

But the (N —1) X (N —1) matrix B'(z) is of Sylvester type and its repeated
eigenvalues are exactly 2y, ..., 2y _; (since S(z) BS(z) ! has the same eigenval-
ues as B); thus Py _(z4, ..., 2y_1) triangulates B’ (z) in the sense of (2.8). This
implies that the N X N matrix Py 121, ooty 2n—1) triangulates S(z) BS(z) in
the sense of (2.8), and hence Py _(2y, ..., 2x_1) S(2) triangulates B.

ProOF oOF PROPOSITION 1. — The matrix-valued polynomial P(z) =
Py(zy, ..., zy) constructed in the Lemma, when applied to the eigenvalues of a
given Sylvester matrix B, gives a matrix P(z) which is not, in general, a regular
function of the entries of B. To overcome this difficulty, we apply a procedure of
symmetrization, based on the fact that any symmetrie, polynomial function of
the eigenvalues of B can be also written as a polynomial function of the
entries.

We consider the diagonal matrix

and we define
Q.(z) = P()*H, 2 P(2).

From (2.8)-(2.9), we have for any z = (2, ..., 2y) and for the Sylvester matrix B
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with repeated eigenvalues z;, ..., zy the following identity
H,'P(z) BP(z) 'H,=D(z) + eK, where D(z) =diag[z, ..., 2x1,
since H, ' KH, = ¢K, and hence also
211) Q,(2) B=P()*H, 'D(z) H7'P(z) + P(z)*H, '(eK) H ' P(z) =
D,(z)+ eR.(2).

We remark that D, is anti-Hermitian whenever B is hyperbolic, i.e, z € iR";
moreover,

(2.12) (R.v,v)=(KH, 'Pv, H 'Pv) < |H, 'Pv|*=(Q,v, v).

Now, denoted by Sy the class of permutations over N indices, let us de-
fine

Q.)= > Q.(02)

oelSy

and R, (z), D,(z) analogously. Since H, 2 = diag[¢2V "2, ..., €2, 1], we see that
@, has the form

(2.13) Q)= 2V 1 q,(2),

h=0

where ¢;,(z) are symmetric polynomials in 2y, ..., 2y; hence the g, can be ex-
pressed as polynomials in the fundamental symmetric polynomials 7y, ..., 7.
If B is the Sylvester matrix with repeated eigenvalues z,, ..., zy, this implies

that each ¢,(z) can be expressed as a polynomial in the entries of B (see

2.1):
(2.14) 0 (2) = @ (by, ..., by).
Moreover, by (2.11) we have
2.15) Q.(2)B=D,(2) + ¢R,(2),
with D, anti-Hermitian and

R.v,v) < (@Q,.v,v).

Finally, since P(z), P(z) ! are polynomials in z, recalling the definition of @,(z)
we have easily, for some pair of continuous functions C; (r), Cy(7),

2.16) Ci(|z]) e2¥ V1< Qu(2) < Cy(|2I .

Let us now go back to the matrix A(t, «, &). Clearly, it is sufficient to prove
the Proposition in the special case when A is made of a unique Sylvester block,
ie, A=(&)B(t, x, &) with B a Sylvester matrix as in (2.1), with uniformly
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bounded entries b;(t, x, ). We then define

N-1
Q&(t; 90, ‘S) = hgogmbah(bl(t’ 90, g)’ ey bN(t’ 90, E))

where ¢, are given by (2.14). With this definition, (2.4), (2.5) and (2.7) follow im-
mediately (after some rescaling) from the properties (2.13), (2.15), (2.16) proved
above. In order to prove (2.6), we resort to Glaeser’s inequality

la’ @) |2<2[la"®||, =, nad),

valid for any a(t) = 0. We apply it to the C? function a(t) = (Q.(t, x, &) v, v).
Thanks to the explicit expression (2.7), we see that @ is bounded independently
of ¢, thus using (2.4) we obtain (2.6). This concludes the proof.

3. — The regularity result for a block Sylvester system.

In this section, we investigate the special case of Theorem 1 when the opera-
tor A(t, D) is of block Sylvester type. More generally, we consider the pseudo-
differential system

8.1 du+ A, D)yu=ygt, x, K(D)w),
where

(8.2A(t, &) is a N-block Sylvester matrix, homogeneous in £ of order 1,
(8.3) A(t, &) eC' ([0, T1, S'(R")),
3.4) K(&) is a m X N matrix-valued symbol of order 0,

and g(t, ¢, v):[0, T]1 X R" x C"™— C" is continuous in ¢, uniformly analytic in x
and entire analytic in v, so that there is some function @ .(s) for which

(8.5 |[DEDE gty x, v) |P< D (Jv]) Al elflal Bl for all e>0.
We have then:

PROPOSITION 2. — Let we C1([0, TT; y5:(R")), with 1 <s <N/N —1), be a
solution of (3.1) such that w(0, x) e Az2(R"), and assume that (3.2)-(3.5) are
satisfied. Then we C([0, T]; Az2(R™)).

Proor. - First of all, we fix three positive constants L, 0y, M, in such a way
that

(3.6) K| <Ly -
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(3.7 fe90<5>”‘“‘ luct, &) (EVAE<M,,  |ut, )|, =@H<M,, on [0,T],
R
We note that (3.7) can be assumed withot loss of generality by replacing s with
some s’ such that s <s’' < N/(N —1).
In the course of the proof we shall use two kinds of Gevrey energies. To in-
troduce them, we apply Proposition 1 and we take a quasi-symmetrizer @,, of
A(t, &). Then, we choose

e= (&)
and we define the matrix
(3.8) QU &) = Qu(t, ) |o— (v,
which satisfies, for some constant C,
3.9 ()21 INT<Q(t, &) <1,
(310) A, H QU +QU, HA*(, & <C(&) VA, &),
(3.11) |@Q'(t, §)v, )| <Cy(&) "M@, H v, v).
Finally, we fix the radius function
(3.12) ot) =00~ ZQ—TOJ ;

which is positive on [0, 7], and we define for any vector function w(x) with
Fourier transform w(&) (we CV in (3.13)), the s-Gevrey energies

(3.13) ot w) = [ee Qut, oy, ) de,

(3.14) B, w) = f o 2D

w|dé&,

the integrals being extended over all R". If w = w(t, x) depends also on ¢, we
denote by w the Fourier transform with respect to x and we write

8(t, w) = 8, w(t, ),  &t, w) =8, wt, ).

We divide the proof into several steps.

A) Linear Gevrey estimate.

Let weC'([0, T]; y5:(R")) be an arbitrary solution to the linear sys-
tem

(3.15) dw+A(t, D)w=B(, ) KD)w+ f({, x),
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where A(t, &), K(&) satisfy (3.2)-(3.4), and B(%, x) is N X m matrix belonging to
the space C([0, T1; y5,=(R"™)). Let us fix a constant M such that

(3.16) &t,BY<M on [0,T].
If Q = Q(t, &) is the matrix given by (3.8), we have by (3.9)-(3.11)

%[(Q@, W] < Co(EN N (Qw, W) + |(BED)w) | + | F1,

thus, by differentiating &(¢, w) with respect to ¢, we find

8'(t, w) <

J e @Qut, & w, ) 210" + Co) N1 dé + B¢, BRD) w) + it 1.
Now for any pair of scalar functions ¢(x), ¥(x), we have the estimate

(3.17) Bt pop) = [ |G| de< Bt 9) B, )

since (EY¥<(E)— '+ ()", and this implies, by (3.4), (3.6), (3.16) and
(3.9),

§(t, BK(D) w) < MLy&(t, w) < ML, f e D" (Q, WyVE(EN N dE
Thus

&'(t, w) < fe@<t><5>”” (Q(t, &) w, w)"[o" + (Co+ Ly M)EY VNV (EV dE+ (2, f).
But1 —1/N —1/s <0, hence we can find a constant R = R(T, C,, Ly, 0o, M) so
large that

Q')+ (Cot Lo Y& N V= = 4 (Co+ LoM(E) NS0 i (8)2R,

which gives

gtws [ s QB (C+ LyMYE) N dE+ i, f).
|&| <R

In conclusion we obtain, for any solution w of (3.15), the a priori esti-
mate
(3.18) 8 (t, w) < Cy &(t, w) + &¢, f).

where C; depends on T', Cy, Ly, 0y and on M, defined in (3.16).
We remark that (3.18) implies the global well-posedness in yf:2(R"),
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s < N/(N — 1), to the Cauchy problem for the linear system (3.15). Moreover, by
standard arguments one can prove the local well-posedness in the same space
for the nonlinear system (3.1).

B) Uniqueness in the Gevrey class for the nonlinear problem.

Let u, ve C1([0, T]; y5:(R")) be two solutions of (3.1), s < N/(N — 1), and
assume that (0, ) = v(0, x). Then w = u — v satisfies a linear system of the
form (3.15) with f= 0, thus using the linear estimate (3.18) we obtain that u = v
on [0, T] xR".

C) Gevrey estimates of the nonlinear term.

Let us go back to the nonlinear system (3.1), where u(t, x) is a given solution
satisfying (3.7). In the following we shall assume, for sake of simplicity, that the
nonlinear term g(¢, x, v) = g(v) is independent of (¢, x), so that (3.1) be-
comes

(8.19) dyu + A(t, D) u = g(K(D) u) ,

where g: C™— C" is an entire function. The general case presents only some
additional technical complications. By applying the operator D*= D, with
|a| >0, to both members of (3.19), we obtain

(3.20) (0, + A(t, D))D*u = B(t, x) K(D) D*u + f,(t, ®),

where B is the N X m matrix given by

3.21) B(t, x) = Dg - (K(D)w)
and
(3.22) f.(t, ©) =D*(g - (K(D)w)) — B(t, x) K(D) D“u .

We remark that Dg(v) is entire analytic, so it admits a Taylor expansion
Dg(v) = EGﬁ v#; thus using (3.17) and recalling (3.4), (3.6), we find

(3.23%(t, B) < ®(&(t, K(D) w)) < ®(Ly&(t, u)) < d(LyM,) on [0, T1,

for some function @(s) depending on ¢.
On the other hand, for any function v = (v;(¢, x), ..., v, (¢, ) and ae
N", a >0, the chain rule gives

Dfgow DDy, .. DDy,

1< |B| < |al ﬂ! 11(1)+|..4('-%)—|a(\,g|):a a(l)!a(|,3|)!
all >

D(gov)=al

)
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where S e N, a(i) e N". Hence, if we introduce the higher order energies
! . gl
gj(t,?/l)): E —'8(t,Da/M)), Sj(t,ﬂ)): 2 —‘8(t,Da?/l)), j:1,2,...,
lal =j a! lal =j a!

we find, using (3.17), (3.5), (3.7), that for all ¢ > 0 there is some constant C, de-
pending on M, for which

. . &ty v)... 8, (t, V)
§:(t, gov)<C, 4! 27¢" . .
56 gov) < Cey Z’l ‘ h1+n.§;m:j hil...h,!
hi=1
In a similar way we can estimate the higher order energies of f,. Indeed
from (3.22) we derive, replacing v with K(D) » and isolating the terms corre-
sponding to v =1,

1. J Ey (ty U) ... 8y (E, )
B24) S —it, fo<CiYSe S 2 O (j<2).
la|=j al v=2 Iy+..+h,=j hl..hy!
hi=1
But
éj(z‘;v?’t)S j+1(t7 u)r
since

| o | < (E'N(Qu, w)"* < (EXQu, w)'”.
Hence (3.24) implies, for j = 2,

625 3 Liw, o ey oW dalw
la] =4 al v=2 h1+h..+1h1,:j bt bt

Summing up, if we apply the a priori estimate (3.18) to the system (3.20), and
use (3.23) and (3.25), we obtain that our solution satisfies, for all € >0 and
jiz2,

) Sty u) ... 8 (¢, u)
3.26)  8/(t, u) < Cy8(t, )+ Cojl Sie” X il f ! ,
v=2 i+ ...+ h,=] hll...h,,!

hi=z1

with constants C;, C, depending on T', Cy, L, 0., M,.

D) Superenergy of Gevrey type.

In the following, to denote the s-energy of order j of the given solution
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u(t, ), we shall write simply
& =28(t) =8(t, un).
Let us fix some 7,> 0, strictly smaller than the radius of analyticity of
u(0, x), so that we have in particular
(3.27) i LS;(O) =M, < .
i=2 (j=2)!

Then we define, for any o €]1, s[, the (o, s)-Gevrey energies

7 () i ri=2 A ) i pi-2
Jgt = —8" Uﬂat = . N 8 ’
iz (j-2)1 e (j—2)(—1) ! i+ 1

where
r=r(t) =rye “,
with u > 0 to be defined later. We remark that, for all o >1
T, (1) < F5(t),  F5(0) <M.
Finally we assume that the given solution u satisfies
(3.28) Fr(t)< oo on [0, 1].

As it will be precised at the step £), condition (3.28) is always fulfilled, for some
< T, by the Cauchy-Kovalewski theorem. By differentiating &, and using
(3.26) we obtain

(3.29) TFo <1 To+Cr Ty + Gy e

for all ¢ > 0, where

© i(i—1 7”‘7'72 j s s
6 =0 S T S O tOn 1
: i (=21 VT2 e =i byl

hi=1

i =

Now, grouping together the terms with 2 < v <j — 1, we write

— ! 17
90,8_90,£+§0,8'

The last term, where v = j, can be easily estimated thanks to the main assump-
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tion (3.7). Indeed, v =5 implies /#;=1 for all 7, thus we have, for &<
1/(27ry M),

¢l =0 JG =1 ri7?
Jo, ¢ sj;2 (j_z)!ofl

F8ISC, D i e Myt <Gy,
=2
where C, is a constant depending only on M, 7.
As to 8} ., we observe that it contains only terms with max{%;} = 2. Thus,
after some reordering, we find

N im2 -1

g <C i JGg-1r ve? » Spy 16,41

COETTE S (=2t WS =i Byl k!
WEhi=1, 0 >2

Introducing the notations

h—2 h—2

P r
e G =1y

7
=3
(h—2)1°

Mn 18h+1a h22,

and exchanging the order of summation between j and v, the last inequality
yields

j-1 )
I . 1 i h
3.30) G .<C. > ve" > S HG, Wb et 7P,
v=2 j=v M+ +h,=]
[hy| =2, hi=1

where
_ o—1 s _ ! _ ] _ 1 qo-1
H(].,h)=|:h.l 1] . ij(7—-1) .[(hl 2).(h2' D!...(h, 1).]
j—2 hi(hy —1)hy... R, (7 -=3)!
and

p(j, k)= (G =2)= [l =2)+ (he =) + ... + (b, = 1)].

Now, hy = max{hy, ..., h,} =j/v thus for j > v we have j(j — 1)/[h(h; — 1)] <
v3. Hence, using that &, + ... + h, =7 and v = 2, we find that

H(j, h)y<v®,  p(j,h)=1.

As a consequence, (3.30) gives

oo oo
4 4 1 — 4 gl(ag -1
9”’€s087"21/ e’ Z nhlnthrl”-nh,erl_Cs/rEV EVJU(JU)V ’
v=2 h+...+h,=j v=2
|22, hi=1
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since
o0 o0
Fl 1 0
o= _2277]’ Iy = '2277]"
j= Jj=

If we introduce in (3.29) the above estimates of ¢ ,, 67, , we find

(3.31) Fo<{r' + v (F)r} Fo+ C T, + Cy
for e < 1/(2ryM,), where

Clzcl(T’ Q07 CO9L05M0)7 CZZCZ(M07TO)7 we(s)zcs 221/181}81/71-

Now we split (3.31) into the couple of inequalities
Fo<CT,+Coy 7 +9 (F)r=<0.

The first inequality gives

%(t)$(%(0)+ %)QCITSC?)) tE[O,T[,
1

and hence

1 1
AT <y (C)<C, if e<min{—, ——1,
Y (F,M))<y (C)<C, ife mm{zc3 ZTOMO}

where Cs, C, are constants depending on the solution % and on T, ¢, Cy, Ly,
M07 To, Ml'

Thus, if we choose 7(t) = 7,¢e !, we obtain for our solution the estimate
(3-32) :Fa(t; ’M) SC3; tE[O; T[’

for all 1 < o < s, with C; independent of o.

E) Conclusion of the proof.

The Cauchy-Kowalewski theorem and the uniqueness proved in Step B), en-
sure that the given solution u(t, x) of (3.1) is in fact analytic in some interval
[0, [, hence Gevrey of any order ¢ > 1 with arbitrarily large radius. Thus (3.27)
is fulfilled. Hence we are in the position to apply to u(¢, x) the a-priori estimate
(3.32), and we find the uniform estimate F,(z, u) <Cs, for all o0 <1. This
implies

D u(t, x)| < CAl“l |17

for some constants C, A independent of o. Letting 0— 1, we obtain that u(t, x)
is analytic also at t = 7. Applying again the Cauchy-Kovalewski theorem, we
conclude that 7=T.
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4. — Regularity for general systems.

To conclude the proof of Theorem 1, we shall now show that the study of reg-
ularity for a generic first order system of the form
4.1) Su+A(t, D)yu=f(t, x, u)

can be reduced to the study of a block Sylvester system as in Section 3.
Let L(¢, 7, &) be the cofactor matrix of ©f + A(¢, &), so that L(¢, 7, &) (z] +
A(t, &) =0(t, 7, &)1 where

N-1
6(t5 T, g) = TN+ hgobN_h(t, S) Th

is the determinant of 7/ + A, and b, are homogeneous polynomials of order % in
&. Weremark that L = L(t, 9;, D) is an N X N matrix of homogeneous differen-
tial operators of order N — 1, while 6(¢, 9;, D) is scalar homogeneous of order
N. By applying L to (4.1) we obtain 6(t, J;, D) u = L[ f(u)] +l.o.t., i.e.,

N-1
42) fu+ X by _,(t, D) dtu=gt, x, ..., 8D, ...), j+|a|<N-1
Jj=0

for a suitable function g(¢, x, p), analytic in x, p and C' in ¢.
We define now the N2 column vector

(4.3) U=[8]' A" Tul_y, . n, A=(D)y=1-M"7,
which satisfies the first order system
44) U+ at,D)U=G(t,x,...,D*A "y, ...), la|<hsN-1.

We thus obtain a block Sylvester system of dimension N% more precisely, @ is
made of N identical blocks @, of size N, and d, is the Sylvester matrix

(0 1 0 - 0 )
0 1
(fl():/l
0 1
(b, 4! byA V)

We are in the position to apply Proposition 2. Indeed, let ue
CN ([0, T1, y5:(R")) be a solution of (4.1), and assume that (0, ) € A :(R").
Then U given by (4.3) belongs to C'([0, T], y5:(R")) and solves the block
Sylvester system (4.4), while U(0, -) € Q;:(R"). Now, if s<N/(N —1), by
Proposition 2 we conclude that Ue C*([0, T1, A,2:(R")), and this implies that
ueCN(0, T1, A.:(R"™)).

This concludes the proof of Theorem 1.
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