BOLLETTINO
UNIONE MATEMATICA ITALIANA

E. LANCONELLI, F. UGUZZONI

Asymptotic behavior and non-existence
theorems for semilinear Dirichlet problems
involving critical exponent on unbounded
domains of the Heisenberg group

Bollettino dell’Unione Matematica Italiana, Serie 8, Vol. 1-B (1998),
n.1, p. 139-168.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_1998_8_1B_1_139_0>

L’utilizzo e la stampa di questo documento digitale ¢ consentito liberamente per
motivi di ricerca e studio. Non é consentito 'utilizzo dello stesso per motivi com-
merciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=BUMI_1998_8_1B_1_139_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 1998.
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Asymptotic Behavior and Non-Existence Theorems
for Semilinear Dirichlet Problems
Involving Critical Exponent on Unbounded Domains
of the Heisenberg Group.

E. LANCONELLI - F. UGUZZONI

Sunto. - In questa nota dimostriamo stime asintotiche ottimali per le soluzioni deboli
non negative del problema al contorno

(*) —Apu=u@tD/Q=2 4y Q u=0 in OQ.

A g € il Laplaciano di Kohn sul gruppo di Heisenberg H", Q ¢ un aperto non limitato
e Q=2n+2 ¢ la dimensione omogenea di H". Utilizziamo successivamente le stime
ottenute per dimostrare un teorema di non esistenza per (*) nel caso in cui Q2 sia un
semispazio di H" con bordo parallelo al centro del gruppo.

1. - Introduction.

Let A4y be the Kohn Laplacian on the Heisenberg group H" and let @ =
2n + 2 be the homogeneous dimension of H". The aim of this paper is to study
asymptotic behavior and to establish non-existence results for nonnegative
weak solutions to the semilinear boundary value problem

—Agpu=uQ@r?/Q=2 in Q|
(1.1)

ueSi(Q),
where Q is an unbounded open subset of H" and S} () is a Folland-Stein’s
Sobolev space (see definition below). Equations like that in (1.1) naturally arise in

the study of the Yamabe problem for the Cauchy-Riemann manifolds [JL1-2].
The exponent

Q+2
Q-2

is a critical exponent for semilinear Dirichlet problems related to A, as well as
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the exponent

N+2
N -2

is critical for semilinear Poisson equations in RY, N = 3.

In order to be more precise we need to introduce additional notation and to
recall some known results. The Heisenberg group H", whose points will be denot-
ed by £= (z, t) = (x, ¥, t), is the Lie group (R®"*!, o) with composition law de-
fined by

Eol'=@+z,t+t" +2(x",y)—{(x,¥y')))
where (,) denotes the inner product in R"”. The Kohn Laplacian on H" is the
operator

j=1

where
Xj=0y+2y;0, Y;=0,—2%9
for all je {1, ..., n}. We set
V=X, ..., X,, Y1, ..., Y,).
A natural group of dilations on H" is given by
1.2) 0,(8) =z, A%t), 1>0.
The Jacobian determinant of 0, is 19 where

Q=2n+2

is the homogeneous dimension of H". The operator A is invariant with respect
to the left translations of H" and homogeneous of degree two with respect to the
dilations 6 ;. More precisely, if we set

(1.3) T:(E) =&
we have
Ag(uote) = (Apnu) o7, A (uod;) =A% (Apu) 00, .

A remarkable analogy between the Kohn Laplacian and the classical Laplace
operator is that a fundamental solution of —Ay» with pole at zero is given
by [F]

Cq

14 Iég)=——,
(1.4) © = 250
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where ¢, is a suitable positive constant and
(1.5) d(&) = (|z|*+ 3.

Moreover, if we define d(&, &') = d(E' 1 &), then d is a distance on H" (see [Cy]
for a complete proof of this statement). We shall denote by B;(&, ) the d-ball of
center & and radius r. By the left translation invariance of the distance d, we have
7:(B4(0, r)) = B4(&, v). Moreover, since d is homogeneous of degree 1 with re-
spect to the dilations d ;, we also have 0, (B;(0, ) = B4(0, Ar) and |By(&, r)| =
r9|By(0, 1)|. Here |-| denotes the Lebesgue measure on R*"*1. We also recall
that the Lebesgue measure is a Haar measure on H".

A basic role in the functional analysis on the Heisenberg group is played by
the following Sobolev-type inequality:

(1.6) lglle- < BqlIViw gl Vo e C* (H™)
where
2
17 Q= 29
Q-2

and By, is a positive constant whose best value has been determined by Jerison
and Lee in [JL2]. Hereafter ||||p will denote the usual L?-norm. If Q is an open
subset of H", we shall denote by S'(2) the Sobolev space of the functions
ue L9 (Q) such that Viu e L2(R2). The norm in S'(Q) is given by

(1.8) lells ) = lllg» + V202l

We denote by S¢(£2) the closure of Cy” (£2) with respect to (1.8). By means of (1.6),
this norm is equivalent in S¢(£2) to that generated by the inner product

(u, v)s1 = f<VH”u’ Vinv).
Q

Thus S¢(£2) is a Hilbert space. We emphasize that, for general unbounded do-
mains, the space S¢(R) is not embedded in L%(RQ).

A nonnegative weak solution of the Dirichlet problem (1.1) is a function
ueS§ (), w=0, such that

(1.9) f<VHnu, VH—I”¢> = qu*71(p V(pESOl(Q).
Q Q

We explicitly remark that, for every u, ¢ € S{ (L), u =0, we have

u(Q+2)/(Q*2)(pEL1(Q)'
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Indeed ¢ e L2¥/Q~2(Q), 4 @T2/Q-2 ¢ [,2¢/Q+2(Q) and

E N Q+2 _1
2Q 2Q
We also remark that every classical solution of (1.1) satisfies the integral identity
(1.9) since X;j*= —X; and Y;*= -V, for j=1, ..., n.
When Q = H", a positive solution to the equation in (1.1) is the following C'*
function:

Co

(1.10) Ul y, 1) = Ulz, 1) = (11 [[22+ )@ D/

where ¢, is a suitable positive constant. Moreover, every nontrivial nonnegative
weak solution of (1.1) with Q = H" takes the form

W& =2 BERUO, (7 08),  EeH”

for suitably 4 >0 and 5 eH". This deep result of Jerison and Lee [JL2] is the
Kohn-Laplacian counterpart of a celebrated Theorem of Talenti [T] for the classi-
cal Laplace operator.

The following theorem shows that for any unbounded open subset Q of H",
every nonnegative weak solution of (1.1) behaves at infinity like the function U in
(1.10). This is one of the principal results of this note.

THEOREM 1.1. — Let Q be an arbitrary unbounded open subset of H" and let u
be a nonnegative weak solution of the Dirichlet problem (1.1). Then there exists
a constant M >0 such that

W& < MUE) VEeQ.

We will use Theorem 1.1 as a crucial step in proving a nonexistence result on
halfspaces for the Dirichlet problem (1.1). We next give our motivation for study-
ing this problem. A nonnegative function u € S¢ () is a weak solution of (1.1) iff u
is a critical point of the functional

1 1 £
I: S4(Q2)—>R, I(u)=—f|VHnu|2——qu ,
2 Q Q * Q
where @ * is defined in (1.7). The exponent @ * is the critical Sobolev exponent for
A since, even if Q is bounded, the continuous embedding
S(2) LY(2)

is not compact. As a consequence, the Palais-Smale sequences of I are in general
not compact. Therefore, standard variational techniques cannot be applied in
looking for critical points of 1. On the other hand, as Citti proved in [C], the loss
of compactness of the Palais-Smale sequences of I only depends on the weak sol-
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utions of the so called problems at infinity:
~Apu=u@ /@D 4 >0 in H"
and
~Apu=u@D/Q=2 " y>0in 1, u=0 in oIT

where I7 is any halfspace of H". Citti’s work is an extension to the Heisenberg
group H” of some relevant results of Benci-Cerami[BeC], P. L. Lions [L] and
Brezis-Nirenberg [BN] concerning the critical semilinear Poisson equation in
RY, N=3,

A=y N+2/N-2)

For this equation Esteban and Lions proved in [EL] the following nonexistence
theorem: for every halfspace IT of RY the «problem at infinity»

(1.11)
ue Wy UI),

{ —Au=uNFTBD/N=2 iy T,
has no nontrivial nonnegative weak solutions.

Here W (IT) denotes the closure of Cy° (IT) with respect to the usual Sobolev
norm u—>||Vull, and A4 is the classical Laplace operator. Using this result and by
means of algebraic topology techniques, Bahri and Coron [BC] were able to prove
the following celebrated theorem: let Q2 be a bounded open subset of RN, N =3,
and suppose there exists m e N such that the omology group H,,(2) is nontriv-
ial. Then the Dirichlet problem

{ —Au=uN*T2/WN=2 4y Q.

ue Wi (Q),

has a nontrivial nonnegative weak solution.

Bahri and Coron techniques seem to be appropriate for application in the con-
text of the Heisenberg group, provided the above nonexistence theorem of Este-
ban and Lions can be extended. However, at the authors’ knowledge, no nonexis-
tence result has been established for the critical semilinear Kohn-Laplace equa-
tion on halfspaces. In a recent paper, Birindelli, Capuzzo Dolcetta and Cutri
proved nonexistence theorems on cones of H", but they only treat sub-critical
equations [BCC].

In the following theorem we provide a first answer to the problem raised
above.
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THEOREM 1.2. — Let I1 be a halfspace of H" whose boundary is parallel to the
center of H". Then the problem at infinity

—Ampu = u@r2/Q=2 4y T,
(1.12)
we Sy (),

has no nontrivial nonnegative weak solutions.

The center of H" is the set {(0, ¢) |t eR}; a halfspace of H" is merely a half-
space of R#"*1,

Problem (1.12), in spite of its similarity to problem (1.1), presents a much
higher difficulty level, mainly due to the lack of good a priori estimates for o, u.
We explicitly remark that the differential operator J; is homogeneous of degree
two with respect to the dilations 6, in (1.2), thus J,u should be considered as a
second derivative for a solution u of (1.12). A condition on J;% and in particular
its square summability, would allow us to apply Theorem 2.4 of [GL2] in proving
our Theorem 1.2. Starting from Theorem 1.1 we will actually show that

(1.13) |8,u| < MU

where U is the function (1.10) and M is a suitable positive constant. This estimate
implies that d,u e L*(IT) only when n > 1, however it is sufficient for proving
Theorem 1.2 for every n = 1.

To obtain inequality (1.13) we will use an argument based on the representa-
tion of the harmonic part of 9;u as a fixed point for a mean value operator mod-
eled on the geometry of I1. We should add that our method is not applicable to
the halfspace

II,={(z,t)[t>0}

or, equivalently, to any other halfspace whose boundary intersects the center of
H" at a single point.

The paper is organized as follows. In section 2 we prove L” and Hélder conti-
nuity properties for nonnegative weak solutions of (1.1). Section 3 and section 4
are devoted to the proof of Theorem 1.1 and of Theorem 1.2 respectively.

2. — L? and Holder properties of solutions.

Throughout this section we shall always denote by % a nonnegative weak sol-
ution of (1.1). 2 will be supposed to be an arbitrary (bounded or unbounded) open
subset of H". Our aim is to prove L” and Holder continuity properties of u. The
main results are contained in Proposition 2.1, Proposition 2.6 and Proposition
2.7.

We will use boot-strap and iteration techniques inspired to those of Brezis-
Kato [BK] and Moser ([GT], Chapter 8). We would like to stress that the major
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difficulties lay in proving that e L?” for Q* /2 <p <@*, which leads to novel
and significant modifications of the standard schemes.

PROPOSITION 2.1. — We have ue L*(Q) for every pe]Q* /2, + =].

PrOOF. — The proof will directly follow from Lemma 2.2, Lemma 2.3 and Lem-
ma 24. =

LEmmaA 2.2. — We have uwe LP(Q) for every pe[Q*, + .

PROOF. — Since u e L9 (Q) there exists M > 0 such that

Q/2
. 1
@.1) |y
(u> M) 2Bq

where B, is the constant defined in (1.6). Let neC” ([0, + o[) be such that
0sy<1,n7n=1in [0, M], =0 1in [2M, + [. We set

V=>10-ngw)uQ D g=yu)u@ /@2
Then u is a weak solution of

—Agpu=Vu+g in Q,

2.2)
| ueS(2),
where
2.3) VeLY*(Q), geL?YQD(NL>(RQ).

Moreover, (2.1) yields ||V||Q/2 <1/2Bg. Hence, for every ¢ €S (2), we have

1
(2.4) fV(PZ <|Vlgpllela: < BglVilge Vi ¢l < E”VH“(/)”% .
Q

We now proceed by essentially adapting the proof of Lemma 4.1 of [GL2], taking

into account the fact that the Sobolev space S? in [GL2] is different from S}. For
every ke N we define V;, = min{V, k}. Since (2.3) and (2.4) hold, Lax Milgram’s
Theorem implies the existence of exactly one weak solution u; of

—AH?l%k:Vkuk“r‘g in Q,

(2.5)
| e So (),
such that
(2.6) i llg+ < V/Ba lhwllsg < 2 \/Balgllssy < 2B lgllqyq - 2-

The same argument also yields uniqueness for the problem (2.2). Hence, by the
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boundness of (u;) in S¢(R), taking a subsequence if necessary, we have
Q.7 w,—u  weakly in S} (Q).

We now want to prove that, for every pe[Q™, + o[ there exists c¢,>0 such
that

(28) Sup”uk ||p S Cp .

keN
We set 5 =Q/(Q —2). Since > 1 and (2.8) holds for p = @* (see (2.6)), we only
need to prove (2.8) for fp, under the hypothesis that (2.8) holds for p. We fix

kelN and, for sake of brevity, we set v=wu,. We then define, for every
melN,

— s + _ -1 _ 2
vm—mln{v ’ m}7 QOm—WZ ) f;n_/urg/ .

We remark that v, v,,, @, f.€S¢ (), since p = Q* > 2. Moreover v,,, @ ., fu
are all nonnegative. Choosing ¢,, as a test function in the weak formulation of
(2.5) and setting a, = (4(p — 1))/p we obtain

2.9) O!pf | Vi |2 = f<VH" Vooy Ve @) = f<VHW, Vi @) =
Q Q Q

f(Vk?)(Pm‘*'QCDm)\ kafm"'k f ?fp+f9€0m-

{v<m} {v>m}

Since Ve L%(22), we can choose M, >0 such that

2/Q
f ver| < 2o
(V>M,) 2B,

(2.10) fom sM, f f2+ f V2 <

{V<Mp} {v>u,}

Then

a
M[J”fm”% + _P ||fm|

a
p
e A AT R LA

From (2.9) and (2.10) it follows

a

a
Z_BPQ ||,Um||£p = Z_BPQ ||fm||%2* ?P ||VH[”fm||2 =

M|\ l2 + f?”+fww\MHmm+k [ or gl lowliz

{v>m} {v>m}
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From these inequalities, as m goes to infinity, we obtain

p

5B o * ||§19SMZ,||1)+ ||£+ ||ng vt ||£’1 < (since (2.8) holds for p)
Q

My cf + e~ lgl, <
Mycp +cp gl @7 )lglge’” < + o (for (2.3)).

Since a similar estimate can be proved for v ~, (2.8) holds when replacing p with
PBp. Therefore (2.8) holds for every pe[Q%*, + .
We now fix pe[Q*, + o[ and we define

C={feSi@|Ifl,<e,}.

Fatou’s Lemma ensures that C is a closed convex subset of Si (22). By (2.8) (uy;,) is
contained in C. Hence, by (2.7), w e C. In particular v e L?(Q). =

The next lemma is one of the crucial steps in the proof of Theorem 1.1.
LEMMA 2.3. — We have ue L*(Q) for every pe]lQ* /2, Q*].

Although the proof follows the lines of the previous one, it presents many
more difficulties. Indeed we need to choose ad hoc truncated potentials and par-
ticular test functions.

Proor. — We fix £€]0, 1/2[ and we set

1

2.11 M,=— .
(2.11) T A 2e7

Since we L9 (R) there exists 0 >0 such that

Q/2
2.12) qu*<( ! ) :

{u<20} MsBQ

Let neC~ ([0, + ©[) be suchthat 0 <y <1,#=11in[0, 6], n=01in [25, + =][.
We set

V=nu)u*Q 2 g=(1-nu)u@ /@2
Then u is a weak solution of

—Agu=Vu+g in Q,
ueS§(Q),



148 E. LANCONELLI - F. UGUZZONI

and, by Lemma 2.2,

(2.13) VeL(Q)NL*(Q), geL?(Q) Vpell, +ol.
Moreover, by (2.12),

1
@1 [V <Wlaplelly < - IFiols Voesi@
Q €

(note that 1 /M, <1). For every ke let #,eC” ([0, + [) be such that 0 <
ne<1,5,=0in[0,50/(k+1)], n,=11in [6/k, + [. We define V=5, (u)V so
that

(2.15) VieLY(Q)NL~(R)
and
Vi, V.

Exactly in the same way as in the proof of Lemma 2.2, we can see that for every
ke N problem (2.5) admits a weak solution u; such that

(2.16) suglluk st Sc=c@Q, u, ¢)

and u, —u weakly in S¢(RQ).
We now want to prove that
2.17) Eup”uk”Q*(l—s)sCOZCO(Q7 u, €).
eN

We fix ke N and, for sake of brevity, we set v =u,. Then we define, for every
melN,

m2e/1=20 (3 +)1/1-20  whape p< — |
m
Uy =
1
v where v > — |
m
2e,, + 1
m=€y where v< —
m
_ v 1-2e _
(pm - vm f= 1
pl-2e where v> — |
m
(2e(1—£))/(1=2¢&) (5, +\(1 =) /(1 —2¢) 1
m (%) where v< —
1 —e _ m
fm_vm -
1-¢ 1
v where v > — .
m

We remark that v, v,,, @,,, f,€S¢(2), since 0 <1—2&<1—¢<1. Moreover
Uy ©ms fm =0 and v,,—v ¥ pointwise, as m — + «. Choosing ¢, as a test func-



ASYMPTOTIC BEHAVIOR AND NON-EXISTENCE THEOREMS ETC. 149

tion in the weak formulation of (2.5) and setting ¢, = ((1—¢)/(1—2¢))%, we
obtain

flvﬂ"fm |2= (1_28) C£f<vﬂ["'/07’i’l,’ Vm[n(p,m/>= (1_28) Cé‘ f (V]”[ﬂ/l), V]H[n(p7n>+
Q Q

{v>1/m}

¢ f m2e/A -2 /A=20 "1y ) Viwg,,) <

é{0<vsl/m}

Cs f <VH” v, VH”’ @ m> + Cs f <VH” v, VIH” (2 m>

{v>1/m} {0<vs<1/m}

(since (Vi v, Vipg,,) =0 in Q)

= C£I<VH717), VH"’¢m> = Csf(VkW?m +g§0m) =
Q Q

ce( f Vi f2 +m? f Viv?+ f gvl %+ me f gv)s
{

v>1/m} {0<v<1/m} {v>1/m} {0<v<1/m}

1 2 1 * 1-2¢ 1
o g sl g ekl il LIk
Here we have used (2.14). Reading from (2.11) that ¢, /M, <1, from (2.13), (2.15),
(2.16) and (1.6), we obtain

€1

Ve oI < e +c

with ¢; =¢,(Q, u, €, k) and ¢y, = ¢y (Q, u, £). Hence

¢1Bg
ml—Zs

ol 2 = 1 fiullGs < BV £l <

+ CQBQ

and letting m — + o, Fatou’s Lemma yields

o *

Q*(1-¢) S (CZBQ)I/(Z(lig)) =16 = CO(Q7 u, 8) .

A similar estimate can be proved for v ~. Then, inequality (2.17) holds. We can
now conclude as in the proof of Lemma 2.2 and obtain

ueL¥19(Q)

for every fixed e€]0,1/2[. =

The following lemma completes the proof of Proposition 2.1.
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LEMMA 2.4. — We have we L ().
Proor. — It is sufficient to prove that there exist ¢, > 0 and a sequence of posi-
tive numbers (py)yen such that py— + o and

(2.18) suvaquN <g¢.

NeN

We shall use the notation of Lemma 2.2. By Lemmas 2.2 and 2.3, we know that
geLl'(Q)NL*(Q), VelL’(Q) Vpe]%,Jroo[.
Setting r = \/ﬁ =VQ/(Q —2), from (2.9) we get

ap [ 1Vt 2= Wlhoslotlh+ k[ 07+l pllonllt <
Q

{v>m}

o ln vk [ v clor .

{v>m}

We have used here that sup |gl|, <candr/(r—1)>1/(8-1)=(Q—-2)/2=
]

pell, +=
Q/4. From this estimate, since

a a
B_P ||vm||§p = B_p ||fm”z)* S ap”VH"me% ’
Q Q
letting m — + o« we obtain
a

_r

7 0 5 < edlo Iz, + o 1575
Q

where ¢ does not depend on p. On the other hand, being p=Q*>2, a,=
(4(p —1))/p?®>1/p. Therefore, if we set H,=max {1, [[v"[,} we get
Hy, < (cp)'?H,, VpelQ*, + [

where ¢ is another positive constant not depending on p. Choosing p =7r/@Q*,
jeN, and recalling that B =% we have

HTHZQ* = (C’I"j)l/er*HTjJrlQ* .

Therefore, for NeN, N =3, setting py =7’/Q*, we obtain

N-2 )
||7)+”st TNQ*S ( H (C’)/'])I/TJQ*)HVZQ*SC’HTZQ*SCO
1 i=1

+ o

(note that » > 1 ensures that > j/»/ is convergent). Since an analogous estimate
j=1

holds for v ~, (2.18) follows. ™=
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We now want to prove some more properties of .
LEmMMA 2.5. — There exists a positive constant ¢ such that

[l = e, 1) < e @ye, 2 VE€H".

Here we have set uw =0 outside .

Proor. — Let us fix #, ReR such that 1 <» <R <2 and choose aeC*([0,
+o[)suchthat 0 sa<1,a=1in[0,r],a=0in[R, +[and |a'|<2/(R — 7).
We set ny=a(d) and, for every £eH", define nz=#ngo7s-1. Thus =1 in
By(&, 1), n=0in H"\By(§, R) and

2
R_
We now fix Ee H" and pe [Q*, + [ and we set n =ns, ¢ = n*ul ™!, v = nu?/?
B,=B,(&,r) and By =B,(&, R). We remark that ¢, yeS;(2). We also set
B =Q%* /2. Finally, we define

o <l [l <

@19 [Venele =1Venole =l (@) Vid

I= f??ZMP_Z |V1Hnu|2 .
Choosing ¢ as a test function in (1.9), we get

qu*_1¢:f<VHn’M,, VH11()Z)>2f772<VHn’I/L, VHn(up_l)>_2 fﬂup_l |VH77,7/L| |VHn77| =
2 -2 1 2
(p - 1) 77 'U/p <VH7LM, VHM,'LL>_ 51_2 |V]Hn77| up:
3 2 1 2
p_E I1-2 |VH"77| ul = 51_2 |VH"77| u? .

Hence, recalling (2.19), we obtain

@20) |l s,y < lpll < el Vi pll =

2
|V (uP?) + uP Vg3 < 2¢ (%I + [PV nHE) <

!%) <

ot ( Lavr=rg s [ Suntinr) v

fup)s

(R =1 g,
2
- ) ol -

cp® 1+; fu”Sc b
R -7y |g, R -

cpZ(nun%*Zf ntu +
Bp
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The positive constant ¢ only depends on @ and u. For every m e Z* we now define
P = ﬂmQ *7 Tm = 1+ l/zm, Bm = Bd(g’ 7/‘m)y Hm = ||u’| LPm(B,,)* Lettlng D=Pm> "=
¥*m+1 and R =7, in (2.20) we get

p 2/pm

— 1/p, m _

Hm+1 - ||M||L/ipm(3m+1) sc /P Hm -
Tm = Tm+1

Cl/ﬂmQ*(zmﬁ’ lﬁﬂmQ *)Z/ﬁmQ*H"‘L - Ccﬁfm(zﬁ)cynﬂme

m

Hence, for every N e N we have
N71 —m —m
Hy<H, I (¢ "(2B)™ ")<cH,.
m=0

Letting N— + o« we finally obtain

N 0
||u||LQ*<Bd<§, oy = Hy = cHy = cllullpm, e, 1) —= C||%||L°°<Bd<.§, n) -

The positive constant ¢ only depends on @ and u. =
ProposITION 2.6. — We have w(&E) —0, as d(&) — =, & a.e. in Q.
ProoOF. — It is an immediate consequence of Lemma 2.5. =

ProposITION 2.7. — Let us suppose that Q satisfies the following boundary
reqularity condition: there exist two positive constants & and ry such that

@2.21) |By(E, D\Q| = 6|By(E, )| VE€IQ Vrelo, nl.

Then, if we continue u on H" by setting u = 0 outside Q, there exist a €10, 1[ and
M >0 such that

|u(&) —u(&") | s M(d(&, §"))* V&, &' eH”

(i.e., following Folland-Stein [FS], u belongs to the Hélder space I'*(H")). In
particular uwe C(Q), u=0 in 99Q.

ProoF. — We refer to the Appendix, Theorem A.1 (we recall that u e L * (2) by
Lemma 24). =

COROLLARY 2.8. — If Q2 = II is a halfspace then there exists o]0, 1[ such that
we '(H"), setting uw=0 outside I1. In particular we CII), uw=0 in OII.

ProOOF. — We only need to prove that every halfspace IT satisfies (2.21). When
& =0 the d-balls centered at & are symmetric with respect to & (see (1.5)) and the
condition (2.21) is obviously satisfied (with 6 =1/2). On the other hand any other
case can be reduced to this one by a left translation of the group H" (which is a bi-
jective affine transformation mapping halfspaces into half-spaces). =
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ProPOSITION 2.9. — It is ue C~* (). Moreover, if 2 =II is a halfspace with
boundary parallel to the t-axis, then we C ™~ ().

Proor. — The first part of the statement follows from Proposition 2.1, by
means of a standard regularization technique, based on the results of Folland
and Stein [F'S]. The additional hypothesis that oIT is parallel to the {-axis ensures
that 9I1 does not have characteristic points. This fact together with Corollary 2.8
gives the boundary regularity (see [KN]; see also [J]). =

REMARK 2.10. — If @ satisfies (2.21) (in particular if Q2 = II is a halfspace)
then w is a classical solution of

~Apu=uQ@D/Q2 iy

u=0 m Q,
u=0 m 08,
w(&) —0 as d(§)—

by means of Propositions 2.6, 2.7 and 2.9.

3. — Proof of Theorem 1.1.

In this section Q will be an arbitrary unbounded open subset of H" and u« will
denote any fixed nonnegative weak solution of the boundary value problem (1.1).

Our method, partially inspired by a technique used in [CGL], is based on a
representation formula which can be found in [GL1]: if v is a C? function in an
open subset A of H" and B, (&, ) CA then

31 wé) = Mv)E) - 7% J‘QQ*1 f (F(S, £')—
0

By(&, 0)

Cq N e
A Apv(E") dE" do

where M, is the mean value operator defined by

1

[ v enoen .

3.2) (M,v)E) = 3
AQT "By,

Here we have set I(E, ') =T(E' 1 c&) and (&, E') = Y(&E' ! &) where

3.3) we = 120
' d(E?
Moreover

ag= f W) d§.

Bq(0, 1)
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Let us introduce the function

(3.4) w=TI=f: H'—=R, W(§)=ff(§,§’)f(§')d§’,
Hn
where we have denoted
(3.5) f=u@ !
and u is set be zero outside Q. From Proposition 2.1 it follows that
(3.6) feL'H")NL>H").
Hence, by means of the results of Folland and Stein in [FS], we get

3.7 weLP(H"), Vpe] sz , +oo[,

(3.8) —Agpw=f weakly in H".

Moreover w =0, Awi(u—w) =0 in Q and (u —w)"* :=max{0, u —w} eS¢ (Q).
Then (v —w)* =0 in Q, ie.

3.9) Osusw in Q.

The following lemma is another key point in the proof of Theorem 1.1.

LEMMA 3.1. — For every sel0, @ —2[, it holds

1
1 = - — o,
(3.10) w(&) O( A&y ), as d(&)

ProoF. — We set p = Q/s and V =u?"~2 For sake of brevity, for every & e H"
and r >0, we also define

Ne= | rv, ne= | rowe,  M@=owe,

Bq(&, 1) Bq(&, 1)

where I'; = I'(§, -) and M, w is the mean value operator defined in (3.2). We now
fix ¢qe]Q/4, Q/2[ and we set p'=p/(p—1) and ¢’ =¢q/(q—1). Since p, q'e
1Q* /2, + [ we have

(3.11) w, we LP(H") N LY (H"),
(3.12) TeL?(H"\B,(0, 1)) N LY (H"\B,(0, 1)),
(3.13) VeL(H")NL*(H"),

(3.14) V(&)—0, as d()—x,
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by means of (3.7) and Propositions 2.1 and 2.6. Hence we can establish the follow-
ing estimates

C
(3.15) M, (&< f w< —|lwll |1 = _TQ/P - =
r g QBd(;’: " 7" || ||p|| HL" By(&, 1) — /}"Q e

and

3.16)  N.(&) <|IFellprmue, VL= @ue m + 10 le @z, 0y VLo, m <
V= @ae, m + Vi, m)-

In particular (3.13) and (3.16) give

3.17) sup N,(&) <c.

EcH", r>0

Let us now recall (3.8) and write the representation formula (3.1) for w (}). From
(3.5) and (3.9), f=Vu < Vw, and we get

(3.18)  w(®) = M<s>+—fQQ1 f(rg—%)f do <

By(&, 0)
,

M(&H%f@Q 1( J FEVw)d@ MO+ 1E < (by (315) — C 11,
B,

0 a(E, 1)
Hence

319 I(§ = f I's(n) V(??)(— +1 (77)) dn <

By(&, 7)

—N(§)+ f r:VIL< (by (317) — + f revi,.
Ba(&, 7) T By,
Moreover

(3.20) ngVIF fF(E,ﬁ)V(n)( ff(n,C)V(C)w(C)dC)dﬂ=

Bq(&, 1) By(&, 1) Ba(p, 7)

fV@w(;)( | F(S,n)F(n,C)V(n)dn)dC-
B,

By(&, 27) a(&, 1) N By(E, 1)

() (3.1) is proved in [GL1] only for smooth functions, but it can be easily extended to
any function as regular as w.
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We now define A=B,;(&, r)NBy(,r), Ay={neA|dn, ) <d&,)/2} and
Ay, =A\A;. Then d(&, ) = d(&, ) /2 for every neA; and

fF§F§V=
A

fF§F§V+ fFEI“CVS cl'(&, C)( fF;VJr fFEV) <cl(&, N, (5 +N,(5).
Ay Ay Ay Ay
This estimate and (3.20) finally yield

3.21) fF,;Vlrsc sup NT(C)( f FEVw).

By(&, 7 eBa(&, 2m) By(&, 21)
From now on we will take »=17(§) = d(&) /4. From (3.16) it follows that

sup N < e[Vl = gy, vy + [VIlLogs,o, @) -
LeByE, 2r(®)

Then, by means of (3.13) and (3.14),

sup N,y —0 as d(&)—x.
{eBq(&,2r(&)

Hence, for every & e H" satisfying d(&) > R, R sufficiently large, from (3.21) we
obtain

1
By&, (&) 2 (e, 2r(2)
1 1 1 c
=5 le®+ 5 f TV — L@+ ——= VI, ol
Ba(&, 2r(E)\Ba(&, (&) r(&)

Recalling (3.11) and (3.13), from (3.19) and (3.22) we finally get

c ¢
(&P r(E9E
Therefore, since (&) = d(&) /4, the estimate (3.18) gives

for d(&§) >R .

1
S (E) <
7 @ (&)

w(§)=0( ) as d(§)—>w. =

gy

We are now able to establish the following «optimal» asymptotic behavior and
then to prove Theorem 1.1.

POPOSITION 8.2. — It is w(&) = O(d(£)?~9Q), as d(&) — .
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ProoOF. — From (3.5), (3.9) and (3.10), choosing
Q Q

§= = —-2),
1 g
it follows that there exist M, R > 0 such that
M M
(n) < p = if din)>R.
TS Gy @~ a8 !
Hence, for d(&) > 2R we obtain
20M

(3.23) sup fy) < ——
neBa(E, dE) /2) d(&?

which yields, also using (1.4) and (3.6),

w(§) = f &, n) fOpdn + f &, nfGy)dn<

{d(g, m) = d(®) 2} {d(g, ) <d(®) /2}

c c dn c
—lflh + — = .
d(§)?2 7k A& (ae, » iz(z;)/z} A&, % d(§)2

ProoF oF THEOREM 1.1. — It directly follows from (3.9), Lemma 2.4 and Propo-
sition 3.2. =

The following lemma provides an estimate of the derivative o,w, which will
play an important role in the next section. From now on we will suppose that Q
satisfies the boundary regularity condition (2.21). By Proposition 2.7 and Lemma
2.4 there exists a€]0, 1[ such that

(3.24) fel“(H")
where f is the function defined in (3.5). Then
(3.25) we YE“(H"),

ie. XYwe % .(H") for every X, Ye{X;, ..., X,,, Y1, ..., ¥,,} (see [FS)).

LEMMA 3.3. — If Q satisfies (2.21) (in particular if Q = I1 is a halfspace) then

3.26) Sw(&y) = f 8 I'(5o, EN(FE) —f(&g))dE" +

Bg(&o, 1)

f 9 I'(&o, ) AE") dE’,

H"\Bq(&0, 1)

for every Eyge H" and » > 0.
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ProOOF. — Let us fix £e H" and r > 0. We define
r
B:Bd(gﬂy E); BOZBd(§0’ 1/')7

fo=ts,  Hi=f-h,

where x 5, denotes the characteristic function of the set B,. Let e C* ([0, + o[)
be such that 0 <y <1, =0 1in [0, 1], =1 in [2, + o[, and for every ¢ >0
let n,=n(d/e)eC”(H"); we will also denote 7.(§, §") =5,((E")1:&). We
set

wo=Tx*fy, wy=Txfi, wo, .= Un,) *fy.
Since from (3.6) fe L *, it is immediate to verify that
3.27) wy, . =3w, in B, as ¢—0"

(hereafter = will denote uniform convergence). Moreover w, . C *(B) and, for
every £eB and ¢ <r/4, we have

(3.28)  Jywy, (&) = f<9t(ﬂ7£)(§, N f(E)dE =
By
fat(ﬂ?g)(é", EN(f(E") —fo (&) dE’ —fo(é)fat'(ﬂ?g)(f, £ dé' =
By By

fat(Fﬂg)(S, ENHE) = f(E)dE" - f(&) ff(é', & vi(&') da(E").
By

3By

The last equality follows from the divergence theorem. We have denoted by o the
surface measure and by v,(£') the (2n + 1)-th component of the outer unit nor-
mal. We set wy: B—R,

(3.29)  wy(8) = fatr(fy EN(fo(E") —fo(8)dE" — £ (&) fF(&, &N v(§')do(E).
By

3B,

From the Hélder continuity of f given by (3.24) and the estimate |3, I'| < ¢d ~9, we
obtain

[1are, entien —mede <cf de, ey-o< v .
By By
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Moreover, from (3.28) and (3.29),

<

f S (I(1=n ))&, §N(H(E) —£(8)dE’

By(&, 2¢)

| W0 (&) = Sy, (&) | =

8,d(E, &
¢ | (r(&&')Hn'Hm'Lf)U|atr<§,5'>|)d<s,&'>ads's

Bq(&, 2¢)
¢ | ageyca-c [ ave,
By(g, 2¢) By(0, 2¢)
for every £e B and & <r/4. Hence
(3.30) oWy, . =2wW, in B, as e—>0".
From (3.27) and (3.30) we deduce
(3.31) atwO = @0 in B.
On the other hand, since fe L'(H") (see (3.6)), for every &eB we have
(3.32) dywi (§) = f O, I(&, &) f(§") dE".
H"\By
Moreover, the divergence theorem ensures that
(8.33) fF(Eo, & vy(&") da(E") =C7”2_vat(§’)d0(§’) =0.
3B, 9By

Recalling that w = w, + w; and replacing & with & in (3.29) and (3.32), from (3.29),
(3.31), (3.32) and (3.33) we finally obtain (3.26). m

PROPOSITION 3.4. — If Q satisfies (2.21) (in particular if 2 = II is a halfspace)
then

|Sw(E) | =0@d(E? %), as d&—o.

Proor. - We set 5 =4 /(Q + 2 + a) (a appears in (3.24)). From (3.6), (3.24) and
(3.26), for every £e H" and >0, we get

334) |qwd)| =

¢ | d(g,g'rQ|f<§'>—f<§>|ff(3s2p)f)“ﬂds'+c [ e eropende <

By(&, 1) H"\By(&, 1)

c( sup f)lfﬁ f d(é,E’)O‘ﬁ’Qdé'+c7"Q||f||1=c7‘aﬁ( sup f)175+c7"Q.

Bq(&, 1) By(&, 1) Bq(&, 1)
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From (3.5) and Theorem 1.1 it follows that f(&) = O(d(&)9"2) as d(&)— .
Choosing = d(§) /2 in (3.34), for large d(§) we get

|8, w(E) | <cd(@)Pd(E)P T + cd(E) U=cd(§) ¢+ cd(E) < cd(EP ¢ m

4. — Proof of Theorem 1.2.

It is not restrictive to prove Theorem 1.2 under the assumption
4.1) n=11,:={{=(x,y,t)etd" |x;>0}.

Indeed, as it has been noticed in [U], for every halfspace /T with boundary paral-
lel to the t-axis, there exist a left translation 7 and a rotation ¢ around the ¢-axis,
such that IT = otl1,. Moreover the operators 4 and |Vy. | are invariant with
respect to 7 and o.

Throughout this section we will then assume (4.1) and denote by u a (fixed)
nonnegative weak solution of (1.12).

The main step in the proof of Theorem 1.2 will be Proposition 4.4 where we
find the estimate (1.13):

|[Qu| <MU .
As in the previous section we will denote by w the function
w(§) = (I'=f)§) = fF(E, EVRENAE,  f=u@rR/QR,
Jl_l?l
Moreover v will denote the A yn-harmonic part of u, i.e.
4.2) V=wW—U.
From (3.8), (3.25) and Remark 2.10 it follows that v is a classical solution of

Awpv=0 1in IT,
4.3) { o

vV=w in OIT .
As a consequence, since the operators 4« and d; commute, = 0 on 9I7 and

oIl is invariant with respect to the Euclidean translations which are parallel to
the t-axis, we have

[Aﬂn(at’l])zo in H,
ov=9ow in OIT .

Our main idea is to use these properties for representing ;v as a fixed point for
the following mean value operator modeled on the geometry of I1=1II,. For
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every w e LL.(IT) we define
(4.4) Tw: >R, (Tw)&) =M, gw)§)

where M, is the mean value operator introduced in (3.2) and

(4.5) 7(E) =7 (Xy, ooey Ty Y1y s Yns t)::% )
ProposITION 4.1. — T is a linear operator with the following properties.
(1) T maps L. (IT) into C(IT). Hence we can define, by induction,
T"'ew=T(T*(w)) VweLlUI), VkeN.
2) T is an increasing operator, i.e.:
(w1, weeLip (D), 01 < w3) = (Tw, < Tw,).
@) If weC?>(T) and Aypnw =0 then To = w.

@ If weC?*(I) and Aww <0 then (T*w),cx is a decreasing se-
quence.

(5) The operators T and 9; commute. More precisely if there exists oyw e
CUI) then there exists also 0,(Tw) e C(II) and it is

3:(Tw) =T(3,w).

PROOF. — (1) We prove that, for every fixed w e L.}, (IT) and &,e 1,
| To(8) =T &) | S | My (&) =M,y w(&o) | + | Mgy (§0) =My 0(§o) | =0,
as £—&.
On the one hand (3.2) gives
| M,y 0(8) = My (&) | =

1
— f Y&, n) wln) dy — f W&y, O w(8) dE ‘ =
aqr(E) | By v Ba(&o, 1(©)
1 f P&, O (@(Eo&gtod) —w(D)dE | <
Q 0, (e} 0 e} ~
aqr(E) | By, r@)
1

[ jeEeereo - w@)dc.

a Q&) e

The continuity of r (see (4.5)) and the L '-continuity theorem ensure that the far
right hand term in the previous inequalities goes to zero as £—&,. On the other
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hand, the continuity of » yields
Jim M.y 0(50) = Mgy (E0) -
S0

It then follows that Tw e C(IT).

(2), (3) immediately follow by comparing (4.4), (3.1) and (3.2).

(4) From (3.1) and (4.4) we obtain Tw < w. This fact and (2) yield w = T"w =
T+ 1w, for every ke N.

(5) We set F': II x B;(0,1)—=R,

F(E, &) =(woTe0d, ) NEN)=w(z+1(E) 2", t+r(EPt' +2r(E){x’, y)—(x, y'));
see (1.2) and (1.3) for notations. From (4.5) we have 0,7 =0 so that
(4.6) OF(E,E") =((8iw) otz 00,5 )E").

By means of a change of variable we obtain

1 1
Tw(f) = ——— (yor:No=— (Y 00, )@ oTz00,) =
aQV(E)QBd(s,{(s)) aQBd(Ofl)

1
— f W& F(E,E)dE .
aQ B4(0, 1)

Hence, from (4.6) and the continuity of J;w, we get

1
O (Tw)(§) = — f P(3w) 0T 00 ,(5) =

A QB4 (0,1)
1
_ (Yor:l) 80 =TO,w)&).
aw@)%d@,[@ o :

Using (1), we can write 0;(Tw) = T(3,w) e CUI). ™

REMARK 4.2. — We emphasize that the assertion (5) of the previous proposi-
tion holds since JI1 is parallel to the t-axis and we can choose r(&) not depend-
ing on t (see (4.5)).

LEMMA 4.3. — T*u is a decreasing sequence which is pointwise convergent to
zero in I1 as k— .

PrOOF. - Since A4 . u < 0, from Proposition 4.1-(4) we deduce the existence of
a function h: IT— R such that

4.7 T*uN\h.
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Since u = 0, using Proposition 4.1-(2) we obtain
(4.8) 0<h<u.
Hence he L, (IT). Recalling (4.4) and (3.2), we see that (4.7) implies

(&) = lim (T*" (@) = lim | —— f (&, &) TruE") dg’
O‘QT@ Ba(&, 7(9)

— f Y&, &) W(E") dE" =Th(&)
aQT(é") Ba(&, 7(®))

for every & e I1. Therefore, Proposition 4.1-(1) provides

4.9) h=TheCI).

Moreover, since e C(IT), w =0 in 81 and u(§) —0 as d(&) —> » (see Remark
2.10), (4.8) yields

(4.10) heCIl), h=0inodl, WE—0 as d(§E)— .

Let us now assume by contradiction that & is not identically 0. From (4.8) and
(4.10) there exists £,e€ Il such that

h(&y) =maxh>0.
I

Hence

A=hr"T({MED})

is closed and nonempty. Moreover for every £e A, (4.9) yields

0=mé& —-ThE) = —— f Y&, &' )(maxh mE))AE" .
O‘QV@ Ba&,r(@)

Then (') =maxh=hné&,) for every &'eB,;(§, r(§)), ie. Bq(&, r(&))cA.
17

Therefore A is also open. This yields A = I since IT is connected. In other words
h=nm&y) >0 in II, contradicting (4.10). Hence it has to be h=0in /1. =

PROPOSITION 4.4. — It is |8,u(§)| = O(d(§)*~?), as d(§) — », Eel.

ProOF. — From (4.3) and Proposition 4.1-(3), it is Tv = v. Lemma 4.3, (4.2) and
the linearity of T give

(4.11) Trw=T*v+ T*u=v+Tru \v.
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Proposition 4.1-(5) and (4.11) yield

4.12) fquk(atw) = quat(Tkw) = —f(atcp) Thw % —fv@t@b: f@@tv
1 1 1

1 n

for every @ e C;* (IT). From Proposition 3.4 and the continuity of 8, w (see (3.25)),
there exists M >0 such that

(4.13) -MI'sd,wsMrI

where I is the fundamental solution of — A ¢« with pole at zero (see (1.4)). Thus,
for every kel\,

(4.14) —MI=T"(-MI) <T*6,w) < T*(MI' =MI' in IT,

by means of Proposition 4.1-(2),(3). From (4.12) and (4.14) we finally obtain

quatv stqﬁr VoeCr (), @20
i n

which implies
(4.15) |Ov| <M in IT.
Collecting (4.2), (4.13) and (4.15) we conclude that

|Qyu| <2MI  in IT. u

Proor oF THEOREM 1.2. — It follows from Proposition 2.9 and Proposition 4.4,
by using the Rellich-Pohozaev type integral identity proved in [GL2]. We use the
same arguments as in the proof of Theorem 2.4 of that paper. For the sake of
completeness, we next explain the changes we need to make to the proof
of [GL2].

We assume IT = I1, (see (4.1)). Let us introduce the following notation for the

point Ee H": &= (2, t) = (x;; 2, t), where 2 = (x3, ..., %,, ¥). The outer unit nor-
mal to 91T is
(4.16) N=(-1;0,0).

Let P be the vector field
4.17) P=-9,+2y,0,=(-1;0, 2y,).

Then (P, N) =1 on 0IT and [T is t-starshaped with respect to (—1; 0, 0) (see
Definition 2.2 in [GL2]). We also remark that, in the notation of [GL2], P = P".
Setting By = B;(0, R) for every R > 0, using the integral identity (2.7) of [GL2]
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and proceeding as on page 83 of the same paper, we obtain

(4.18) f |Vinu|?do = f |Vinu|?(P, N)do =

Bpn ol Bpnan
a_ 2 g
f |Vipu|* — —u® |(P, v)—2(AVu, v) Pu | do .
1N 3By Q*

Here v = Vd/|Vd]| is the outer unit normal to 9B, o denotes the surface measure
and A is the matrix

L, 0 2y
0 I, —2x
2y —2x 4|z|?
which allows to write 4y in the following divergence form

Ayn=div(AV), V= gradient operator in R®"*1,

By means of assumption (4.1) and Proposition 2.9 the function % belongs to
C * (II). Using Proposition 4.4 we obtain the following important estimate

@19 Pul= |- X+ 4y 5] < |Vieu] +ed® 0 in 17,
Since
—-1; 0, 2yy), d(&)3(|z|%2, t/2 1

(P, v)(&)| = p’& @ | = K Y1), d(§)°(|z]%z, t/2)) | <

Vel |Vd(&) | |Vd(&) |
and

(AT, vy = JATE VD] [Tt VD) [Vie]
|Vd| |Vd| |Vd|

(4.19) and (4.18) yield
V m U 2+/LLQ* V n U dS_Q
(4.20) f |Vipu|2do<c f AL A f Ve d7 7 4
Brpnoll 11N oBg |Vd| I1 N oBg |Vd|

By Federer’s coarea formula (see [Fe]), for every ge L'(H") it holds

+

4.21) fg= f( g da) dr.
H 0

a5, |V
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Letting g = |Viu|®+ 2@, (4.21) implies that there exists a sequence (R);.x
such that R,— + « and

|V“nu|2+%Q* ( 1
——— =0

(4.22) f E), as k— + .

11N 3Bg, |Vd| k

Moreover, letting g be the characteristic function of the set B, (4.21) yields

and, by differentiation,

do
B, |V

(4.23) = QRO

From (4.20), (4.22) and (4.23) we finally obtain

f |Vipu|?do <
Bp, NIl
1 ¢ | Vipu|? 1 1 12
o\ |t 50 f ——do f ——do
Ry, Ry nns, | VA nnosy V|

1/2
1 1 1 1 1
of — |+ ——=|o| — RO Vl=o| — |+ ———o0o(1).
(Rk) RB‘S( (R)) ’“ (R) RITF

Since @ =2n + 2 =4, as k goes to infinity we obtain Vi« =0 in 911 and we can
conclude that =0 in 7 as in [GL2]. =

N

A. - Appendix.

In this appendix we briefly give more detailed proof of how we get global
Hoélder continuity for weak solutions of the Dirichlet problem (1.1) in Proposition
2.17.

THEOREM A.1. — Let Q be an open subset of H" satisfying the boundary regu-
larity condition (221). If he SF(2) N L~ (R) has distributional Kohn Lapla-
cion AypeheL ™ (Q) then, setting h =0 outside Q, there exists ael0, 1[ such
that

hel*(H").



ASYMPTOTIC BEHAVIOR AND NON-EXISTENCE THEOREMS ETC. 167

ProOF. — The proof consists in adapting Moser’s iteration technique, as pre-
sented in [GT], Chapter 8. We only need to replace the Euclidean distance with
the Heisenberg distance d, to choose ad hoc cut-off functions modeled on d and to
use a suitable version of the John-Nirenberg’s Theorem adapted to the homoge-
neous structure of H” (see [B]). =

Note added in proof. Theorem 1.2 holds true even il I7 is a halfspace with
boundary transverse to the ¢-axis. This case is studied in a forthcoming paper:
F. UguzzoNi, A non-existence theorem for a semilinear Dirichlet problem in-
volving critical exponent on halfspaces of the Heisenberg group.
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