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Bollettino U. M. I.
(8) 1-B (1998), 139-168

Asymptotic Behavior and Non-Existence Theorems
for Semilinear Dirichlet Problems

Involving Critical Exponent on Unbounded Domains
of the Heisenberg Group.

E. LANCONELLI - F. UGUZZONI

Sunto. – In questa nota dimostriamo stime asintotiche ottimali per le soluzioni deboli
non negative del problema al contorno

2D Hn u4u (Q12)O(Q22) in V , u40 in ¯V .(*)

D Hn è il Laplaciano di Kohn sul gruppo di Heisenberg Hn, V è un aperto non limitato
e Q42n12 è la dimensione omogenea di Hn. Utilizziamo successivamente le stime
ottenute per dimostrare un teorema di non esistenza per (*) nel caso in cui V sia un
semispazio di Hn con bordo parallelo al centro del gruppo.

1. – Introduction.

Let D Hn be the Kohn Laplacian on the Heisenberg group Hn and let Q4

2n12 be the homogeneous dimension of Hn. The aim of this paper is to study
asymptotic behavior and to establish non-existence results for nonnegative
weak solutions to the semilinear boundary value problem

.
/
´

2 D Hn u4u (Q12)O(Q22) in V ,

u�S0
1 (V) ,

(1.1)

where V is an unbounded open subset of Hn and S0
1 (V) is a Folland-Stein’s

Sobolev space (see definition below). Equations like that in (1.1) naturally arise in
the study of the Yamabe problem for the Cauchy-Riemann manifolds [JL1-2].
The exponent

Q12

Q22

is a critical exponent for semilinear Dirichlet problems related to D Hn, as well as
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the exponent

N12

N22

is critical for semilinear Poisson equations in RN, NF3.
In order to be more precise we need to introduce additional notation and to

recall some known results. The Heisenberg group Hn, whose points will be denot-
ed by j4 (z , t) 4 (x , y , t), is the Lie group (R2n11 , i) with composition law de-
fined by

j ij 84(z1z 8 , t1 t 812(ax 8 , yb2 ax , y 8 b ))

where a , b denotes the inner product in Rn . The Kohn Laplacian on Hn is the
operator

D Hn 4 !
j41

n

(X 2
j 1Y 2

j )

where

Xj 4¯xj
12yj ¯t , Yj 4¯yj

22xj ¯t

for all j� ]1, R , n(. We set

˜Hn 4 (X1 , R , Xn , Y1 , R , Yn ) .

A natural group of dilations on Hn is given by

d l (j) 4 (lz , l 2 t) , lD0 .(1.2)

The Jacobian determinant of d l is l Q where

Q42n12

is the homogeneous dimension of Hn. The operator D Hn is invariant with respect
to the left translations of Hn and homogeneous of degree two with respect to the
dilations d l. More precisely, if we set

t j (j 8 ) 4j ij 8(1.3)

we have

D Hn (u it j ) 4 (D Hn u) it j , D Hn (u id l ) 4l 2 (D Hn u) id l .

A remarkable analogy between the Kohn Laplacian and the classical Laplace
operator is that a fundamental solution of 2D Hn with pole at zero is given
by [F]

G(j) 4
cQ

d(j)Q22
,(1.4)
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where cQ is a suitable positive constant and

d(j) 4 (NzN4 1 t 2 )1O4 .(1.5)

Moreover, if we define d(j , j 8 ) 4d(j 821
ij), then d is a distance on Hn (see [Cy]

for a complete proof of this statement). We shall denote by Bd (j , r) the d-ball of
center j and radius r . By the left translation invariance of the distance d , we have
t j (Bd (0 , r) )4Bd (j , r). Moreover, since d is homogeneous of degree 1 with re-
spect to the dilations d l , we also have d l (Bd (0 , r) )4Bd (0 , lr) and NBd (j , r)N4

r Q NBd (0 , 1 )N . Here N QN denotes the Lebesgue measure on R2n11 . We also recall
that the Lebesgue measure is a Haar measure on Hn .

A basic role in the functional analysis on the Heisenberg group is played by
the following Sobolev-type inequality:

VWV

2
Q * GBQ V˜Hn WV

2
2 (W�C Q

0 (Hn )(1.6)

where

Q * »4
2Q

Q22
(1.7)

and BQ is a positive constant whose best value has been determined by Jerison
and Lee in [JL2]. Hereafter V QVp will denote the usual L p-norm. If V is an open
subset of Hn , we shall denote by S 1 (V) the Sobolev space of the functions
u�L Q * (V) such that ˜Hn u�L 2 (V). The norm in S 1 (V) is given by

VuVS 1 (V) 4VuVQ * 1V˜Hn uV2 .(1.8)

We denote by S 1
0 (V) the closure of C Q

0 (V) with respect to (1.8). By means of (1.6),
this norm is equivalent in S 1

0 (V) to that generated by the inner product

au , vbS 1
0
4s

V

a˜Hn u , ˜Hn vb .

Thus S 1
0 (V) is a Hilbert space. We emphasize that, for general unbounded do-

mains, the space S 1
0 (V) is not embedded in L 2 (V).

A nonnegative weak solution of the Dirichlet problem (1.1) is a function
u�S 1

0 (V), uF0, such that

s
V

a˜Hn u , ˜Hn Wb 4s
V

u Q *21 W (W�S 1
0 (V) .(1.9)

We explicitly remark that, for every u , W�S0
1 (V), uF0, we have

u (Q12)O(Q22) W�L 1 (V) .
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Indeed W�L 2QO(Q22) (V), u (Q12)O(Q22) �L 2QO(Q12) (V) and

Q22

2Q
1

Q12

2Q
41 .

We also remark that every classical solution of (1.1) satisfies the integral identity
(1.9) since Xj*42Xj and Yj*42Yj, for j41, R , n.

When V4Hn, a positive solution to the equation in (1.1) is the following C Q

function:

U(x , y , t) 4U(z , t) 4
c0

((11NzN2 )2 1 t 2 )(Q22)O4
(1.10)

where c0 is a suitable positive constant. Moreover, every nontrivial nonnegative
weak solution of (1.1) with V4Hn takes the form

u(j) 4l (Q22)O2 U(d l (h21
ij) ) , j�Hn

for suitably lD0 and h�Hn. This deep result of Jerison and Lee [JL2] is the
Kohn-Laplacian counterpart of a celebrated Theorem of Talenti [T] for the classi-
cal Laplace operator.

The following theorem shows that for any unbounded open subset V of Hn,
every nonnegative weak solution of (1.1) behaves at infinity like the function U in
(1.10). This is one of the principal results of this note.

THEOREM 1.1. – Let V be an arbitrary unbounded open subset of Hn and let u
be a nonnegative weak solution of the Dirichlet problem (1.1). Then there exists
a constant MD0 such that

u(j) GMU(j) (j�V .

We will use Theorem 1.1 as a crucial step in proving a nonexistence result on
halfspaces for the Dirichlet problem (1.1). We next give our motivation for study-
ing this problem. A nonnegative function u�S0

1 (V) is a weak solution of (1.1) iff u
is a critical point of the functional

I : S0
1 (V) KR , I(u) 4

1

2
s

V

N˜Hn uN2 2
1

Q *
s

V

u Q * ,

where Q * is defined in (1.7). The exponent Q * is the critical Sobolev exponent for
D Hn since, even if V is bounded, the continuous embedding

S0
1 (V) L Q * (V)

is not compact. As a consequence, the Palais-Smale sequences of I are in general
not compact. Therefore, standard variational techniques cannot be applied in
looking for critical points of I. On the other hand, as Citti proved in [C], the loss
of compactness of the Palais-Smale sequences of I only depends on the weak sol-
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utions of the so called problems at infinity:

2D Hn u4u (Q12)O(Q22) , uD0 in Hn

and

2D Hn u4u (Q12)O(Q22) , uD0 in P , u40 in ¯P

where P is any halfspace of Hn. Citti’s work is an extension to the Heisenberg
group Hn of some relevant results of Benci-Cerami [BeC], P. L. Lions [L] and
Brezis-Nirenberg [BN] concerning the critical semilinear Poisson equation in
RN, NF3,

2Du4u (N12)O(N22) .

For this equation Esteban and Lions proved in [EL] the following nonexistence
theorem: for every halfspace P of RN the «problem at infinity»

.
/
´

2Du4u (N12)O(N22) in P ,

u�W0
1 (P) ,

(1.11)

has no nontrivial nonnegative weak solutions.
Here W0

1 (P) denotes the closure of C0
Q (P) with respect to the usual Sobolev

norm uOV˜uV2 and D is the classical Laplace operator. Using this result and by
means of algebraic topology techniques, Bahri and Coron [BC] were able to prove
the following celebrated theorem: let V be a bounded open subset of RN, NF3,
and suppose there exists m�N such that the omology group Hm (V) is nontriv-
ial. Then the Dirichlet problem

.
/
´

2 Du4u (N12)O(N22) in V ,

u�W0
1 (V) ,

has a nontrivial nonnegative weak solution.
Bahri and Coron techniques seem to be appropriate for application in the con-

text of the Heisenberg group, provided the above nonexistence theorem of Este-
ban and Lions can be extended. However, at the authors’ knowledge, no nonexis-
tence result has been established for the critical semilinear Kohn-Laplace equa-
tion on halfspaces. In a recent paper, Birindelli, Capuzzo Dolcetta and Cutrì
proved nonexistence theorems on cones of Hn, but they only treat sub-critical
equations [BCC].

In the following theorem we provide a first answer to the problem raised
above.
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THEOREM 1.2. – Let P be a halfspace of Hn whose boundary is parallel to the
center of Hn. Then the problem at infinity

.
/
´

2D Hn u4u (Q12)O(Q22) in P ,

u�S0
1 (P) ,

(1.12)

has no nontrivial nonnegative weak solutions.

The center of Hn is the set ](0 , t)Nt�R(; a halfspace of Hn is merely a half-
space of R2n11.

Problem (1.12), in spite of its similarity to problem (1.1), presents a much
higher difficulty level, mainly due to the lack of good a priori estimates for ¯t u.
We explicitly remark that the differential operator ¯t is homogeneous of degree
two with respect to the dilations d l in (1.2), thus ¯t u should be considered as a
second derivative for a solution u of (1.12). A condition on ¯t u and in particular
its square summability, would allow us to apply Theorem 2.4 of [GL2] in proving
our Theorem 1.2. Starting from Theorem 1.1 we will actually show that

N¯t uNGMU(1.13)

where U is the function (1.10) and M is a suitable positive constant. This estimate
implies that ¯t u�L 2 (P) only when nD1, however it is sufficient for proving
Theorem 1.2 for every nF1.

To obtain inequality (1.13) we will use an argument based on the representa-
tion of the harmonic part of ¯t u as a fixed point for a mean value operator mod-
eled on the geometry of P. We should add that our method is not applicable to
the halfspace

P t 4 ](z , t)NtD0(

or, equivalently, to any other halfspace whose boundary intersects the center of
Hn at a single point.

The paper is organized as follows. In section 2 we prove L p and Hölder conti-
nuity properties for nonnegative weak solutions of (1.1). Section 3 and section 4
are devoted to the proof of Theorem 1.1 and of Theorem 1.2 respectively.

2. – L p and Hölder properties of solutions.

Throughout this section we shall always denote by u a nonnegative weak sol-
ution of (1.1). V will be supposed to be an arbitrary (bounded or unbounded) open
subset of Hn. Our aim is to prove L p and Hölder continuity properties of u. The
main results are contained in Proposition 2.1, Proposition 2.6 and Proposition
2.7.

We will use boot-strap and iteration techniques inspired to those of Brezis-
Kato [BK] and Moser ([GT], Chapter 8). We would like to stress that the major
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difficulties lay in proving that u�L p for Q * O2 EpEQ *, which leads to novel
and significant modifications of the standard schemes.

PROPOSITION 2.1. – We have u�L p (V) for every p�] Q * O2, 1Q].

PROOF. – The proof will directly follow from Lemma 2.2, Lemma 2.3 and Lem-
ma 2.4. r

LEMMA 2.2. – We have u�L p (V) for every p� [Q *, 1Q[.

PROOF. – Since u�L Q * (V) there exists MD0 such that

s
]uDM(

u Q * Eu 1

2BQ
vQO2

(2.1)

where BQ is the constant defined in (1.6). Let h�C Q ( [0 , 1Q[) be such that
0 GhG1, hf1 in [0 , M], hf0 in [2M , 1Q[. We set

V4 (12h(u) ) u 4O(Q22) , g4h(u) u (Q12)O(Q22) .

Then u is a weak solution of

.
/
´

2D Hn u4Vu1g in V ,

u�S0
1 (V) ,

(2.2)

where

V�L QO2 (V) , g�L 2QO(Q12) (V)OL Q (V) .(2.3)

Moreover, (2.1) yields VVVQO2 E1O2BQ . Hence, for every W�S0
1 (V), we have

s
V

VW 2 GVVVQO2 VWVQ *
2 GBQ VVVQO2 V˜Hn WV2

2 E
1

2
V˜Hn WV2

2 .(2.4)

We now proceed by essentially adapting the proof of Lemma 4.1 of [GL2], taking
into account the fact that the Sobolev space S7 1

2 in [GL2] is different from S0
1 . For

every k�N we define Vk 4min ]V , k(. Since (2.3) and (2.4) hold, Lax Milgram’s
Theorem implies the existence of exactly one weak solution uk of

.
/
´

2D Hn uk 4Vk uk 1g in V ,

uk �S0
1 (V) ,

(2.5)

such that

Vuk VQ * GkBQ Vuk VS0
1 G2 kBQ VgV(S0

1 )8G2BQ VgV2QO(Q12) .(2.6)

The same argument also yields uniqueness for the problem (2.2). Hence, by the
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boundness of (uk ) in S0
1 (V), taking a subsequence if necessary, we have

uk Ku weakly in S0
1 (V) .(2.7)

We now want to prove that, for every p� [Q *, 1Q[ there exists cp D0 such
that

sup
k�N

Vuk Vp Gcp .(2.8)

We set b4QO(Q22). Since bD1 and (2.8) holds for p4Q * (see (2.6)), we only
need to prove (2.8) for bp, under the hypothesis that (2.8) holds for p. We fix
k�N and, for sake of brevity, we set v4uk . We then define, for every
m�N,

vm 4min ]v 1 , m( , W m 4vm
p21 , fm 4vm

pO2 .

We remark that v , vm , W m , fm �S0
1 (V), since pFQ *D2. Moreover vm , W m , fm

are all nonnegative. Choosing W m as a test function in the weak formulation of
(2.5) and setting a p 4 (4(p21))Op 2, we obtain

(2.9) a ps
V

N˜Hn fm N2 4s
V

a˜Hn vm , ˜Hn W m b 4s
V

a˜Hn v , ˜Hn W m b 4

s
V

(Vk vW m 1gW m ) G s
]vGm(

Vk fm
2 1k s

]vDm(

v p 1s
V

gW m .

Since V�L QO2 (V), we can choose Mp D0 such that

u s
]VDMp(

V QO2v2OQ

E
a p

2BQ

.

Then

(2.10) s
V

Vfm
2 GMp s

]VGMp(

fm
2 1 s

]VDMp(

Vfm
2 G

Mp V fm V 2
2 1

a p

2BQ

V fm VQ *
2 GMp V fm V 2

2 1
a p

2
V˜Hn fm V 2

2 .

From (2.9) and (2.10) it follows

a p

2BQ

Vvm Vbp
p 4

a p

2BQ

V fm VQ *
2 G

a p

2
V˜Hn fm V 2

2 G

Mp V fm V

2
2 1k s

]vDm(

v p 1s
V

gW m GMp V fm V 2
2 1k s

]vDm(

v p 1VgVp Vvm Vp
p21 .
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From these inequalities, as m goes to infinity, we obtain

a p

2BQ

Vv 1
Vbp

p GMp Vv 1
Vp

p 1VgVp Vv 1
Vp

p21 G (since (2.8) holds for p)

Mp cp
p 1cp

p21
VgVp G

Mp cp
p 1cp

p21
VgVQ

12Q * Op
VgVQ *

Q * Op E1Q (for (2.3) ) .

Since a similar estimate can be proved for v 2, (2.8) holds when replacing p with
bp. Therefore (2.8) holds for every p� [Q *, 1Q[.

We now fix p� [Q *, 1Q[ and we define

C4 ] f�S0
1 (V)NV f Vp Gcp ( .

Fatou’s Lemma ensures that C is a closed convex subset of S0
1 (V). By (2.8) (uk ) is

contained in C. Hence, by (2.7), u�C. In particular u�L p (V). r

The next lemma is one of the crucial steps in the proof of Theorem 1.1.

LEMMA 2.3. – We have u�L p (V) for every p�]Q * O2, Q *].

Although the proof follows the lines of the previous one, it presents many
more difficulties. Indeed we need to choose ad hoc truncated potentials and par-
ticular test functions.

PROOF. – We fix e�]0 , 1O2[ and we set

Me4
1

(122e)2
.(2.11)

Since u�L Q * (V) there exists dD0 such that

s
]uE2d(

u Q * Eu 1

Me BQ
vQO2

.(2.12)

Let h�C Q ( [0 , 1Q[) be such that 0 GhG1, hf1 in [0 , d], hf0 in [2d , 1Q[.
We set

V4h(u) u 4O(Q22) , g4 (12h(u) ) u (Q12)O(Q22) .

Then u is a weak solution of

.
/
´

2D Hn u4Vu1g in V ,

u�S0
1 (V) ,
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and, by Lemma 2.2,

V�L QO2 (V)OL Q (V) , g�L p (V) (p� [1 , 1Q[ .(2.13)

Moreover, by (2.12),

s
V

VW 2 GVVVQO2 VWVQ *
2 E

1

Me

V˜Hn WV 2
2 (W�S0

1 (V)(2.14)

(note that 1OMeE1). For every k�N let h k �C Q ( [0 , 1Q[) be such that 0 G

h k G1, h k f0 in [0 , dO(k11) ], h k f1 in [dOk , 1Q[. We define Vk 4h k (u)V so
that

Vk �L 1 (V)OL Q (V)(2.15)
and

Vk 6V .
Exactly in the same way as in the proof of Lemma 2.2, we can see that for every
k�N problem (2.5) admits a weak solution uk such that

sup
k�N

Vuk VS0
1 (V) Gc4c(Q , u , e)(2.16)

and uk Ku weakly in S0
1 (V).

We now want to prove that

sup
k�N

Vuk VQ *(12e) Gc0 4c0 (Q , u , e) .(2.17)

We fix k�N and, for sake of brevity, we set v4uk . Then we define, for every
m�N,

vm 4

.
`
/
`
´

m 2eO(122e) (v 1 )1O(122e)

v

where vG
1

m
,

where vD
1

m
,

W m 4vm
122e4

.
`
/
`
´

m 2e v 1

v 122e

where vG
1

m
,

where vD
1

m
,

fm 4vm
12e4

.
`
/
`
´

m (2e(12e) )O(122e) (v 1 )(12e)O(122e)

v 12e

where vG
1

m
,

where vD
1

m
.

We remark that v , vm , W m , fm �S0
1 (V), since 0 E122eE12eE1. Moreover

vm , W m , fm F0 and vm Kv 1 pointwise, as mK1Q. Choosing W m as a test func-
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tion in the weak formulation of (2.5) and setting ce4 ((12e)O(122e) )2, we
obtain

s
V

N˜Hn fm N2 4 (122e) ces
V

a˜Hn vm , ˜Hn W m b 4 (122e) ce s
]vD1Om(

a˜Hn v , ˜Hn W m b1

ce s
]0 EvG1Om(

m 2eO(122e) v 1O(122e)21 a˜Hn v , ˜Hn W m b G

ce s
]vD1Om(

a˜Hn v , ˜Hn W m b1ce s
]0 EvG1Om(

a˜Hn v , ˜Hn W m b

(since a˜Hn v , ˜Hn W m b F0 in V)

4ces
V

a˜Hn v , ˜Hn W m b 4ces
V

(Vk vW m 1gW m ) 4

ceu s
]vD1Om(

Vk fm
2 1m 2e s

]0 EvG1Om(

Vk v 2 1 s
]vD1Om(

gv 122e1m 2e s
]0 EvG1Om(

gvvG

ceu 1

Me

V˜Hn fm V 2
2 1

1

m 222e
VVk V1 1VgV

Q *

Q *2112e
VvVQ *

122e1
1

m 122e
VgV1v .

Here we have used (2.14). Reading from (2.11) that ce OMeE1, from (2.13), (2.15),
(2.16) and (1.6), we obtain

V˜Hn fm V 2
2 E

c1

m 122e
1c2

with c1 4c1 (Q , u , e , k) and c2 4c2 (Q , u , e). Hence

Vvm VQ *(12e)
2(12e) 4V fm VQ *

2 GBQ V˜Hn fm V 2
2 G

c1 BQ

m 122e
1c2 BQ

and letting mK1Q, Fatou’s Lemma yields

Vv 1
VQ *(12e) G (c2 BQ )1O(2(12e) )4» c0 4c0 (Q , u , e) .

A similar estimate can be proved for v 2. Then, inequality (2.17) holds. We can
now conclude as in the proof of Lemma 2.2 and obtain

u�L Q *(12e) (V)

for every fixed e�]0 , 1O2[. r

The following lemma completes the proof of Proposition 2.1.
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LEMMA 2.4. – We have u�L Q (V).

PROOF. – It is sufficient to prove that there exist c0 D0 and a sequence of posi-
tive numbers (pN )N�N such that pN K1Q and

sup
N�N

VuVpN
Gc0 .(2.18)

We shall use the notation of Lemma 2.2. By Lemmas 2.2 and 2.3, we know that

g�L 1 (V)OL Q (V) , V�L p (V) (p�l Q

4
, 1Qk .

Setting r4kb4kQO(Q22), from (2.9) we get

a p s
V

N˜Hn fm N2 GVVVrO(r21) Vvm
p

Vr 1k s
]vDm(

v p 1VgVrpO(rp2p11) Vvm V rp
p21 G

cVv 1
V rp

p 1k s
]vDm(

v p 1cVv 1
V rp

p21 .

We have used here that sup
p� [1 , 1Q]

VgVp Ec and rO(r21) D1O(b21) 4 (Q22)O2 F

QO4. From this estimate, since

a p

BQ

Vvm Vbp
p 4

a p

BQ

V fm VQ *
2 Ga p V˜Hn fm V 2

2 ,

letting mK1Q we obtain

a p

BQ

Vv 1
Vbp

p Gc(Vv 1
V rp

p 1Vv 1
V rp

p21 )

where c does not depend on p. On the other hand, being pFQ *D2, a p 4

(4(p21))Op 2 D1Op. Therefore, if we set Hp 4max ]1, Vv 1
Vp ( we get

Hbp G (cp)1Op Hrp (p� [Q *, 1Q[

where c is another positive constant not depending on p. Choosing p4r j Q *,
j�N, and recalling that b4r 2, we have

Hr j12 Q * G (cr j )1Or j Q * Hr j11 Q * .

Therefore, for N�N, NF3, setting pN 4r j Q *, we obtain

Vv 1
VpN

GHr N Q * Gu »
j41

N22

(cr j )1Or j Q *v Hr 2 Q * Gc 8 Hr 2 Q * Gc0

(note that rD1 ensures that !
j41

1Q

jOr j is convergent). Since an analogous estimate

holds for v 2, (2.18) follows. r
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We now want to prove some more properties of u.

LEMMA 2.5. – There exists a positive constant c such that

VuVL Q (Bd (j , 1 ) )GcVuVL Q * (Bd (j , 2 ) ) (j�Hn .

Here we have set u40 outside V.

PROOF. – Let us fix r , R�R such that 1 GrERG2 and choose a�C Q ( [0 ,
1Q[) such that 0 GaG1, af1 in [0 , r], af0 in [R , 1Q[ and Na 8NG2O(R2r).
We set h 0 4a(d) and, for every j�Hn, define h j4h 0 it j21. Thus h jf1 in
Bd (j , r), h jf0 in Hn 0Bd (j , R) and

V˜Hn h j VQ4V˜Hn h 0 VQ4Va 8 (d)˜Hn dVQGVa 8 VQG
2

R2r
.(2.19)

We now fix j�Hn and p� [Q *, 1Q[ and we set h4h j , W4h 2 u p21, c4hu pO2,
Br 4Bd (j , r) and BR 4Bd (j , R). We remark that W , c�S0

1 (V). We also set
b4Q * O2. Finally, we define

I4sh 2 u p22 N˜Hn uN2 .

Choosing W as a test function in (1.9), we get

su Q *21 W4sa˜Hn u , ˜Hn WbFsh 2 a˜Hn u , ˜Hn (u p21 )b22 shu p21 N˜Hn uNN˜Hn hNF

(p21)sh 2 u p22 a˜Hn u , ˜Hn ub2
1

2
I22 sN˜Hn hN2 u p 4

up2
3

2
v I22 sN˜Hn hN2 u p F

1

2
I22 sN˜Hn hN2 u p .

Hence, recalling (2.19), we obtain

VuVL bp (Br )
p GVcVQ *

2 GcV˜Hn cV 2
2 4(2.20)

cVh˜Hn (u pO2 )1u pO2 ˜Hn hV 2
2 G2cu p 2

4
I1Vu pO2 ˜Hn hV 2

2vG

cgp 2g su Q *21 W1sN˜Hn hN2 u ph1Vu
p

2 ˜Hn hV 2
2hG

cp 2uVuVQ
Q *22s

BR

h 2 u p 1
4

(R2r)2
s

BR

u pvG

cp 2u11
1

(R2r)2
v s

BR

u p Gcu p

R2r
v2

VuVL p (BR )
p .
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The positive constant c only depends on Q and u. For every m�Z1 we now define
pm 4b m Q *, rm 4111O2m, Bm 4Bd (j , rm ), Hm 4VuVL pm (Bm ) . Letting p4pm , r4

rm11 and R4rm in (2.20) we get

Hm11 4VuVL bpm (Bm11 ) Gc 1Opmu pm

rm 2rm11

v2Opm

Hm 4

c 1Obm Q * (2m11 b m Q *)2Obm Q * Hm 4c cb2m
(2b)cmb2m

Hm .

Hence, for every N�N we have

HN GH0 »
m40

N21

(c cb2m
(2b)cmb2m

)GcH0 .

Letting NK1Q we finally obtain

VuVL Q * (Bd (j , 2 ) )4H0 FcHN FcVuVL pN (Bd (j , 1 ) )K
NK1Q

cVuVL Q (Bd (j , 1 ) ) .

The positive constant c only depends on Q and u. r

PROPOSITION 2.6. – We have u(j) K0, as d(j) KQ, j a.e. in V.

PROOF. – It is an immediate consequence of Lemma 2.5. r

PROPOSITION 2.7. – Let us suppose that V satisfies the following boundary
regularity condition: there exist two positive constants d and r0 such that

NBd (j , r)0VNFdNBd (j , r)N (j�¯V (r�]0 , r0 [ .(2.21)

Then, if we continue u on Hn by setting u40 outside V, there exist a�]0 , 1[ and
MD0 such that

Nu(j)2u(j 8 )NGM(d(j , j 8 ) )a (j , j 8�Hn

(i.e., following Folland-Stein [FS], u belongs to the Hölder space Ga (Hn ) ). In
particular u�C(V), u40 in ¯V.

PROOF. – We refer to the Appendix, Theorem A.1 (we recall that u�L Q (V) by
Lemma 2.4). r

COROLLARY 2.8. – If V4P is a halfspace then there exists a�]0 , 1[ such that
u�Ga (Hn ), setting u40 outside P. In particular u�C(P), u40 in ¯P.

PROOF. – We only need to prove that every halfspace P satisfies (2.21). When
j40 the d-balls centered at j are symmetric with respect to j (see (1.5)) and the
condition (2.21) is obviously satisfied (with d41O2). On the other hand any other
case can be reduced to this one by a left translation of the group Hn (which is a bi-
jective affine transformation mapping halfspaces into half-spaces). r
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PROPOSITION 2.9. – It is u�C Q (V). Moreover, if V4P is a halfspace with
boundary parallel to the t-axis, then u�C Q (P).

PROOF. – The first part of the statement follows from Proposition 2.1, by
means of a standard regularization technique, based on the results of Folland
and Stein [FS]. The additional hypothesis that ¯P is parallel to the t-axis ensures
that ¯P does not have characteristic points. This fact together with Corollary 2.8
gives the boundary regularity (see [KN]; see also [J]). r

REMARK 2.10. – If V satisfies (2.21) (in particular if V4P is a halfspace)
then u is a classical solution of

.
`
/
`
´

2D Hn u4u (Q12)O(Q22)

uF0

u40

u(j) K0

in V ,

in V ,

in ¯V ,

as d(j) KQ ,

by means of Propositions 2.6, 2.7 and 2.9.

3. – Proof of Theorem 1.1.

In this section V will be an arbitrary unbounded open subset of Hn and u will
denote any fixed nonnegative weak solution of the boundary value problem (1.1).

Our method, partially inspired by a technique used in [CGL], is based on a
representation formula which can be found in [GL1]: if v is a C 2 function in an
open subset A of Hn and Bd (j , r) ’A then

(3.1) v(j) 4 (Mr v)(j)2
Q

r Q
s
0

r

r Q21 s
Bd (j , r)

uG(j , j 8 )2
cQ

r Q22
v D Hn v(j 8 ) dj 8 dr

where Mr is the mean value operator defined by

(Mr v)(j) 4
1

a Q r Q
s

Bd (j , r)

c(j , j 8 ) v(j 8 ) dj 8 .(3.2)

Here we have set G(j , j 8 ) 4G(j 821
ij) and c(j , j 8 ) 4c(j 821

ij) where

c(j) 4
NzN2

d(j)2
.(3.3)

Moreover

a Q 4 s
Bd (0 , 1 )

c(j) dj .
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Let us introduce the function

w4G * f : Hn KR , w(j) 4 s
Hn

G (j , j 8 ) f(j 8 ) dj 8 ,(3.4)

where we have denoted

f4u Q *21(3.5)

and u is set be zero outside V. From Proposition 2.1 it follows that

f�L 1 (Hn )OL Q (Hn ) .(3.6)

Hence, by means of the results of Folland and Stein in [FS], we get

w�L p (Hn ) , (p�l Q *

2
, 1Qk ,(3.7)

2D Hn w4 f weakly in Hn .(3.8)

Moreover wF0, D Hn (u2w) 40 in V and (u2w)1 »4max ]0, u2w( �S0
1 (V).

Then (u2w)140 in V, i.e.

0 GuGw in V .(3.9)

The following lemma is another key point in the proof of Theorem 1.1.

LEMMA 3.1. – For every s�]0 , Q22[, it holds

w(j) 4Ou 1

d(j)s
v , as d(j) KQ .(3.10)

PROOF. – We set p4QOs and V4u Q *22. For sake of brevity, for every j�Hn

and rD0, we also define

Nr (j) 4 s
Bd (j , r)

G j V , Ir (j) 4 s
Bd (j , r)

G j Vw , Mr (j) 4 (Mr w)(j) ,

where G j4G(j , Q) and Mr w is the mean value operator defined in (3.2). We now
fix q�]QO4, QO2[ and we set p 84pO(p21) and q 84qO(q21). Since p , q 8�
]Q * O2, 1Q[ we have

u , w�L p (Hn )OL q 8 (Hn ) ,(3.11)

G�L p (Hn 0Bd (0 , 1 ) )OL q 8 (Hn 0Bd (0 , 1 ) ) ,(3.12)

V�L q (Hn )OL Q (Hn ) ,(3.13)

V(j) K0 , as d(j) KQ ,(3.14)
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by means of (3.7) and Propositions 2.1 and 2.6. Hence we can establish the follow-
ing estimates

Mr (j) G
c

r Q
s

Bd (j , r)

wG
c

r Q
VwVp V1VL p 8 (Bd (j , r) )4

c

r Q
r QOp 84

c

r s
(3.15)

and

Nr (j) GVG j VL 1 (Bd (j , 1 ) ) VVVL Q (Bd (j , r) )1VG j VL q 8 (Hn 0Bd (j , 1 ) ) VVVL q (Bd (j , r) )G(3.16)

c (VVVL Q (Bd (j , r) )1VVVL q (Bd (j , r) ) ) .

In particular (3.13) and (3.16) give

sup
j�Hn , rD0

Nr (j) Gc .(3.17)

Let us now recall (3.8) and write the representation formula (3.1) for w (1). From
(3.5) and (3.9), f4VuGVw, and we get

w(j) 4Mr (j)1
Q

r Q
s
0

r

r Q21u s
Bd (j , r)

uG j2
cQ

r Q22
v fv drG(3.18)

Mr (j)1
Q

r Q
s
0

r

r Q21u s
Bd (j , r)

G j Vwv dr4Mr (j)1Ir (j) G (by (3.15))
c

r s
1Ir (j) .

Hence

(3.19) Ir (j) G s
Bd (j , r)

G j (h) V(h)u c

r s
1Ir (h)v dhG

c

r s
Nr (j)1 s

Bd (j , r)

G j VIr G (by (3.17))
c

r s
1 s

Bd (j , r)

G j VIr .

Moreover

(3.20) s
Bd (j , r)

G j VIr 4 s
Bd (j , r)

G(j , h) V(h)u s
Bd (h , r)

G(h , z) V(z) w(z) dzv dh4

s
Bd (j , 2r)

V(z) w(z)u s
Bd (j , r)OBd (z , r)

G (j , h) G (h , z) V(h) dhv dz .

(1) (3.1) is proved in [GL1] only for smooth functions, but it can be easily extended to
any function as regular as w.
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We now define A4Bd (j , r)OBd (z , r), A1 4 ]h�ANd(h , z) Gd(j , z)O2( and
A2 4A0A1. Then d(j , h) Fd(j , z)O2 for every h�A1 and

s
A

G j G z V4

s
A1

G j G z V1s
A2

G j G z VGcG(j , z)u s
A1

G z V1s
A2

G j VvGcG(j , z) (Nr (z)1Nr (j) ) .

This estimate and (3.20) finally yield

s
Bd (j , r)

G j VIr Gc sup
z�Bd (j , 2r)

Nr (z)u s
Bd (j , 2r)

G j Vwv .(3.21)

From now on we will take r4r (j) 4d(j)O4. From (3.16) it follows that

sup
z�Bd (j , 2r (j) )

Nr (j) (z) Gc (VVVL Q (Hn 0Bd (0 , r (j) ))1VVVL q (Hn 0Bd (0 , r (j) )) ) .

Then, by means of (3.13) and (3.14),

sup
z�Bd (j , 2r (j) )

Nr (j) (z) K0 as d(j) KQ .

Hence, for every j�Hn satisfying d(j) DR, R sufficiently large, from (3.21) we
obtain

(3.22) s
Bd (j , r (j) )

G j VIr (j) G
1

2
s

Bd (j , 2r (j) )

G j Vw4

4
1

2
Ir (j) (j)1

1

2
s

Bd (j , 2r (j) )0Bd (j , r (j) )

G j VwG
1

2
Ir (j) (j)1

c

r (j)Q22
VVVq VwVq 8 .

Recalling (3.11) and (3.13), from (3.19) and (3.22) we finally get

1

2
Ir (j) (j) G

c

r (j)s
1

c

r (j)Q22
for d(j) DR .

Therefore, since r (j) 4d(j)O4, the estimate (3.18) gives

w(j) 4Ou 1

d(j)s
v , as d(j) KQ . r

We are now able to establish the following «optimal» asymptotic behavior and
then to prove Theorem 1.1.

POPOSITION 3.2. – It is w(j) 4O(d(j)22Q ), as d(j) KQ.
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PROOF. – From (3.5), (3.9) and (3.10), choosing

s4
Q

Q *21
4

Q

Q12
(Q22) ,

it follows that there exist M , RD0 such that

f (h) G
M

d(h)s(Q *21)
4

M

d(h)Q
if d(h) DR .

Hence, for d(j) D2R we obtain

sup
h�Bd (j , d(j)O2)

f (h) G
2Q M

d(j)Q
(3.23)

which yields, also using (1.4) and (3.6),

w(j) 4 s
]d(j , h) Fd(j)O2(

G(j , h) f (h)dh1 s
]d(j , h) Ed(j)O2(

G (j , h) f (h) dhG

c

d(j)Q22
V f V1 1

c

d(j)Q
s

]d(j , h) Ed(j)O2(

dh

d(j , h)Q22
4

c

d(j)Q22
. r

PROOF OF THEOREM 1.1. – It directly follows from (3.9), Lemma 2.4 and Propo-
sition 3.2. r

The following lemma provides an estimate of the derivative ¯t w, which will
play an important role in the next section. From now on we will suppose that V
satisfies the boundary regularity condition (2.21). By Proposition 2.7 and Lemma
2.4 there exists a�]0 , 1[ such that

f�Ga (Hn )(3.24)

where f is the function defined in (3.5). Then

w�G loc
21a (Hn ) ,(3.25)

i.e. XYw�G loc
a (Hn ) for every X , Y� ]X1 , R , Xn , Y1 , R , Yn ( (see [FS]).

LEMMA 3.3. – If V satisfies (2.21) (in particular if V4P is a halfspace) then

(3.26) ¯t w(j 0 ) 4 s
Bd (j 0 , r)

¯t G (j 0 , j 8 ) ( f (j 8 )2 f (j 0 ) ) dj 81

s
Hn 0Bd (j 0 , r)

¯t G (j 0 , j 8 ) f(j 8 ) dj 8 ,

for every j 0 �Hn and rD0.
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PROOF. – Let us fix j 0 �Hn and rD0. We define

B4Bduj 0 ,
r

2
v , B0 4Bd (j 0 , r) ,

f0 4 fx B0
, f1 4 f2 f0 ,

where x B0
denotes the characteristic function of the set B0 . Let h�C Q ( [0 , 1Q[)

be such that 0 GhG1, hf0 in [0 , 1 ], hf1 in [2 , 1Q[, and for every eD0
let h e4h (dOe) �C Q (Hn ); we will also denote h e (j , j 8 ) 4h e ((j 8 )21

ij) . We
set

w0 4G * f0 , w1 4G * f1 , w0, e4 (Gh e ) * f0 .

Since from (3.6) f�L Q, it is immediate to verify that

w0, e ˘ w0 in B , as eK01(3.27)

(hereafter ˘ will denote uniform convergence). Moreover w0, e�C Q (B) and, for
every j�B and eErO4, we have

¯t w0, e (j) 4s
B0

¯t (Gh e )(j , j 8 ) f0 (j 8 ) dj 84(3.28)

s
B0

¯t (Gh e )(j , j 8 ) ( f0 (j 8 )2 f0 (j) ) dj 82 f0 (j)s
B0

¯t 8 (Gh e )(j , j 8 ) dj 84

s
B0

¯t (Gh e )(j , j 8 ) ( f0 (j 8 )2 f0 (j) ) dj 82 f0 (j) s
¯B0

G(j , j 8 ) n t (j 8 ) ds(j 8 ) .

The last equality follows from the divergence theorem. We have denoted by s the
surface measure and by n t (j 8 ) the (2n11)-th component of the outer unit nor-
mal. We set w0 : BKR,

w0 (j) 4s
B0

¯t G(j , j 8 ) ( f0 (j 8 )2 f0 (j) ) dj 82 f0 (j) s
¯B0

G(j , j 8 ) n t (j 8 ) ds(j 8 ) .(3.29)

From the Hölder continuity of f given by (3.24) and the estimate N¯t GNGcd 2Q, we
obtain

s
B0

N¯t G(j , j 8 ) ( f0 (j 8 )2 f0 (j) )Ndj 8Gcs
B0

d(j , j 8 )a2Q E1Q .
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Moreover, from (3.28) and (3.29),

Nw0 (j)2¯t w0, e (j)N4N s
Bd (j , 2e)

¯t (G(12h e ) )(j , j 8 ) ( f0 (j 8 )2 f0 (j) ) dj 8NG

c s
Bd (j , 2e)

uG(j , j 8 )Vh 8 VQ

N¯t d(j , j 8 )N

e
1N¯t G(j , j 8 )Nv d(j , j 8 )a dj 8G

c s
Bd (j , 2e)

d(j , j 8 )a2Q dj 84c s
Bd (0 , 2e)

d a2Q ,

for every j�B and eErO4. Hence

¯t w0, e ˘ w0 in B , as eK01 .(3.30)

From (3.27) and (3.30) we deduce

¯t w0 4 w0 in B .(3.31)

On the other hand, since f�L 1 (Hn ) (see (3.6)), for every j�B we have

¯t w1 (j) 4 s
Hn 0B0

¯t G(j , j 8 ) f1 (j 8 ) dj 8 .(3.32)

Moreover, the divergence theorem ensures that

s
¯B0

G(j 0 , j 8 ) n t (j 8 ) ds(j 8 ) 4cr 22Q s
¯B0

n t (j 8 ) ds(j 8 ) 40 .(3.33)

Recalling that w4w0 1w1 and replacing j with j 0 in (3.29) and (3.32), from (3.29),
(3.31), (3.32) and (3.33) we finally obtain (3.26). r

PROPOSITION 3.4. – If V satisfies (2.21) (in particular if V4P is a halfspace)
then

N¯t w(j)N4O(d(j)22Q ) , as d(j) KQ .

PROOF. – We set b44O(Q121a) (a appears in (3.24)). From (3.6), (3.24) and
(3.26), for every j�Hn and rD0, we get

N¯t w(j)NG(3.34)

c s
Bd (j , r)

d(j , j 8)2Q N f (j 8)2f (j)Nbg sup
Bd (j , r)

fh12b dj 81c s
Hn 0Bd (j , r)

d(j , j 8)2Q f (j 8) dj 8G

c g sup
Bd (j , r)

f h12b s
Bd (j , r)

d(j , j 8 )ab2Q dj 81cr 2Q
V f V1 4cr abg sup

Bd (j , r)
f h12b

1cr 2Q .
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From (3.5) and Theorem 1.1 it follows that f (j) 4O(d(j)2Q22 ) as d(j) KQ.
Choosing r4d(j)O2 in (3.34), for large d(j) we get

N¯t w(j)NGcd(j)ab d(j)(b21)(Q12) 1cd(j)2Q4cd(j)22Q 1cd(j)2Q Gcd(j)22Q . r

4. – Proof of Theorem 1.2.

It is not restrictive to prove Theorem 1.2 under the assumption

P4P 1 »4 ]j4 (x , y , t) �Hn Nx1 D0( .(4.1)

Indeed, as it has been noticed in [U], for every halfspace P with boundary paral-
lel to the t-axis, there exist a left translation t and a rotation r around the t-axis,
such that P4rtP 1. Moreover the operators D Hn and N˜Hn N are invariant with
respect to t and r .

Throughout this section we will then assume (4.1) and denote by u a (fixed)
nonnegative weak solution of (1.12).

The main step in the proof of Theorem 1.2 will be Proposition 4.4 where we
find the estimate (1.13):

N¯t uNGMU .

As in the previous section we will denote by w the function

w(j) 4 (G * f )(j) 4 s
Hn

G(j , j 8 ) f(j 8 ) dj 8 , f4u (Q12)O(Q22) .

Moreover v will denote the D Hn-harmonic part of u, i.e.

v4w2u .(4.2)

From (3.8), (3.25) and Remark 2.10 it follows that v is a classical solution of

.
/
´

D Hn v40

v4w

in P ,

in ¯P .
(4.3)

As a consequence, since the operators D H n and ¯t commute, u40 on ¯P and
¯P is invariant with respect to the Euclidean translations which are parallel to
the t-axis, we have

.
/
´

D Hn (¯t v) 40

¯t v4¯t w

in P ,

in ¯P .

Our main idea is to use these properties for representing ¯t v as a fixed point for
the following mean value operator modeled on the geometry of P4P 1. For
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every v�Lloc
1 (P) we define

Tv : PKR , (Tv)(j) 4 (Mr (j) v)(j)(4.4)

where Mr is the mean value operator introduced in (3.2) and

r (j) fr (x1 , R , xn , y1 , R , yn , t)»4
x1

2
.(4.5)

PROPOSITION 4.1. – T is a linear operator with the following properties.

(1) T maps Lloc
1 (P) into C(P). Hence we can define, by induction,

T k11 v4T(T k (v) ) (v�Lloc
1 (P) , (k�N .

(2) T is an increasing operator, i.e.:

(v 1 , v 2 �Lloc
1 (P), v 1 Gv 2 ) ¨ (Tv 1 GTv 2 ) .

(3) If v�C 2 (P) and D Hn v40 then Tv4v.

(4) If v�C 2 (P) and D Hn vG0 then (T k v)k�N is a decreasing se-
quence.

(5) The operators T and ¯t commute. More precisely if there exists ¯t v�
C(P) then there exists also ¯t (Tv) �C(P) and it is

¯t (Tv) 4T(¯t v) .

PROOF. – (1) We prove that, for every fixed v�Lloc
1 (P) and j 0 �P,

NTv(j)2Tv(j 0 )NGNMr (j) v(j)2Mr (j) v(j 0 )N1NMr (j 0 ) v(j 0 )2Mr (j) v(j 0 )NK0 ,

as jKj 0 .

On the one hand (3.2) gives

NMr (j) v(j)2Mr (j) v(j 0 )N4

1

a Q r (j)Q N s
Bd (j , r (j) )

c(j , h) v(h) dh2 s
Bd (j 0 , r (j) )

c(j 0 , z) v(z) dzN4

1

a Q r (j)Q N s
Bd (j 0 , r (j) )

c(j 0 , z) (v(j ij 0
21

iz)2v(z) ) dzNG

1

a Q r (j)Q
s

Bd (j 0 , r (j) )

Nv(j ij 0
21

iz)2v(z)Ndz .

The continuity of r (see (4.5)) and the L 1-continuity theorem ensure that the far
right hand term in the previous inequalities goes to zero as jKj 0 . On the other
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hand, the continuity of r yields

lim
jKj 0

Mr (j) v(j 0 ) 4Mr (j 0 ) v(j 0 ) .

It then follows that Tv�C(P).
(2), (3) immediately follow by comparing (4.4), (3.1) and (3.2).
(4) From (3.1) and (4.4) we obtain TvGv. This fact and (2) yield vFT k vF

T k11 v, for every k�N.
(5) We set F : P3Bd (0 , 1 ) KR,

F(j , j 8)4(v it j id r (j) )(j 8)4v(z1r (j) z 8, t1r (j)2 t 812r (j)(ax 8, yb2ax , y 8b) ) ;

see (1.2) and (1.3) for notations. From (4.5) we have ¯t rf0 so that

¯t F(j , j 8 ) 4 ((¯t v) it j id r (j) )(j 8 ) .(4.6)

By means of a change of variable we obtain

Tv(j) 4
1

a Q r (j)Q
s

Bd (j , r (j) )

(c it j
21 )v4

1

a Q

s
Bd (0 , 1 )

(c id r (j) )(v it j id r (j) ) 4

1

a Q

s
Bd (0 , 1 )

c(j 8 ) F(j , j 8 ) dj 8 .

Hence, from (4.6) and the continuity of ¯t v, we get

¯t (Tv)(j) 4
1

a Q

s
Bd (0 , 1 )

c((¯t v) it j id r (j) )4

1

a Q r (j)Q
s

Bd (j , r (j) )

(c it j
21 ) ¯t v4T(¯t v)(j) .

Using (1), we can write ¯t (Tv) 4T(¯t v) �C(P). r

REMARK 4.2. – We emphasize that the assertion (5) of the previous proposi-
tion holds since ¯P is parallel to the t-axis and we can choose r (j) not depend-
ing on t (see (4.5)).

LEMMA 4.3. – T k u is a decreasing sequence which is pointwise convergent to
zero in P as kKQ.

PROOF. – Since D Hn uG0, from Proposition 4.1-(4) we deduce the existence of
a function h : PKR such that

T k u 7 h .(4.7)
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Since uF0, using Proposition 4.1-(2) we obtain

0 GhGu .(4.8)

Hence h�Lloc
1 (P). Recalling (4.4) and (3.2), we see that (4.7) implies

h(j) 4 lim
kKQ

(T k11 u(j) )4 lim
kKQ

u 1

a Q r (j)Q
s

Bd (j , r (j) )

c(j , j 8 ) T k u(j 8 ) dj 8v4

1

a Q r (j)Q
s

Bd (j , r (j) )

c(j , j 8 ) h(j 8 ) dj 84Th(j)

for every j�P. Therefore, Proposition 4.1-(1) provides

h4Th�C(P) .(4.9)

Moreover, since u�C(P), uf0 in ¯P and u(j) K0 as d(j) KQ (see Remark
2.10), (4.8) yields

h�C(P) , hf0 in ¯P , h(j) K0 as d(j) KQ .(4.10)

Let us now assume by contradiction that h is not identically 0. From (4.8) and
(4.10) there exists j 0 �P such that

h(j 0 ) 4 max
P

hD0 .

Hence

A4h 21 (]h(j 0 )( )

is closed and nonempty. Moreover for every j�A, (4.9) yields

0 4h(j)2Th(j) 4
1

a Q r (j)Q
s

Bd (j , r (j) )

c(j , j 8 ) (max
P

h2h(j 8 ) ) dj 8 .

Then h(j 8 ) 4 max
P

h4h(j 0 ) for every j 8�Bd (j , r (j) ), i.e. Bd (j , r (j) )’A.

Therefore A is also open. This yields A4P since P is connected. In other words
hfh(j 0 ) D0 in P, contradicting (4.10). Hence it has to be hf0 in P. r

PROPOSITION 4.4. – It is N¯t u(j)N4O(d(j)22Q ), as d(j) KQ, j�P.

PROOF. – From (4.3) and Proposition 4.1-(3), it is Tv4v. Lemma 4.3, (4.2) and
the linearity of T give

T k w4T k v1T k u4v1T k u 7 v .(4.11)
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Proposition 4.1-(5) and (4.11) yield

(4.12) s
P

FT k (¯t w) 4s
P

F¯t (T k w) 42s
P

(¯t F) T k wK
kKQ

2s
P

v¯t F4s
P

F¯t v

for every F�C0
Q (P). From Proposition 3.4 and the continuity of ¯t w (see (3.25)),

there exists MD0 such that

2MGG¯t wGMG(4.13)

where G is the fundamental solution of 2D Hn with pole at zero (see (1.4)). Thus,
for every k�N,

2MG4T k (2MG) GT k (¯t w) GT k (MG) 4MG in P ,(4.14)

by means of Proposition 4.1-(2),(3). From (4.12) and (4.14) we finally obtain

N s
P

F¯t vNGMs
P

FG (F�C0
Q (P) , FF0

which implies

N¯t vNGMG in P .(4.15)

Collecting (4.2), (4.13) and (4.15) we conclude that

N¯t uNG2MG in P . r

PROOF OF THEOREM 1.2. – It follows from Proposition 2.9 and Proposition 4.4,
by using the Rellich-Pohozaev type integral identity proved in [GL2]. We use the
same arguments as in the proof of Theorem 2.4 of that paper. For the sake of
completeness, we next explain the changes we need to make to the proof
of [GL2].

We assume P4P 1 (see (4.1)). Let us introduce the following notation for the
point j�Hn : j4 (z , t) 4 (x1 ; z×, t), where z× 4 (x2 , R , xn , y). The outer unit nor-
mal to ¯P is

N4 (21; 0 , 0 ) .(4.16)

Let P be the vector field

P42¯x1
12y1 ¯t f (21; 0 , 2y1 ) .(4.17)

Then aP , Nb 41 on ¯P and P is t-starshaped with respect to (21; 0 , 0 ) (see
Definition 2.2 in [GL2]). We also remark that, in the notation of [GL2], P4P N.
Setting BR 4Bd (0 , R) for every RD0, using the integral identity (2.7) of [GL2]
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and proceeding as on page 83 of the same paper, we obtain

s
BRO¯P

N˜Hn uN2 ds4 s
BRO¯P

N˜Hn uN2 aP , Nb ds4(4.18)

s
PO¯BR

uuN˜Hn uN2 2
2

Q *
u Q *v aP , nb22aA˜u , nb Puv ds .

Here n4˜dON˜dN is the outer unit normal to ¯BR , s denotes the surface measure
and A is the matrix

u In

0

2y

0

In

22x

2y

22x

4NzN2

v
which allows to write D Hn in the following divergence form

D Hn 4div (A˜) , ˜4 gradient operator in R2n11 .

By means of assumption (4.1) and Proposition 2.9 the function u belongs to
C Q (P). Using Proposition 4.4 we obtain the following important estimate

NPuN4N2X1 u14y1 ¯t uNGN˜Hn uN1cd 32Q in P .(4.19)

Since

NaP , nb(j)N4N»P ,
˜d

N˜dN « (j) N4
Na(21; 0 , 2y1 ), d(j)23 (NzN2 z , tO2)bN

N˜d(j)N
G

1

N˜d(j)N

and

NaA˜u , nbN4
NaA˜u , ˜dbN

N˜dN
4

Na˜Hn u , ˜Hn dbN

N˜dN
G

N˜Hn uN

N˜dN
,

(4.19) and (4.18) yield

(4.20) s
BRO¯P

N˜Hn uN2 dsGc s
PO¯BR

N˜Hn uN2 1u Q *

N˜dN
ds1c s

PO¯BR

N˜Hn uNd 32Q

N˜dN
ds .

By Federer’s coarea formula (see [Fe]), for every g�L 1 (Hn ) it holds

s
Hn

g4 s
0

1Q

u s
¯Br

g

N˜dN
dsv dr .(4.21)
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Letting g4N˜Hn uN2 1u Q *, (4.21) implies that there exists a sequence (Rk )k�N

such that Rk K1Q and

s
PO¯BRk

N˜Hn uN2 1u Q *

N˜dN
ds4ou 1

Rk

v , as kK1Q .(4.22)

Moreover, letting g be the characteristic function of the set BR , (4.21) yields

s
0

R

u s
¯Br

ds

N˜dN
v dr4s

BR

dj4cR Q

and, by differentiation,

s
¯BR

ds

N˜dN
4cQR Q21 .(4.23)

From (4.20), (4.22) and (4.23) we finally obtain

s
BRkO¯P

N˜Hn uN2 dsG

ou 1

Rk

v1
c

Rk
Q23 u s

PO¯BRk

N˜Hn uN2

N˜dN
dsv1O2u s

PO¯BRk

1

N˜dN
dsv1O2

G

ou 1

Rk

v1
1

Rk
Q23

uou 1

Rk

vv1O2

Rk
(Q21)O24ou 1

Rk

v1
1

Rk
(Q24)O2

o(1) .

Since Q42n12 F4, as k goes to infinity we obtain ˜Hn uf0 in ¯P and we can
conclude that uf0 in P as in [GL2]. r

A. – Appendix.

In this appendix we briefly give more detailed proof of how we get global
Hölder continuity for weak solutions of the Dirichlet problem (1.1) in Proposition
2.7.

THEOREM A.1. – Let V be an open subset of Hn satisfying the boundary regu-
larity condition (2.21). If h�S 1

0 (V)OL Q (V) has distributional Kohn Lapla-
cian D Hn h�L Q (V) then, setting h40 outside V , there exists a�]0 , 1[ such
that

h�Ga (Hn ) .
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PROOF. – The proof consists in adapting Moser’s iteration technique, as pre-
sented in [GT], Chapter 8. We only need to replace the Euclidean distance with
the Heisenberg distance d, to choose ad hoc cut-off functions modeled on d and to
use a suitable version of the John-Nirenberg’s Theorem adapted to the homoge-
neous structure of Hn (see [B]). r

Note added in proof. Theorem 1.2 holds true even il P is a halfspace with
boundary transverse to the t-axis. This case is studied in a forthcoming paper:
F. UGUZZONI, A non-existence theorem for a semilinear Dirichlet problem in-
volving critical exponent on halfspaces of the Heisenberg group.
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