BOLLETTINO UNIONE MATEMATICA ITALIANA

MARGHERITA ROGGERO, PAOLO VALABREGA

On the smallest degree of a surface containing a space curve

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 1-B (1998), n.1, p. 123–138.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_1998_8_1B_1_123_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 1998.

On the Smallest Degree of a Surface Containing a Space Curve (*).

MARGHERITA ROGGERO - PAOLO VALABREGA

Sunto. – Sia C una curva dello spazio di grado D contenuta in una superficie di grado r e non in una di grado r – 1. Se C è integra, allora $r \le \sqrt{6D-2}-2$; questo limite superiore, raggiunto in alcuni casi (cfr. [5]), non vale però per curve arbitrarie (cfr. [?, 3 (iii)]). Ogni curva C dello spazio (anche non ridotta o riducibile) può essere ottenuta come schema degli zero di una sezione non nulla di un opportuno fascio riflessivo F di rango 2. Mediante i fasci riflessivi, siamo in grado di estendere alle curve riducibili o non ridotte e di migliorare (anche nel caso delle curve integre) la precedente diseguaglianza relativa al grado minimo r di superfici contenenti C, in quanto tale grado è collegato ai livelli a e β delle prime due sezioni indipendenti di F. I nostri limiti superiori si ottengono introducendo, oltre al grado D della curva stessa, anche il numero $e = \max \{n/\omega_C(-n)$ ha una sezione globale che lo genera quasi ovunque} e la seconda classe di Chern c_2 di F. Più precisamente proveremo che, se $(e + 4)/2 \ge \sqrt{D}$, allora $r \le \sqrt{D}$; in caso contrario $r \le \sqrt{6D + 1} - 1 - (e + 4)/4$. Inoltre, se C corrisponde alla prima sezione non nulla di F, si ha $r \le 2\sqrt{3c_2 + 1 + 3c_1/4} - 1$ ed anche $r \le \sqrt{6D - (e + 4)^2 + 1 - 2$.

Introduction.

Let *C* be a projective curve of degree *D* in \mathbb{P}^3 . It is known (and easy to see) that, if *C* is integral, there is a surface of degree $r \leq \sqrt{6D-2}-2$ containing *C* (indeed, count the surfaces of degree $E(\sqrt{6D-2}-2)$, i.e. the integral part of $\sqrt{6D-2}-2$, and impose the condition that the surfaces pass through sufficiently many points of *C*: see [9], Remark 5.11). By the way, this upper bound is reached some times: in his paper [5] Hirschowitz introduces a family of smooth rational curves having the following property: if *C* is any such curve of degree *D* and *m* is an integer such that $Dm + 1 \ge \binom{m+3}{3}$, then *C* does not lie on surfaces of degree *m*. This means that the smallest degree *r* of a surface containing *C* cannot be less than $E(\sqrt{6D-2}-2)$, hence it reaches $E(\sqrt{6D-2}-2)$.

The bound above is not valid for arbitrary curves. Beside the simple example of two skew lines, we can consider, on a smooth surface X of degree D in \mathbb{P}^3 with

(*) Written with the support of CNR and the University Ministry funds.

coordinates (x, y, z, t), the non-reduced curve *C* of degree *D* whose ideal is $(x^{D}, x^{D-1}y, ..., y^{D}, f), f = 0$ being an equation for X and $f(0, 0, z, t) \equiv 0$. Then *C* cannot belong to any surface of degree D - 1 (see [1,3], (iii)).

The problem of the smallest degree of a surface containing a curve C can be restated in terms of rank 2 reflexive sheaves. If C is an (almost) arbitrary curve, locally Cohen-Macaulay and almost everywhere locally complete intersection (but perhaps reducible and not reduced), it is known that C is the scheme of zeros of a non-zero section of $H^0F(n)$, where F is a suitable normalized rank 2 reflexive sheaf (see [3]). More precisely, if $e = \max \{m/\omega_C(-m) \text{ has a global section generating it almost everywhere}\}$, then C is the scheme of zeros of a non-zero section of F(n), where $2n + c_1 = e + 4$ and $D = c_2 + nc_1 + n^2$, c_1 , c_2 being Chern classes for F, $c_1 = 0$ or -1. Moreover, if α and β are the levels of the first and second relevant section of F, then the smallest degree r of a surface containing C is $\alpha + \beta + c_1$ if $n = \alpha$, $n + \alpha + c_1$ otherwise ([8], Remark 1.4).

So the problem can be turned into a problem of sections of a reflexive sheaf.

Using reflexive sheaves we have been able to point out that the expected upper bound $E(\sqrt{6D-2}-2)$ for the smallest degree r, although valid in some circumstances, is not a good one in general; a better bound depends not only upon the degree D, but also upon the number e or, which is the same, upon the levels α and β and the second Chern class c_2 . In our previous paper [9] we found upper bounds for non-stable and semistable sheaves, both in the case $n = \alpha$ and in the case $n > \alpha$. The most difficult part of our proof concerned the case $n = \alpha$; moreover the bounds of [9] for $n > \alpha$ are sharp and, on the other hand, it is hopeless to find an upper bound better than the one given in [9] as far as non-stable sheaves are concerned and $n = \alpha$, considering the example above ([1]).

With these remarks in mind, we want to produce new upper bounds for r when F is semistable and $n = \alpha$, that is when C is minimal for a semistable F, and these results improve [9].

Precisely we want to show that, given any curve C which is minimal for a rank 2 semistable reflexive sheaf F, then:

$$r \leq \min\left(\sqrt{6c_2 + \frac{1}{2}(2\alpha + c_1)^2 + \frac{3}{2}c_1 + 1} - 1, \sqrt{6c_2 + \frac{3}{2}(2\alpha + c_1)^2 + \frac{3}{2}c_1 + 1} - \frac{1}{4}(2\alpha + c_1) - 1\right).$$

Note that the examples above by Hirschowitz come out to be sharp for this bound and for every degree D, but only for low α (precisely $\alpha = 2$ in this case). For large α it easy to see that any curve C having α as high as possible (i.e. $=E(\sqrt{3c_2+1+\frac{3}{4}c_1}-\frac{1}{2}c_1-1)$: see [3], Theorem 0.1) reaches the upper bound and that there are curves whose α is not maximal, but reaching the bound. However we do not know whether the bounds are sharp for all α , small or large with respect to c_2 .

The last section of this paper contains an account of all results of [9] and of the previous sections, but they are stated in terms of curves and not of reflexive sheaves. So we obtain results which, given a curve C, link D, r and e, and allow to evaluate each one among the three numbers, provided that the other two numbers are known. Summing up, given a curve C which is the scheme of zeros of a section of a rank 2 reflexive sheaf (reducible and not reduced curves are included) then:

- (i) $r \leq \sqrt{6D (e+4)^2 + 1} 1$, if $0 \leq e+4 < 2\sqrt{D}$ (which means that F may be either semistable or non stable with $c_2 > 0$, but in the non stable case the minimal section must be excluded);
- (ii) $r \leq \sqrt{D}$, if $e + 4 \geq 2\sqrt{D}$ (in this event *F* is necessarily non-stable);
- (iii) r ≤ √6D + 1 1 ¹/₄ (e + 4), if e + 4 < 2√D
 (F may be either semistable or non-stable and C either minimal or not in this case).

We remark that for an integral curve, but not in general, the bound $r \leq \sqrt{6D+1} - 1 - \frac{1}{4}(e+4)$ follows from Riemann-Roch.

Bounds (i) and (iii) hold in a common range; it is easy to see that for low n (say $\leq \sqrt{\frac{1}{2}c_2}$), the better bound is $r \leq \sqrt{6D+1}-1-\frac{1}{4}(e+4)$, while for large n the better bound is $r \leq \sqrt{6D-(e+4)^2+1}-1$.

We observe that our results are relevant also for sheaves in themselves; in fact the inequality $\alpha + \beta + c_1 \leq \sqrt{6c_2 + \frac{3}{2}(2\alpha + c_1)^2 + \frac{3}{2}c_1 + 1} - \frac{1}{4}(2\alpha + c_1) - 1$ for a semistable *F* has the following consequence:

for any $n \ge \sqrt{6c_2 + c_1 + 1} - 1$, F(n) has sections whose schemes of zeros are curves (see Corollary 3.4 and [2], Theorem 0.1).

1. - Notations, definitions and the three main functions.

For a reflexive sheaf F on P^3 (over an algebraically closed field of characteristic 0), c_1c_2 , c_3 are its Chern classes; F is normalized if $c_1 = 0$ or -1; $\alpha(F) = \alpha$ is the first integer such that $h^0F(\alpha) \neq 0$, $\beta(F) = \beta$ is the first integer such that $h^0(\beta) > h^0 \mathcal{O}_{P^3}(\beta - \alpha)$, while α and b are the same for a rank 2 vector bundle E on P^2 ; in particular $a(F) := a(F_H)$, $b(F) := b(F_H)$ for F_H generic plane restriction of F; $\delta(F) = \delta = c_2 + c_1\alpha + \alpha^2$ is the degree of any curve C scheme of zeros of α nonzero section of $F(\alpha)$, while $\Delta = c_2 + c_1\alpha + \alpha^2$ is the analogous of δ for α rank 2 vector bundle E on P^2 . Such curves C are called *minimal curves* of F and are the same for all twists of F (so also δ does not depend upon the twist).

 G^{\vee} means the dual of the sheaf G and V* means the dual of the vector space V. F is called stable if $\alpha > 0$, semistable if $\alpha + c_1 \ge 0$, non-stable otherwise.

Unless otherwise stated a rank 2 reflexive sheaf F on \mathbf{P}^3 and a vector bundle E on \mathbf{P}^2 will always be normalized and non-split.

We recall here the following theorem, which we shall use many times in this paper:

THEOREM 1.1 ([4], Theorem 0.1). – Let F be a rank 2 normalized reflexive sheaf such that $c_2 \ge 0$ and let t be an integer such that $t > \sqrt{3c_2 + 1 + \frac{3}{4}c_1} - 2 - \frac{1}{2}c_1$; then $t \ge \alpha$.

So $\alpha \leq \sqrt{3c_2 + 1 + \frac{3}{4}c_1} - 1 - \frac{1}{2}c_1$.

NOTATIONS 1.2. – In this paper we shall consider the following three functions of c_1 , c_2 , α of α semistable sheaf F:

$$\begin{split} f(c_1, \, c_2, \, \alpha) &= \sqrt{6\delta + 1} - \frac{1}{4} \left(2\alpha + c_1 \right) = \\ &= \sqrt{6c_2 + \frac{3}{2} \left(2\alpha + c_1 \right)^2 + \frac{3}{2} c_1 + 1} - \frac{1}{4} \left(2\alpha + c_1 \right), \\ g(c_1, \, c_2, \, \alpha) &= \sqrt{6\delta - (2\alpha + c_1)^2 + 1} = \sqrt{6c_2 + \frac{1}{2} \left(2\alpha + c_1 \right)^2 + \frac{3}{2} c_1 + 1} , \\ h(c_1, \, c_2, \, \alpha) &= 2 \sqrt{3\delta - \frac{3}{4} (2\alpha + c_1)^2 + 1} - 1 = 2 \sqrt{3c_2 + 1 + \frac{3}{4} c_1} - 1 . \end{split}$$

From now on t will be a positive integer satisfying one among the following conditions:

- (a) $t + \alpha + c_1 + 2 > f(c_1, c_2, \alpha);$
- (b) $t + \alpha + c_1 + 2 > g(c_1, c_2, \alpha);$
- (c) $t + \alpha + c_1 + 2 > h(c_1, c_2, \alpha)$.

REMARK 1.3. – We will prove that, for a semistable sheaf F, $t \ge \beta$, under whathever condition (a), (b) or (c).

First of all we observe that, if $c_2 = 1$, then $\alpha \leq 1$ because of theorem 1.1 above, hence $2\alpha + c_1 \leq 2$. Since, by [1], we have $\alpha + \beta + c_1 \leq c_2 + c_1\alpha + \alpha^2$, we obtain that $\beta = 1$. All three conditions above imply that $t \geq 1$, hence the claim is true in this event. So we shall assume from now on that $c_2 \geq 2$ and in particular that F is not a null-correlation bundle.

Moreover, we emphasize that $g \leq h$ for all α allowed by Theorem 1.1, and $f \leq g$ if and only if $\alpha + \frac{1}{2}c_1 \leq n$, $\sqrt{\frac{1}{3}c_2} \leq n \leq \sqrt{\frac{2}{3}c_2}$: see Figure 1.

Fig. 1. – Pictures of the functions above with $c_1 = 0$ and fixed $c_2 \gg 0$.

Fig. 2. – Pictures of the functions above with $c_1 = 0$ and fixed $\delta \gg 0$.

2. – Reduction steps.

It is known that an unstable surface for the reflexive sheaf F gives rise to a reduction step (see [4] and [9]). Here we prove three useful lemmas concerning reduction steps.

LEMMA 2.1. – Let F be a semistable rank 2 reflexive sheaf, $x \neq 0$ an element of $H^2F(t)^*$, f in $H^0\mathcal{O}(d)$ an annihilator of minimal degree for x. If r = t + 4 - d > 0, then we have:

(i) X (the surface defined by f = 0) is an unstable surface for F and there is an exact sequence

(1)
$$0 \to G(-\varepsilon) \to F \to I_{Z,X}(-r) \to 0$$

where G is a normalized rank 2 reflexive sheaf with Chern classes c'_1, c'_2, c'_3 ,

Z has codimension 1 in X, k is the degree of the curve part of Z, and moreover:

$$2\varepsilon = d - c_1 + c_1',$$

$$c_2' = c_2 - d(t + 4 + c_1 - d) - \frac{1}{4}(d - c_1)^2 - \frac{1}{4}c_1' - k < c_2,$$

$$\begin{aligned} 2\alpha + c_1 - d &\leq 2\alpha' + c_1' \leq 2\alpha + c_1 + d \quad where \quad \alpha' = \alpha(G), \\ 2\beta + c_1 - d &\leq 2\beta' + c_1' \quad where \quad \beta' = \beta(G). \end{aligned}$$

- (ii) If $\alpha > \varepsilon$, then G is semistable.
- (iii) If t + 4 > a + d then $a' = a(G) = a \varepsilon$.
- (iv) If $t + 4 > \alpha + d$ then $\alpha' = \alpha \varepsilon$, $\beta' \ge \beta \varepsilon$ and

$$\delta' = \delta(G) = \delta - d(c_1 + r + \alpha) - k < \delta.$$

PROOF. - It depends upon [9], Proposition 1.2 and Remark 1.3 except:

$$2\alpha + c_1 - d \leq 2\alpha' + c_1' \leq 2\alpha + c_1 + d$$
 and

 $2\beta + c_1 - d \leqslant 2\beta' + c_1' \text{ when } 2\alpha' + c_1' \neq 2\alpha + c_1 - d$

which are proved as follows.

Assume that $\alpha' < \alpha - \varepsilon$; then the cohomology sequence of (1) gives

$$0 \to H^0 G(\alpha') \to H^0 F(\alpha' + \varepsilon) = 0$$

which is absurd. Let now σ be a non-zero section of $H^0F(\alpha)$ with image gin $H^0I_{Z,X}(\alpha-r)$; then fg = 0, hence $f\sigma \neq 0$ is image of a non-zero element in $H^0G(\alpha-\varepsilon+d)$. Therefore $\alpha' \leq \alpha-\varepsilon+d$, which implies the second claim. Assume now that $\beta' < \beta-\varepsilon$. If $s \in H^0G(\alpha')$, $s' \in H^0G(\beta')$ are indipendent sections as in lemma 1.1 of [8], then, if i is the canonical embedding $H^0G(n-\varepsilon) \rightarrow H^0F(n)$, $i(s) H^0 \mathcal{O}_{P^3}(\beta'-\alpha')$ and i(s') belong to $H^0F(\beta'+\varepsilon) = \sigma H^0\mathcal{O}_{P^3}(\beta'+\varepsilon-\alpha)$, σ being a non-zero element of $H^0F(\alpha)$. Then we have: $i(s) = \sigma h_1$, $i(s') = \sigma h_2$, hence $i(h_2s) = i(h_1s')$, which means $h_2s = h_1s'$, so contradicting Lemma 1.1 of [8].

LEMMA 2.2. – Let F be a semistable rank 2 normalized reflexive sheaf and let t be a positive integer such that $H^2F(t) \neq 0$. Then

(a) there is x in $H^2 F(t)^*$ whose image x_H in $H^1 F_H(-t-c_1-4)$ is $\neq 0, H$ being a general plane;

(b) x being as in (a), let d be the smallest integer such that x is annihiled by an element of $H^0 \mathcal{O}_H(d)$ for all H. If moreover

- (i) t + 3 > a + d,
- (ii) $t+4 > 2d-a-c_1$,

then x has only one (up to a unit) annihilator f in $H^0 \mathcal{O}_{\mathbf{P}^3}(d)$.

PROOF. - It depends upon [4] and [9].

REMARK 2.3. – If $d \leq 2\alpha + c_1 + 1$ (for instance when $\alpha < \alpha$), then (i) implies (ii).

LEMMA 2.4. – Let F be a rank 2 semistable reflexive sheaf, H a general plane, $x_H \neq 0$ an element of $H^1F_H(-t-c_1-4)$, f_H in $H^0\mathcal{O}_H(d)$ an annihilator of minimal degree for x_H . If t+3 > a+d, then $d \leq \sqrt{2c_2-2a^2}$; if moreover $d \leq 2a + c_1 + 1$ (for instance when a < a), then $d \leq \sqrt{\frac{4}{3}c_2}$.

PROOF. – First we observe that $-t-c_1-4+d-1 \le -a-c_1-2$; then by Riemann-Roch we have $h^1F_H(-t-c_1-4+d-1) \le h^1F_H(-a-c_1-2) \le c_2-a^2$, since $h^1F_H(n)$ is increasing for $n \le -2$. Moreover by the same definition of d, we have also $\frac{1}{2}d(d+1) \le h^1F_H(-t-c_1-4+d-1)$. By comparison we obtain that $d \le \sqrt{2c_2-2a^2+\frac{1}{4}}-\frac{1}{2} \le \sqrt{2c_2-2a^2}$.

If moreover $d \leq 2a + c_1 + 1$ (see also [4], Proposition 4.1 for the case $a < \alpha$), then $d \leq \min\left(\sqrt{2c_2 - 2a^2 + \frac{1}{4}} - \frac{1}{2}, 2a + c_1 + 1\right) \leq \sqrt{\frac{4}{3}c_2}$.

LEMMA 2.5. – Let F be a semistable rank 2 normalized reflexive sheaf having $c_2 \ge 2$, t an integer such that $H^2F(t) \ne 0$ and d as in Lemma 2.1. If t fulfils (a) or (b) or (c) of Notations 1.2, then t+3 > a+d and $t+4+c_1 > 2d-a$.

PROOF. – Choose x in $H^2 F(t)^*$ and its image x_H in $H^1 F(-t-c_1-4)$ as in Lemma 2.2, (a), and let d be the smallest degree of an annihilator of x_H . The inequality t+3 > a+d follows from [4], Proposition 4.3, provided we show that

$$t + a + c_1 + 2 \ge \sqrt{3c_2 + 1 + \frac{3}{4}c_1} + \frac{1}{2}(2a + c_1).$$

Case 1: t fulfils (a) of Notations 1.2.

We must show that $\sqrt{6\delta + 1} \ge \sqrt{3c_2 + 1 + \frac{3}{4}c_1} + \frac{3}{4}(2\alpha + c_1)$. In fact, squaring both sides and simplifying we obtain:

$$\left(\sqrt{3c_2+1+\frac{3}{4}c_1}-\frac{3}{4}(2\alpha+c_1)\right)^2+\frac{3}{8}(2\alpha+c_1)^2 \ge 1$$

The inequality holds if $2\alpha + c_1 \ge 2$ or = 0. If $2\alpha + c_1 = 1$, it depends upon the inequality $c_2 \ge \frac{1}{16} (1 + 2\sqrt{10} - 4c_1)$, always true because $c_2 \ge 2$.

Case 2: t fulfils (b) of Notations 1.2. First we see that

$$\sqrt{6\delta - (2\alpha + c_1)^2 + 1} \ge \sqrt{3c_2 + 1 + \frac{3}{4}c_1} + \frac{1}{2}(2\alpha + c_1).$$

In fact, squaring and simplifying, we obtain: $\left(\sqrt{3c_2+1+\frac{3}{4}c_1}-\frac{1}{2}(2\alpha+c_1)\right)^2 \ge 1$, true because of Theorem 1.1.

Case 3: t fulfils (c) of Notations 1.2. The claim follows from Remark 1.3 and case 2.

COROLLARY 2.6. – Under the assumptions of Lemma 2.5, there exists a reduction step for F as described in Lemma 2.1.

PROOF. - It depends upon Lemma 2.5, Lemma 2.1 and Lemma 2.2.

3. – Upper bounds for the second section of a reflexive sheaf.

In this section we discuss and prove our upper bounds for the level β of the second section of a **semistable** reflexive sheaf *F*.

THEOREM 3.1. – Let F be a semistable rank 2 normalized reflexive sheaf having $c_2 \ge 2$ and t an integer as in Notations 1.2. If $H^2F(t) = 0$, then $t \ge \beta$.

PROOF. - Riemann-Roch gives:

$$h^{0}F(t) = 2\binom{t+3}{3} - c_{1}\binom{t+2}{2} - c_{2}(t+2) + \frac{1}{2}(c_{3} - c_{1}c_{2}) + h^{1}F(t).$$

The inequality $t \ge \beta$ holds if $h^0 F(t) > h^0 \mathcal{O}_{P^3}(t-\alpha)$. So it is enough to prove that the polynomial function

$$P(X) = X^{3} - (6\delta + 1) X + 3\delta(2\alpha + c_{1})$$

is positive when $X = t + \alpha + c_1 + 2$. Since P(X) is increasing for $X \ge \sqrt{\frac{1}{3}(6\delta + 1)}$, it is enough to show that the right hand sides of Notations 1.2, (a), (b), (c) are not smaller than $\sqrt{\frac{1}{3}(6\delta + 1)}$ and that $P(X) \ge 0$ whenever X = any such right hand side.

Case 1: t fulfils (a). Then it depends upon [9, Lemma 4.1, $b \Rightarrow a$].

Case 2: t fulfils (b). Let us prove that $\sqrt{6\delta - (2\alpha + c_1)^2 + 1} \ge \sqrt{\frac{1}{3}(6\delta + 1)}$; squaring both sides and simplifying, we obtain $4c_2 + \frac{2}{3} + c_1 \ge 0$, which is always true. Now we compute

$$P\left(\sqrt{6\delta - (2\alpha + c_1)^2 + 1}\right) = (2\alpha + c_1)\left(3\delta - (2\alpha + c_1)\sqrt{6\delta - (2\alpha + c_1)^2 + 1}\right);$$

since $2\alpha + c_1 \ge 0$, it is enough to prove that $3\delta \ge (2\alpha + c_1)\sqrt{6\delta - (2\alpha + c_1)^2 + 1}$.

Squaring and simplifying, we obtain:

$$\left(\left(3c_2 + 1 + \frac{3}{4} c_1 \right) - \frac{1}{4} (2\alpha + c_1)^2 - 1 \right)^2 \ge (2\alpha + c_1)^2 ,$$

true by Theorem 1.1.

Case 3: t fulfils (c). The claim follows from Case 2 and Remark 1.3.

THEOREM 3.2. – Let F be a semistable rank 2 normalized reflexive sheaf having $c_2 \ge 2$, t an integer as in Notations 1.2. If $H^2F(t) \neq 0$, then $t \ge \beta$.

PROOF. – We proceed by induction on c_2 (the case $c_2 = 1$ has been proved in section 1). We assume that the statement is true for every rank 2 semistable normalized reflexive sheaf with second Chern class $\langle c_2 \rangle$. By Corollary 2.6 there is a reduction step giving a new sheaf G with $c'_2 = c_2(G) \langle c_2 \rangle$ (Lemma 2.1). We will prove that G is semistable and $t' = t - \varepsilon$ fulfils at least one among the conditions of Notation 1.2, relatively to G. This will imply the claim for F, because the claim is true for G and moreover (Lemma 2.1) $t = t' + \varepsilon \geq \beta' + \varepsilon \geq \beta$.

We will see that:

- condition (a) for F and t implies condition (a) for G and t', provided that either $a = \alpha$ or that $a < \alpha < \sqrt{\frac{2}{3}c_2 - \frac{1}{2}c_1}$;

– condition (b) for F and t implies condition (b) for G and t', provided that $a \ge \sqrt{\frac{1}{3}c_2} - \frac{1}{2}c_1$;

Having in mind remark 1.3, we see that this is enough to cover all cases.

Step 1: F and t fulfil condition (a), i.e. $t + a + c_1 + 2 > \sqrt{6\delta + 1} - \frac{1}{4}(2a + c_1)$. If a = a, the claim is proved in [9]; hence we assume a < a and then $d < 2a + c_1$. Moreover we assume $a < \sqrt{\frac{2}{3}}c_2 - \frac{1}{2}c_1$. We want to show that G and t' fulfil (a) of Notation 1.2 that is: $t' + a' + c_1' + 2 > \sqrt{6\delta' + 1} - \frac{1}{4}(2a' + c_1')$. First of all we observe that t + 4 > a + d. In fact $t + a + c_1 + 2 > \sqrt{6\delta + 1} - \frac{1}{4}(2a + c_1) \ge 2a + c_1 + d$; it is now enough to square and recall that $2a + c_1 \le 2\sqrt{\frac{2}{3}}c_2$ that is $c_2 > \frac{3}{8}(2a + c_1)^2$ and $d \le (2a + c_1)$ (Lemma 2.4). Therefore a' > a' and so G is semistable. Using Lemma 2.1 (iv), it is enough to show that:

$$t' + \alpha' + c_1' + 2 = t + \alpha + c_1 + 2 - d > \sqrt{6\delta + 1} - \frac{1}{4} (2\alpha + c_1) - \frac{1}{4} (2\alpha + c$$

$$d \ge \sqrt{6\delta' + 1} - \frac{1}{4} (2\alpha' + c_1'),$$

i.e. that $\sqrt{6\delta + 1} - \frac{5}{4} d \ge \sqrt{6\delta - 6(t + 4 + \alpha + c_1 - d) d + 1}.$

Squaring and simplifying, we see that it is enough to prove that: $6(t + 4 + c_1 + \alpha - d) + \frac{25}{16}d - \frac{5}{2}\sqrt{6\delta + 1} = \frac{5}{2}(t + \alpha + c_1 + 2) - \frac{5}{2}(d - 2) + \frac{7}{2}(t + 4 + c_1 + \alpha - d) + \frac{25}{16}d - \frac{5}{2}\sqrt{6\delta + 1} \ge 0$. Since *t* fulfils (*a*) and $t + 4 > \alpha + d$, it is enough to show that $\frac{23}{8}(2\alpha + c_1) - \frac{15}{8}d + 10 \ge 0$, true because $d < 2\alpha + c_1$.

Step 2: F and t fulfil condition (b), i.e.

$$t + \alpha + c_1 + 2 > \sqrt{6\delta - (2\alpha + c_1)^2 + 1} = \sqrt{6c_2 + \frac{1}{2}(2\alpha + c_1)^2 + \frac{3}{2}c_1 + 1}$$

Since the case $\alpha < \sqrt{\frac{2}{3}}c_2 - \frac{1}{2}c_1$ follows from step 1 (see Remark 1.3), we assume that $\alpha \ge \sqrt{\frac{1}{3}c_2} - \frac{1}{2}c_1$ and so $d \le \sqrt{\frac{4}{3}c_2}$ (see Lemma 2.4 and Lemma 2.5). If a < a we have $d \le 2a + c_1 - 1$ and therefore $a' \ge a - \varepsilon > 0$, while, if a = a, then $a' \ge a - \frac{1}{2}d \ge \sqrt{\frac{1}{3}c_2} - \frac{1}{2}c_1 - \frac{1}{2}\sqrt{\frac{4}{3}c_2} \ge 0$; hence G is semistable. First of all we remark that $t + 4 > d + \frac{1}{3}a$, i.e. that

First of all we remark that $t+4 > d + \frac{1}{3}\alpha$, i.e. that $\sqrt{6c_2 + \frac{1}{2}(2\alpha + c_1)^2 + \frac{3}{2}c_1 + 1} - (d + \frac{4}{3}\alpha + c_1 - 2) > 0$. The left side of the last inequality, as a function of $2\alpha + c_1$, is decreasing, when $2\alpha + c_1 \leq 4\sqrt{6c_2 + \frac{3}{2}}$, i.e. for all values of α allowed by Theorem 1.1, and moreover, when $2\alpha + c_1 = 2\sqrt{3c_2}$, it has the value $\sqrt{12c_2 + \frac{3}{2}c_1 + 1} - d - \frac{4}{3}\sqrt{3c_2} - \frac{1}{3}c_1 + 2 > 0$ (recall that $d \leq \sqrt{\frac{4}{3}c_2}$ and $c_2 \geq 2$).

Now we prove our claim under the following condition:

$$(*) \quad 6c_2 + \frac{1}{2} (2\alpha + c_1)^2 + \frac{3}{2} c_1 + 1 \le (2\alpha + c_1)^2 + \frac{2}{3} d(2\alpha + c_1) + 2d^2 - 1$$

In this event we have: $d \ge 2$ (Theorem 1.1). Let us prove that G and $t' = t - \varepsilon$ fulfil (c), i.e. that

 $t^{\,\prime}+a^{\,\prime}+c_1^{\,\prime}+3=t+a+c_1+3-d \geqslant$

$$\geq \sqrt{6c_2 + \frac{1}{2} (2\alpha + c_1)^2 + \frac{3}{2} c_1 + 1} - d \geq 2 \sqrt{3c_2 + \frac{3}{4} c_1 + 1}.$$

In fact, squaring, simplifying and using Lemma 2.1, we see that it is enough to prove that

$$\begin{aligned} 6c_2 - 12d(t+4+c_1-d) - 3d^2 + 6dc_1 + 3c_1 + 3 \leqslant \\ \leqslant \frac{1}{2} (2\alpha + c_1)^2 + \frac{3}{2} c_1 + d^2 - 2d \sqrt{6c_2 + \frac{1}{2} (2\alpha + c_1)^2 + \frac{3}{2} c_1 + \frac{1}{2} c_1 + \frac{3}{2} c_1 + \frac{3}{2$$

Using (b), we see that it is enough to show that

$$6c_2 - 10d(t + 4 + c_1 - d) + 2d(a + d - 2) + 3 - 4d^2 + 6dc_1 + \frac{3}{2}c_1 \le \frac{1}{2}(2a + c_1)^2.$$

Using the inequality $t + 4 > d + \frac{1}{3} \alpha$ it is enough to show that

$$6c_2 + \frac{1}{2}(2\alpha + c_1)^2 + \frac{3}{2}c_1 + 1 \le (2\alpha + c_1)^2 + 2d(2\alpha + c_1) + 2d^2 - 2 + \frac{10}{3}c_1 + 4d,$$

which follows from (*) since $d \ge 2$.

 $t' + \alpha' + c_1' + 2 = t + \alpha + c_1 + 2 - d \ge$

We now assume that

$$(**) \quad 6c_2 + \frac{1}{2}(2\alpha + c_1)^2 + \frac{3}{2}c_1 + 1 > (2\alpha + c_1)^2 + \frac{2}{3}d(2\alpha + c_1) + 2d^2 - 1$$

and $2\,\alpha\,' + c_1' < 2\,\alpha + c_1$ hold. In this event we show that G and $t\,'$ fulfil (b), i.e. that

$$\geq \sqrt{6c_2 + \frac{1}{2} (2\alpha + c_1)^2 + \frac{3}{2} c_1 + 1} - d \geq \sqrt{6c_2' + \frac{1}{2} (2\alpha' + c_1)^2 + \frac{3}{2} c_1' + 1}.$$

Squaring and using Lemma 2.1, we see that it is enough to show that

$$d\left(6d(t+c_1+4-d)-2\sqrt{6c_2+\frac{1}{2}(2\alpha+c_1)^2+\frac{3}{2}c_1+1}+\frac{5}{2}d^2-3dc_1\right) \ge 0$$

or, using assumption (b) on t:

$$4\sqrt{6c_2 + \frac{1}{2}(2\alpha + c_1)^2 + \frac{3}{2}c_1 + 1} \ge \frac{7}{2}d + 3(2\alpha + c_1) - 12.$$

Squaring both sides and using (* *), we obtain:

$$16(2\alpha + c_1)^2 + \frac{32}{3} (2\alpha + c_1) d + 32d^2 - 16 \ge \frac{49}{3} d^2 + 21(2\alpha + c_1) d + 9(2\alpha + c_1)^2 + 144 - 84d - 72(2\alpha + c_1)$$

i.e. $7(2\alpha + c_1)^2 - \frac{31}{3}(2\alpha + c_1)d + \frac{79}{4}d^2 \ge 160 - 84d - 72(2\alpha + c_1)$, which is true because the left side is positive and the right side is negative, except when $d = 2\alpha + c_1 = 1$, in which case we have $7 - \frac{31}{3} + \frac{79}{4} \ge 4$.

We now assume that (**) and $2\alpha' + c_1' \ge 2\alpha + c_1$ hold. In this event we show that G and t' fulfil (b) i.e. that

$$\begin{split} t' + \alpha' + c_1' + 2 &\ge t + \alpha + c_1 + 2 - \frac{1}{2}d \geqslant \\ &\sqrt{6c_2 + \frac{1}{2}\left(2\alpha + c_1\right)^2 + \frac{3}{2}c_1 + 1} - \frac{1}{2}d \geqslant \sqrt{6c_2' + \frac{1}{2}\left(2\alpha' + c_1\right)^2 + \frac{3}{2}c_1' + 1} \,. \end{split}$$

Squaring and using Lemma 2.1, (in particular the fact that $2\alpha' + c_1' \leq 2\alpha + c_2' < 2\alpha +$

 $c_1 + d$), we see that it is enough to show that

$$6d(t+4) - d(2\alpha + c_1) + 3c_1d - \frac{19}{4}d^2 > d\sqrt{6c_2 + \frac{1}{2}(2\alpha + c_1)^2 + \frac{3}{2}c_1 + 1}.$$

Using (b) on t, it is enough to show that

$$5\sqrt{6c_2+\frac{1}{2}(2\alpha+c_1)^2+\frac{3}{2}c_1+1} > \frac{19}{4} + 4(2\alpha+c_1).$$

Squaring and using (* *), we see that it is enough to show that

$$9(2\alpha + c_1)^2 - \frac{64}{3} d(2\alpha + c_1) + \frac{439}{16} d^2 > 0,$$

which is always true.

THEOREM 3.3. – Let F be a normalized rank 2 reflexive sheaf. Then:

$$\begin{split} \beta + \alpha + c_1 &\leqslant \sqrt{6c_2 + \frac{3(2\alpha + c_1)^2}{2} + \frac{3}{2}c_1 + 1} - \frac{(2\alpha + c_1)}{4} - 1, \\ \beta + \alpha + c_1 &\leqslant \sqrt{6c_2 + \frac{(2\alpha + c_1)^2}{2} + \frac{3}{2}c_1 + 1} - 1 \ \text{if } F \ \text{is semistable}, \\ \beta + \alpha + c_1 &\leqslant 2\sqrt{3c_2 + 1 + \frac{3}{4}c_1} - 2 \ \text{if } F \ \text{is semistable}. \end{split}$$

PROOF. – If *F* is semistable, the claim follows from Remark 1.5, Theorem 3.1 and Theorem 3.2. The non-stable case is proved in [9], Remark 4.4. Observe that, for *t* and β integers, $t > x \Rightarrow t \ge \beta$ is the same as $\beta \le x + 1$.

COROLLARY 3.4. – Let F be a semistable reflexive sheaf and let s be a general section in F(n). Then, whenever $n \ge \sqrt{6c_2 + c_1 + 1} - 1$, the scheme of zeros of s is a curve.

PROOF. – Consider, for every positive c_2 and $c_1 = 0$ or -1, the function $g'(\alpha) = \sqrt{6c_2 + \frac{1}{2}(2\alpha + c_1)^2 + \frac{3}{2}c_1 + 1} - \alpha - c_1 - 1$; it is easy to see, by a straighforward computation, that it reaches its highest value, within the interval $-c_1 \leq \alpha \leq \sqrt{3c_2 + 1 + \frac{3}{4}c_1} - \frac{1}{2}c_1 - 1$ (see Theorem 1.1), when $\alpha = -c_1$, and such a value is exactly $\sqrt{6c_2 + c_1 + 1} - 1$. Then it follows from Theorem 3.3 that $\beta \leq \sqrt{6c_2 + c_1 + 1} - 1$ and for $n \geq \beta$ the general section of F(n) gives rise to a curve (see [8], §1, n. 2).

REMARK 3.5. – We observe that, if F is non-stable, then such a result does not exist. Indeed for every function $\phi(c_2)$ there are sheaves having $\beta > -\alpha > \phi(c_2)$: see [9], Example 5.12.

4. – Bounds for the degree of a surface containing a curve.

Theorem 3.3 can be traslated into the language of curves as follows.

THEOREM 4.1. – Let r be the smallest degree of a surface containing a minimal curve C of the normalized semistable rank 2 reflexive sheaf F. Then $r \leq 2\sqrt{3c_2 + 1 + \frac{3}{4}c_1} - 2$.

DEFINITION 4.2. – Let C be a curve. Define:

 $e = \max\{n/\omega_C(-n) \text{ has a section generating it almost everywhere}\}.$

THEOREM 4.3. – Let C be a curve of degree D lying on a surface of degree r and not less.

If $\frac{1}{2}(e+4) \ge \sqrt{D}$, $r \le \sqrt{D}$; otherwise $r \le \sqrt{6D+1}-1-\frac{1}{4}(e+4)$. If moreover $0 < \frac{1}{2}(e+4) < \sqrt{D}$, then

$$r \le \min\left(\sqrt{6D+1} - 1 - \frac{1}{4} (e+4), \sqrt{6D - (e+4)^2 + 1} - 1\right)$$

PROOF. – Let F(n) be the sheaf corresponding to C through a section of $\omega_C(-e)$, where F is normalized: then $e + 4 = 2n + c_1$ and $D = c_2 + nc_1 + n^2$. From the assumption $\frac{1}{2}(e+4) \ge \sqrt{D}$ it follows that n > 0 and $4c_2 + c_1 \le 0$ (it is enough to square both members), which means that F is non-stable and the result follows from [9], Proposition 5.3.

If $\frac{1}{2}(e+4) < \sqrt{D}$ and $n = \alpha$, then the claim follows from Theorem 3.3 above for the stable case and from [9], Remark 4.4 for the non-stable case.

Finally, if $0 < \frac{1}{2}(e+4) < \sqrt{D}$ and $n = \alpha > 0$, then the claim follows from Theorem 3.3 above; if $n > \alpha$ from the assumption it follows that

$$\min\left(\sqrt{6D+1} - \frac{1}{4} \ (e+4), \ \sqrt{6D - (e+4)^2 + 1} - 1\right) - 1 \ge \\ \min\left(\sqrt{6D+1} - \frac{1}{2} \ \sqrt{D}, \ \sqrt{2D+1}\right) - 1 \ge \sqrt{3D+1} - 1 \ge \sqrt{D}$$

(direct computation).

Then the claim follows from [9, Proposition 5.3 in the non-stable case, Proposition 5.8 in the stable case: if $n > \alpha$, then $r \leq \sqrt{3D+1}-1$, which is a statement slightly stronger than 5.8].

REMARK 4.4. – Let C be an integral curve (so having $e \ge 0$) and assume that C is not contained in any surface of degree e. Then the claim

$$t > \sqrt{6D+1} - 2 - \frac{1}{4} (e+4)$$
 and $t > e \Rightarrow t \ge r$

follows (easily) from Riemann-Roch. In fact for t > e we have $h^0 \omega_C(-t) = 0$ (not true for a non-integral curve); moreover $h^0 I_C(t) \ge h^0 \mathcal{O}_{P^3}(t) - h^0 \mathcal{O}_C(t)$ and $p_a = 1 + \frac{1}{2}eD + \frac{1}{2}c_3$, hence $h^0 I_C(t) \ge \binom{t+3}{3} - h^0 \mathcal{O}_C(t) = \binom{t+3}{3} + \frac{1}{2}eD + \frac{1}{2}c_3 - tD \ge \binom{t+3}{3} + \frac{1}{2}(e+4)D - (t+2)D$. This last term becomes ≥ 0 if we replace t with $\sqrt{6D+1} - 2 - \frac{1}{4}(e+4)$, provided that e+4 > 0.

REMARK 4.5. – The upper bound of Theorem 3.3 is lower than $\sqrt{6D-2}-3$, D being the degree of the curve C, except when $\alpha = 1$ and $c_1 = -1$.

REMARK 4.6. – Theorem 4.3 can be used to obtain information on the number e, provided that both r and D are known. For the sake of simplicity, assume that $c_1 = 0$. Then we have:

- if
$$r > \sqrt{D}$$
, then $e + 4 < 2\sqrt{D}$,

- if
$$r \leq \sqrt{D}$$
, then $e + 4 < D + 1$.

In fact, if $r \leq \sqrt{D}$ and moreover it is known that *C* corresponds to a semistable sheaf *F*, then Theorem 4.3 says that

$$0 \leq e+4 \leq \min\left(4\sqrt{6D+1}-4(\sqrt{D}+1),\sqrt{5D-2\sqrt{D}}\right).$$

If, on the contrary, $r \leq \sqrt{D}$ but *C* is the scheme of zeros of the first section of a non-stable *F*, then e + 4 < 0; if $r \leq \sqrt{D}$ and *C* is the scheme of zeros of a section of *F*(*n*), where *F* is non-stable and $n \geq \beta$, then e + 4 = 2n and $c_2 + n^2 = c_2 + n^2 + \alpha^2 - \alpha^2 \geq c_2 + \alpha^2 + (n - \alpha)(n + \alpha) \geq 2n$, true whenever $n + \alpha$ is at least 2, i.e. if *C* is not a plane curve. If *C* is a plane curve, then of course e + 4 = D + 1. So in any event D + 1 is an upper bound for e + 4.

Observe that, if C corresponds to the first section of a non-stable F, e can be arbitrarily negative, even when both r and D are given (see [1,3, (iii)].

REMARK 4.7. – Observe that, if $\frac{1}{2}(e+4) \ge \sqrt{D}$, then the curve is not minimal for a non-stable sheaf F. For such a curve the other bound $r \le \sqrt{6D+1} - 1 - \frac{1}{4}(e+4)$ is not valid, also because it may be a negative number: see [9], Remark 5.5.

5. – Examples.

EXAMPLE 5.1. – Let F be a normalized rank 2 reflexive sheaf with $c_3 = 0$, $c_2 \ge 1$, whose cohomology is seminatural ([5, Theorem 2.3]. Then it can easily be seen that $\alpha = E(\sqrt{3c_2 + \frac{3}{4}c_1 + 1} - \frac{1}{2}c_1 - 1)$. Therefore we have:

$$h^{0}F(\alpha) = \frac{1}{3} (\alpha+1)(\alpha+2)(\alpha+3) - (\alpha+2) c_{2} + \frac{1}{2} (\alpha+1)(\alpha+2) c_{1} > 1$$

and $\alpha = \beta$ (by the main theorem of [10]). So the upper bound of Theorem 3.3 is sharp for all $c_2 \ge 1$.

It easy to see that in this case the upper bound $\sqrt{6D - (e+4)^2 + 1} - 1$ is reached.

EXAMPLE 5.2. – Let F be a seminatural cohomology reflexive sheaf with $c_1 = c_3 = 0, c_2 = 5$; then $\alpha = \beta = 3$, hence a curve C scheme of zeros of a section of F(3) lies on a surface of degree 6 and not less and has degree D = 14. Let now Y be the skew union of C and a general complete intersection of a plane surface of degree 5. It is easy to see that Y lies on a surface of degree 7 and not less and we have: $7 = E(\sqrt{6(14+5)-36+1}) - 1$.

EXAMPLE 5.3. – C = the skew union of D > 2 lines having maximal rank (true for the general union by [7]) gives a sharp example.

In fact *C* is the minimal curve of a reflexive sheaf *F* with $c_1 = 0$, $\alpha = 1$. Since *C* is (-2)-subcanonical of genus 1 - D and $h^0 \mathcal{O}_C(n) \ge (n+1)D$, then r > n, where *n* is the largest integer such that $h^0 \mathcal{O}_{P^3}(n) \le (n+1)D$, that is the integral part of $-\frac{5}{2} + \sqrt{6D + \frac{1}{4}}$. On the other hand $r \le \sqrt{6D + 1} - 1 - \frac{1}{2}$. Choosing D = 10 (or other infinitely many values of *D*), we get a sharp example.

EXAMPLE 5.4. – Let C be the skew union of $h \ge 2$ complete intersections of type (n, n). Then we have:

$$\begin{split} r &\leqslant \min\left(\sqrt{6D+1} - 1 - \frac{1}{4} \; (e+4), \; \sqrt{6D - (e+4)^2 + 1} - 1\right) = \\ & \min\left(\sqrt{6hn^2 + 1} - 1 - \frac{1}{2} \; n, \; \sqrt{6hn^2 - 4n^2 + 1} - 1\right) \end{split}$$

and from $h \ge 5$ this is a better bound than the trivial one, i.e. hn.

EXAMPLE 5.5. – Let C be the skew union of $h \ge 2n$ complete intersection of type (1, 2n - 1).

Then we have:

$$r \le \min\left(\sqrt{6D+1} - 1 - \frac{1}{4} (e+4), \sqrt{6D - (e+4)^2 + 1} - 1\right)$$

and this usually is a better bound than the trivial one, i.e. h.

REFERENCES

- L. CHIANTINI P. VALABREGA, Subcanonical curves and complete intersections in projective 3-space, Ann. Mat. Pura Appl., 136 (1984), 309-330.
- [2] A. V. GERAMITA M. ROGGERO P. VALABREGA, Subcanonical curves with the same postulation as q skew complete intersection in projective 3-space, Istituto Lombardo (Rend. Sc.) A, 123 (1989), 111-121.
- [3] R. HARTSHORNE, Stable reflexive sheaves, Math. Ann., 254 (1980), 121-176.
- [4] R. HARTSHORNE, Stable reflexive sheaves II, Invent. Math., 66 (1982), 165-190.
- [5] A. HIRSCHOWITZ, Existence de faisceaux reflexifs de rang deux sur P³ a bonne cohomologie, Publ. Math I.H.E.S., 66 (1987), 105-137.
- [6] A. HIRSCHOWITZ, Sur la postulation generique des courbes rationelles, Acta. Math., 146 (1981), 209-230.
- [7] R. HARTSHORNE A. HIRSCHOWITZ, Droites en position general dans l'espace projectif, Algebraic Geometry, Proceedings, La Rabida, 1981, Lect. Notes in Math., 961 (1982), 209-230.
- [8] M. ROGGERO P. VALABREGA, Some vanishing properties of the intermediate cohomology of a reflexive sheaf on Pⁿ, J. Algebra, 170 (1994), 307-321.
- M. ROGGERO P. VALABREGA, On the second section of a rank 2 reflexive sheaf on P³, J. Algebra, 180 (1996), 67-86.
- [10] M. ROGGERO P. VALABREGA, Sulle sezioni di un fascio riflessivo di rango 2 su P³: casi estremi per la prima sezione, Rendiconti Accademia Peloritana, LXXIII (1995) 67-86.
 - M. Roggero: Dipartimento di Matematica, Università di Torino via Carlo Alberto 10 - 10123 Torino, Italy
 - P. Valabrega: Facoltà di Ingegneria, Politecnico di Torino Corso Duca degli Abruzzi 24 - 10129 Torino, Italy

Pervenuta in Redazione il 14 febbraio 1997

138