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Bollettino U. M. I.
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On the Smallest Degree
of a Surface Containing a Space Curve (*).

MARGHERITA ROGGERO - PAOLO VALABREGA

Sunto. – Sia C una curva dello spazio di grado D contenuta in una superficie di grado r e
non in una di grado r21. Se C è integra, allora rGk6D2222; questo limite supe-
riore, raggiunto in alcuni casi (cfr. [5]), non vale però per curve arbitrarie (cfr. [?, 3
(iii)]). Ogni curva C dello spazio (anche non ridotta o riducibile) può essere ottenuta
come schema degli zero di una sezione non nulla di un opportuno fascio riflessivo F di
rango 2. Mediante i fasci riflessivi, siamo in grado di estendere alle curve riducibili o
non ridotte e di migliorare (anche nel caso delle curve integre) la precedente disegua-
glianza relativa al grado minimo r di superfici contenenti C, in quanto tale grado è
collegato ai livelli a e b delle prime due sezioni indipendenti di F. I nostri limiti supe-
riori si ottengono introducendo, oltre al grado D della curva stessa, anche il numero
e4max ]n/v C (2n) ha una sezione globale che lo genera quasi ovunque( e la seconda
classe di Chern c2 di F. Più precisamente proveremo che, se (e14) /2 FkD, allora
rGkD; in caso contrario rGk6D11212 (e14) /4. Inoltre, se C corrisponde
alla prima sezione non nulla di F, si ha rG2 k3c21113c1 /421 ed anche
rGk6D2 (e14)21122.

Introduction.

Let C be a projective curve of degree D in P 3. It is known (and easy to see)
that, if C is integral, there is a surface of degree rGk6D2222 containing C

(indeed, count the surfaces of degree E(k6D2222), i.e. the integral part of

k6D2222, and impose the condition that the surfaces pass through sufficient-
ly many points of C: see [9], Remark 5.11). By the way, this upper bound is
reached some times: in his paper [5] Hirschowitz introduces a family of smooth
rational curves having the following property: if C is any such curve of degree D

and m is an integer such that Dm11 Fum13

3
v, then C does not lie on surfaces

of degree m. This means that the smallest degree r of a surface containing C can-
not be less than E(k6D2222), hence it reaches E(k6D2222) .

The bound above is not valid for arbitrary curves. Beside the simple example
of two skew lines, we can consider, on a smooth surface X of degree D in P 3 with

(*) Written with the support of CNR and the University Ministry funds.
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coordinates (x , y , z , t), the non-reduced curve C of degree D whose ideal is
(x D , x D21 y , R , y D , f), f40 being an equation for X and f (0 , 0 , z , t) f0. Then
C cannot belong to any surface of degree D21 (see [1, 3], (iii)).

The problem of the smallest degree of a surface containing a curve C can be
restated in terms of rank 2 reflexive sheaves. If C is an (almost) arbitrary curve,
locally Cohen-Macaulay and almost everywhere locally complete intersection
(but perhaps reducible and not reduced), it is known that C is the scheme of zeros
of a non-zero section of H 0 F(n), where F is a suitable normalized rank 2 reflexive
sheaf (see [3]). More precisely, if e4max ]m/v C (2m) has a global section gener-
ating it almost everywhere(, then C is the scheme of zeros of a non-zero section of
F (n), where 2n1c1 4e14 and D4c2 1nc1 1n 2 , c1 , c2 being Chern classes for
F, c1 40 or 21. Moreover, if a and b are the levels of the first and second rele-
vant section of F, then the smallest degree r of a surface containing C is a1b1

c1 if n4a, n1a1c1 otherwise ([8], Remark 1.4).
So the problem can be turned into a problem of sections of a reflexive

sheaf.
Using reflexive sheaves we have been able to point out that the expected up-

per bound E(k6D2222) for the smallest degree r, although valid in some cir-
cumstances, is not a good one in general; a better bound depends not only upon
the degree D, but also upon the number e or, which is the same, upon the levels a
and b and the second Chern class c2 . In our previous paper [9] we found upper
bounds for non-stable and semistable sheaves, both in the case n4a and in the
case nDa. The most difficult part of our proof concerned the case n4a ; more-
over the bounds of [9] for nDa are sharp and, on the other hand, it is hopeless to
find an upper bound better than the one given in [9] as far as non-stable sheaves
are concerned and n4a, considering the example above ([1]).

With these remarks in mind, we want to produce new upper bounds for r
when F is semistable and n4a, that is when C is minimal for a semistable F, and
these results improve [9].

Precisely we want to show that, given any curve C which is minimal for a rank
2 semistable reflexive sheaf F, then:

rGmin (o6c21
1

2
(2a1c1)21 3

2
c11121, o6c21

3

2
(2a1c1)21 3

2
c1112 1

4
(2a1c1)21) .

Note that the examples above by Hirschowitz come out to be sharp for this
bound and for every degree D, but only for low a (precisely a42 in this case).
For large a it easy to see that any curve C having a as high as possible (i.e.

=E(o3c2 111 3

4
c1 2 1

2
c1 21) : see [3], Theorem 0.1) reaches the upper bound

and that there are curves whose a is not maximal, but reaching the bound. How-
ever we do not know whether the bounds are sharp for all a , small or large with
respect to c2 .

The last section of this paper contains an account of all results of [9] and of the
previous sections, but they are stated in terms of curves and not of reflexive



ON THE SMALLEST DEGREE ETC. 125

sheaves. So we obtain results which, given a curve C, link D, r and e, and allow to
evaluate each one among the three numbers, provided that the other two num-
bers are known. Summing up, given a curve C which is the scheme of zeros of a
section of a rank 2 reflexive sheaf (reducible and not reduced curves are includ-
ed) then:

(i) rGk6D2 (e14)2 1121, if 0 Ge14 E2 kD
(which means that F may be either semistable or non stable with c2 D0,
but in the non stable case the minimal section must be excluded);

(ii) rGkD , if e14 F2kD
(in this event F is necessarily non-stable);

(iii) rGk6D11212 1

4
(e14), if e14 E2kD

(F may be either semistable or non-stable and C either minimal or not
in this case).

We remark that for an integral curve, but not in general, the bound rG

k6D11212 1

4
(e14) follows from Riemann-Roch.

Bounds (i) and (iii) hold in a common range; it is easy to see that for low n (say

�o 1

2
c2) , the better bound is rGk6D11212 1

4
(e14), while for large n the

better bound is rGk6D2 (e14)2 1121.
We observe that our results are relevant also for sheaves in themselves; in

fact the inequality a1b1c1 Go6c2 1 3

2
(2a1c1 )2 1 3

2
c1 112 1

4
(2a1c1 )21 for

a semistable F has the following consequence:

for any nFk6c2 1c1 1121, F(n) has sections whose schemes of zeros are
curves (see Corollary 3.4 and [2], Theorem 0.1).

1. – Notations, definitions and the three main functions.

For a reflexive sheaf F on P 3 (over an algebraically closed field of characteris-
tic 0), c1 c2 , c3 are its Chern classes; F is normalized if c1 40 or 21; a(F) 4a is
the first integer such that h 0 F(a) c0, b(F) 4b is the first integer such that
h 0 (b) Dh 0 OP 3 (b2a), while a and b are the same for a rank 2 vector bundle E on
P 2 ; in particular a(F) »4a(FH ), b(F) »4b(FH ) for FH generic plane restriction of
F; d(F) 4d4c2 1c1 a1a 2 is the degree of any curve C scheme of zeros of a non-
zero section of F(a), while D4c2 1c1 a1a 2 is the analogous of d for a rank 2 vec-
tor bundle E on P 2 . Such curves C are called minimal curves of F and are the
same for all twists of F (so also d does not depend upon the twist).

G S means the dual of the sheaf G and V * means the dual of the vector space
V. F is called stable if aD0, semistable if a1c1 F0, non-stable otherwise.
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Unless otherwise stated a rank 2 reflexive sheaf F on P 3 and a vector bundle
E on P 2 will always be normalized and non-split.

We recall here the following theorem, which we shall use many times in this
paper:

THEOREM 1.1 ([4], Theorem 0.1). – Let F be a rank 2 normalized reflexive

sheaf such that c2 F0 and let t be an integer such that tDo3c2 111 3

4
c1 2

22 1

2
c1 ; then tFa .

So aGo3c2 111 3

4
c1 212 1

2
c1 .

NOTATIONS 1.2. – In this paper we shall consider the following three functions
of c1 , c2 , a of a semistable sheaf F :

f (c1 , c2 , a) 4k6d112
1

4
(2a1c1 ) 4

4o6c2 1
3

2
(2a1c1 )2 1

3

2
c1 112

1

4
(2a1c1 ) ,

g(c1 , c2 , a) 4k6d2 (2a1c1 )2 114o6c2 1
1

2
(2a1c1 )2 1

3

2
c1 11 ,

h(c1 , c2 , a) 42 o3d2
3

4
(2a1c1 )2 1121 42 o3c2 111

3

4
c1 21 .

From now on t will be a positive integer satisfying one among the following
conditions:

(a) t1a1c1 12 D f (c1 , c2 , a);

(b) t1a1c1 12 Dg(c1 , c2 , a);

(c) t1a1c1 12 Dh(c1 , c2 , a).

REMARK 1.3. – We will prove that, for a semistable sheaf F, tFb, under
whathever condition (a), (b) or (c).

First of all we observe that, if c2 41, then aG1 because of theorem 1.1 above,
hence 2a1c1 G2. Since, by [1], we have a1b1c1 Gc2 1c1 a1a 2 , we obtain
that b41. All three conditions above imply that tF1, hence the claim is true in
this event. So we shall assume from now on that c2 F2 and in particular that F is
not a null-correlation bundle.

Moreover, we emphasize that gGh for all a allowed by Theorem 1.1, and fGg

if and only if a1 1

2
c1 Gn, o 1

3
c2 GnGo 2

3
c2 : see Figure 1.
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Fig. 1. – Pictures of the functions above with c140 and fixed c2c0.

Fig. 2. – Pictures of the functions above with c140 and fixed dc0.

2. – Reduction steps.

It is known that an unstable surface for the reflexive sheaf F gives rise to a re-
duction step (see [4] and [9]). Here we prove three useful lemmas concerning re-
duction steps.

LEMMA 2.1. – Let F be a semistable rank 2 reflexive sheaf, xc0 an element
of H 2 F(t)* , f in H 0 O (d) an annihilator of minimal degree for x. If r4 t142

dD0, then we have:

( i ) X (the surface defined by f40) is an unstable surface for F and there
is an exact sequence

0 KG(2e) KFKIZ , X (2r) K0(1)

where G is a normalized rank 2 reflexive sheaf with Chern classes c 81 , c 82 , c 83 ,
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Z has codimension 1 in X, k is the degree of the curve part of Z, and
moreover:

2e4d2c1 1c 81 ,

c 82 4c2 2d(t141c1 2d)2
1

4
(d2c1 )2 2

1

4
c 81 2kEc2 ,

2a1c1 2dG2a 81c18G2a1c1 1d where a 84a(G) ,

2b1c1 2dG2b 81c18 where b 84b(G) .

( ii ) If aDe , then G is semistable.
( iii ) If t14 Da1d then a 84a(G) 4a2e .
( iv ) If t14 Da1d then a 84a2e , b 8Fb2e and

d 84d(G) 4d2d(c1 1r1a)2kEd .

PROOF. – It depends upon [9], Proposition 1.2 and Remark 1.3 except:

2a1c1 2dG2a 81c 81 G2a1c1 1d and

2b1c1 2dG2b 81c18 when 2a 81c 81 c2a1c1 2d

which are proved as follows.
Assume that a 8Ea2e ; then the cohomology sequence of (1) gives

0 KH 0 G(a 8 ) KH 0 F(a 81e) 40

which is absurd. Let now s be a non-zero section of H 0 F(a) with image g
in H 0 IZ , X (a2r); then fg40, hence fsc0 is image of a non-zero element
in H 0 G(a2e1d). Therefore a 8Ga2e1d, which implies the second claim.
Assume now that b 8Eb2e . If s�H 0 G(a 8), s 8�H 0 G( b 8) are indipendent
sections as in lemma 1.1 of [8], then, if i is the canonical embedding
H 0 G(n2e) KH 0 F (n), i(s) H 0 OP 3 (b 82a 8) and i(s 8) belong to H 0 F(b 81e) 4

sH 0 OP 3 (b 81e2a), s being a non-zero element of H 0 F(a). Then we have: i(s) 4

sh1 , i(s 8) 4sh2 , hence i(h2 s) 4 i(h1 s 8), which means h2 s4h1 s 8 , so contradicting
Lemma 1.1 of [8].

LEMMA 2.2. – Let F be a semistable rank 2 normalized reflexive sheaf and let t
be a positive integer such that H 2 F(t) c0. Then

(a) there is x in H 2 F(t)* whose image xH in H 1 FH (2t2c1 24) is c0, H
being a general plane;

(b) x being as in (a), let d be the smallest integer such that x is annihiled
by an element of H 0 OH (d) for all H. If moreover

( i ) t13 Da1d ,

(ii) t14 D2d2a2c1 ,

then x has only one (up to a unit) annihilator f in H 0 OP 3 (d).
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PROOF. – It depends upon [4] and [9].

REMARK 2.3. – If dG2a1c111 (for instance when aEa), then (i) implies (ii).

LEMMA 2.4. – Let F be a rank 2 semistable reflexive sheaf, H a general plane,
xH c0 an element of H 1 FH (2t2c1 24), fH in H 0 OH (d) an annihilator of mini-

mal degree for xH . If t13 Da1d, then dGk2c2 22a 2 ; if moreover dG2a1

c1 11 ( for instance when aEa), then dGo 4

3
c2 .

PROOF. – First we observe that 2t2c1 241d21 G2a2c1 22; then by
Riemann-Roch we have h 1 FH (2t2c1 241d21) Gh 1 FH (2a2c1 22) Gc2 2

a 2, since h 1 FH (n) is increasing for nG22. Moreover by the same definition of d,
we have also 1

2
d(d11) Gh 1 FH (2t2c1 241d21). By comparison we obtain

that dGo2c2 22a 2 1 1

4
2 1

2
Gk2c2 22a 2 .

If moreover dG2a1c1 11 (see also [4], Proposition 4.1 for the case aEa),

then dGmin (o2c2 22a 2 1 1

4
2 1

2
, 2a1c1 11)Go 4

3
c2 .

LEMMA 2.5. – Let F be a semistable rank 2 normalized reflexive sheaf having
c2 F2, t an integer such that H 2 F(t) c0 and d as in Lemma 2.1. If t fulfils (a) or
(b) or (c) of Notations 1.2, then t13 Da1d and t141c1 D2d2a .

PROOF. – Choose x in H 2 F(t)* and its image xH in H 1 F(2t2c1 24) as in
Lemma 2.2, (a), and let d be the smallest degree of an annihilator of xH . The in-
equality t13 Da1d follows from [4], Proposition 4.3, provided we show
that

t1a1c1 12 Fo3c2 111
3

4
c1 1

1

2
(2a1c1 ) .

Case 1: t fulfils (a) of Notations 1.2.

We must show that k6d11Fo3c2 111 3

4
c1 1 3

4
(2a1c1 ). In fact, squaring

both sides and simplifying we obtain:

uo3c2 111
3

4
c1 2

3

4
(2a1c1 )v2

1
3

8
(2a1c1 )2 F1 .

The inequality holds if 2a1c1 F2 or 40. If 2a1c1 41, it depends upon the in-
equality c2 F 1

16
(112k1024c1 ), always true because c2 F2.

Case 2: t fulfils (b) of Notations 1.2. First we see that

k6d2 (2a1c1 )2 11Fo3c2 111
3

4
c1 1

1

2
(2a1c1 ) .
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In fact, squaring and simplifying, we obtain: go3c2 111 3

4
c1 2 1

2
(2a1c1 )h2

F1,
true because of Theorem 1.1.

Case 3: t fulfils (c) of Notations 1.2. The claim follows from Remark 1.3 and
case 2.

COROLLARY 2.6. – Under the assumptions of Lemma 2.5, there exists a reduc-
tion step for F as described in Lemma 2.1.

PROOF. – It depends upon Lemma 2.5, Lemma 2.1 and Lemma 2.2.

3. – Upper bounds for the second section of a reflexive sheaf.

In this section we discuss and prove our upper bounds for the level b of the
second section of a semistable reflexive sheaf F .

THEOREM 3.1. – Let F be a semistable rank 2 normalized reflexive sheaf hav-
ing c2 F2 and t an integer as in Notations 1.2. If H 2 F(t) 40, then tFb .

PROOF. – Riemann-Roch gives:

h 0 F(t) 42ut13

3
v2c1ut12

2
v2c2 (t12)1

1

2
(c3 2c1 c2 )1h 1 F(t) .

The inequality tFb holds if h 0 F(t) Dh 0 OP 3 (t2a). So it is enough to prove that
the polynomial function

P(X) 4X 3 2 (6d11) X13d(2a1c1 )

is positive when X4 t1a1c1 12. Since P(X) is increasing for XFo 1

3
(6d11) ,

it is enough to show that the right hand sides of Notations 1.2, (a), (b), (c) are not
smaller than o 1

3
(6d11) and that P(X) F0 whenever X4 any such right hand

side.

Case 1: t fulfils (a). Then it depends upon [9, Lemma 4.1, b) ¨a) ].

Case 2: t fulfils (b). Let us prove that k6d2 (2a1c1 )2 11Fo 1

3
(6d11) ;

squaring both sides and simplifying, we obtain 4c2 1 2

3
1c1 F0, which is always

true. Now we compute

Pgk6d2 (2a1c1 )2 11h4 (2a1c1 )g3d2 (2a1c1 ) k6d2 (2a1c1 )2 11h ;

since 2a1c1 F0, it is enough to prove that 3dF (2a1c1 ) k6d2 (2a1c1 )2 11 .
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Squaring and simplifying, we obtain:

uu3c2 111
3

4
c1v2

1

4
(2a1c1 )2 21v2

F (2a1c1 )2 ,

true by Theorem 1.1.

Case 3: t fulfils (c). The claim follows from Case 2 and Remark 1.3.

THEOREM 3.2. – Let F be a semistable rank 2 normalized reflexive sheaf hav-
ing c2 F2, t an integer as in Notations 1.2. If H 2 F(t) c0, then tFb .

PROOF. – We proceed by induction on c2 (the case c2 41 has been proved in
section 1). We assume that the statement is true for every rank 2 semistable nor-
malized reflexive sheaf with second Chern class Ec2 . By Corollary 2.6 there is a
reduction step giving a new sheaf G with c 82 4c2 (G) Ec2 (Lemma 2.1). We will
prove that G is semistable and t 84 t2e fulfils at least one among the conditions
of Notation 1.2, relatively to G. This will imply the claim for F, because the claim
is true for G and moreover (Lemma 2.1) t4 t 81eFb 81eFb .

We will see that:

– condition (a) for F and t implies condition (a) for G and t 8, provided that
either a4a or that aEaEo 2

3
c2 2 1

2
c1 ;

– condition (b) for F and t implies condition (b) for G and t 8, provided that
aFo 1

3
c2 2 1

2
c1 ;

Having in mind remark 1.3, we see that this is enough to cover all
cases.

Step 1: F and t fulfil condition (a), i.e. t1a1c1 12 Dk6d112 1

4
(2a1c1 ).

If a4a, the claim is proved in [9]; hence we assume aEa and then dE2a1c1 .
Moreover we assume aEo 2

3
c2 2 1

2
c1 . We want to show that G and t 8 fulfil (a) of

Notation 1.2 that is: t 81a 81c1812 Dk6d 8112 1

4
(2a 81c18 ). First of all we

observe that t14 Da1d . In fact t1a1c1 12 Dk6d112 1

4
(2a1c1 ) F2a1

c1 1d ; it is now enough to square and recall that 2a1c1 G2o 2

3
c2 that is c2 D

3

8
(2a1c1 )2 and dG (2a1c1 ) (Lemma 2.4). Therefore a 8Da 8 and so G is

semistable. Using Lemma 2.1 (iv), it is enough to show that:

t 81a 81c1812 4 t1a1c1 122dDk6d112
1

4
(2a1c1 )2

dFk6d 8112
1

4
(2a 81c18 ) ,

i.e. that k6d112 5

4
dFk6d26(t141a1c1 2d) d11 .



MARGHERITA ROGGERO - PAOLO VALABREGA132

Squaring and simplifying, we see that it is enough to prove that: 6(t141c1 1

a2d)1 25

16
d2 5

2
k6d11 4 5

2
(t1a1c1 12) 2 5

2
(d22) 1 7

2
(t141c1 1a2d)1

25

16
d2 5

2
k6d11F0. Since t fulfils (a) and t14 Da1d, it is enough to show

that 23

8
(2a1c1 )2 15

8
d110 F0, true because dE2a1c1 .

Step 2: F and t fulfil condition (b), i.e.

t1a1c1 12 Dk6d2 (2a1c1 )2 114o6c2 1 1

2
(2a1c1 )2 1 3

2
c1 11 .

Since the case aEo 2

3
c2 2 1

2
c1 follows from step 1 (see Remark 1.3), we assume

that aFo 1

3
c2 2 1

2
c1 and so dGo 4

3
c2 (see Lemma 2.4 and Lemma 2.5). If aEa

we have dG2a1c1 21 and therefore a 8Fa2eD0, while, if a4a , then a 8F

a2 1

2
dFo 1

3
c2 2 1

2
c1 2 1

2 o
4

3
c2 F0; hence G is semistable.

First of all we remark that t14 Dd1 1

3
a , i.e. that

o6c2 1 1

2
(2a1c1 )2 1 3

2
c1 112 (d1 4

3
a1c1 22)D0. The left side of the last in-

equality, as a function of 2a1c1 , is decreasing, when 2a1c1 G4 o6c2 1 3

2
, i.e.

for all values of a allowed by Theorem 1.1, and moreover, when 2a1c1 42 k3c2 ,

it has the value o12c2 1 3

2
c1 112d2 4

3
k3c2 2 1

3
c1 12 D0 (recall that dGo 4

3
c2

and c2 F2).
Now we prove our claim under the following condition:

(*) 6c2 1
1

2
(2a1c1 )2 1

3

2
c1 11 G (2a1c1 )2 1

2

3
d(2a1c1 )12d 2 21

In this event we have: dF2 (Theorem 1.1). Let us prove that G and t 84 t2e ful-
fil (c), i.e. that

t 81a 81c1813 4 t1a1c1 132dF

Fo6c2 1
1

2
(2a1c1 )2 1

3

2
c1 112dF2 o3c2 1

3

4
c1 11 .

In fact, squaring, simplifying and using Lemma 2.1, we see that it is enough to
prove that

6c2 212d(t141c1 2d)23d 2 16dc1 13c1 13 G

G
1

2
(2a1c1 )2 1

3

2
c1 1d 2 22do6c2 1

1

2
(2a1c1 )2 1

3

2
c1 1 .

Using (b), we see that it is enough to show that

6c2 210d(t141c1 2d)12d(a1d22)1324d 2 16dc1 1
3

2
c1 G

1

2
(2a1c1 )2 .
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Using the inequality t14 Dd1 1

3
a it is enough to show that

6c2 1
1

2
(2a1c1 )2 1

3

2
c1 11 G (2a1c1 )2 12d(2a1c1 )12d 2 221

10

3
c1 14d ,

which follows from (˜) since dF2.
We now assume that

(˜˜) 6c2 1
1

2
(2a1c1 )2 1

3

2
c1 11 D (2a1c1 )2 1

2

3
d(2a1c1 )12d 2 21

and 2a 81c18E2a1c1 hold. In this event we show that G and t 8 fulfil (b), i.e.
that

t 81a 81c1812 4 t1a1c1 122dF

Fo6c2 1
1

2
(2a1c1 )2 1

3

2
c1 112dFo6c281

1

2
(2a 81c1 ()2 1

3

2
c1811 .

Squaring and using Lemma 2.1, we see that it is enough to show that

du6d(t1c1 142d)22o6c2 1
1

2
(2a1c1 )2 1

3

2
c1 111

5

2
d 2 23dc1vF0

or, using assumption (b) on t :

4 o6c2 1
1

2
(2a1c1 )2 1

3

2
c1 11F

7

2
d13(2a1c1 )212 .

Squaring both sides and using (˜˜), we obtain:

16(2a1c1 )2 1
32

3
(2a1c1 ) d132d 2 216 F

49

3
d 2 121(2a1c1 ) d19(2a1c1 )2 1144284d272(2a1c1 )

i.e. 7(2a1c1 )2 2 31

3
(2a1c1 ) d1 79

4
d 2 F160284d272(2a1c1 ), which is true

because the left side is positive and the right side is negative, except when d4

2a1c1 41, in which case we have 72 31

3
1 79

4
F4.

We now assume that (˜˜) and 2a 81c18F2a1c1 hold. In this event we show
that G and t 8 fulfil (b) i.e. that

t 81a 81c1812 F t1a1c1 122
1

2
dF

o6c2 1
1

2
(2a1c1 )2 1

3

2
c1 112

1

2
dFo6c281

1

2
(2a 81c1 )2 1

3

2
c1811 .

Squaring and using Lemma 2.1, (in particular the fact that 2a 81c18G2a1
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c1 1d), we see that it is enough to show that

6d(t14)2d(2a1c1 )13c1 d2
19

4
d 2 Ddo6c2 1

1

2
(2a1c1 )2 1

3

2
c1 11 .

Using (b) on t, it is enough to show that

5 o6c2 1
1

2
(2a1c1 )2 1

3

2
c1 11D

19

4
14(2a1c1 ) .

Squaring and using (˜˜), we see that it is enough to show that

9(2a1c1 )2 2
64

3
d(2a1c1 )1

439

16
d 2 D0 ,

which is always true.

THEOREM 3.3. – Let F be a normalized rank 2 reflexive sheaf. Then:

b1a1c1 Go6c2 1
3(2a1c1 )2

2
1

3

2
c1 112

(2a1c1 )

4
21 ,

b1a1c1 Go6c2 1
(2a1c1 )2

2
1

3

2
c1 1121 if F is semistable ,

b1a1c1 G2 o3c2 111
3

4
c122 if F is semistable .

PROOF. – If F is semistable, the claim follows from Remark 1.5, Theorem 3.1
and Theorem 3.2. The non-stable case is proved in [9], Remark 4.4. Observe that,
for t and b integers, tDx¨ tFb is the same as bGx11.

COROLLARY 3.4. – Let F be a semistable reflexive sheaf and let s be a general
section in F(n). Then, whenever nFk6c2 1c1 1121, the scheme of zeros of s is
a curve.

PROOF. – Consider, for every positive c2 and c1 40 or 21, the function g 8 (a) 4

o6c2 1 1

2
(2a1c1 )2 1 3

2
c1 112a2c1 21; it is easy to see, by a straighforward

computation, that it reaches its highest value, within the interval

2c1 GaGo3c2 111 3

4
c1 2 1

2
c1 21 (see Theorem 1.1), when a42c1 , and such a

value is exactly k6c2 1c1 1121. Then it follows from Theorem 3.3 that

bGk6c2 1c1 1121 and for nFb the general section of F(n) gives rise to a
curve (see [8], § 1, n. 2).
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REMARK 3.5. – We observe that, if F is non-stable, then such a result does not
exist. Indeed for every funtion f(c2 ) there are sheaves having bD2aDf(c2 ):
see [9], Example 5.12.

4. – Bounds for the degree of a surface containing a curve.

Theorem 3.3 can be traslated into the language of curves as follows.

THEOREM 4.1. – Let r be the smallest degree of a surface containing a mini-
mal curve C of the normalized semistable rank 2 reflexive sheaf F . Then

rG2 o3c2 111 3

4
c1 22.

DEFINITION 4.2. – Let C be a curve. Define:

e4max ]n/v C (2n) has a section generating it almost everywhere( .

THEOREM 4.3. – Let C be a curve of degree D lying on a surface of degree r and
not less.

If 1

2
(e14) FkD , rGkD ; otherwise rGk6D11212 1

4
(e14).

If moreover 0 E 1

2
(e14) EkD , then

rGminuk6D11212
1

4
(e14), k6D2 (e14)2 1121v .

PROOF. – Let F(n) be the sheaf corresponding to C through a section of
v C (2e), where F is normalized: then e14 42n1c1 and D4c2 1nc1 1n 2 .
From the assumption 1

2
(e14) FkD it follows that nD0 and 4c2 1c1 G0 (it is

enough to square both members), which means that F is non-stable and the result
follows from [9], Proposition 5.3.

If 1

2
(e14) EkD and n4a , then the claim follows from Theorem 3.3 above

for the stable case and from [9], Remark 4.4 for the non-stable case.
Finally, if 0 E 1

2
(e14) EkD and n4aD0, then the claim follows from Theo-

rem 3.3 above; if nDa from the assumption it follows that

minuk6D112
1

4
(e14), k6D2 (e14)2 1121v21 F

minuk6D112
1

2
kD , k2D11v21 Fk3D1121 FkD

(direct computation).
Then the claim follows from [9, Proposition 5.3 in the non-stable case, Proposi-

tion 5.8 in the stable case: if nDa , then rGk3D1121, which is a statement
slightly stronger than 5.8].
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REMARK 4.4. – Let C be an integral curve (so having eF0) and assume that C
is not contained in any surface of degree e. Then the claim

tDk6D11222
1

4
(e14) and tDe¨ tFr

follows (easily) from Riemann-Roch. In fact for tDe we have h 0 v C (2t) 40 (not
true for a non-integral curve); moreover h 0 IC (t) Fh 0 OP3 (t)2h 0 OC (t) and pa 4

11 1

2
eD1 1

2
c3 , hence h 0 IC (t) Fut13

3
v2h 0 OC (t) 4ut13

3
v1 1

2
eD1 1

2
c3 2

tDFut13

3
v1 1

2
(e14) D2 (t12)D . This last term becomes F0 if we replace t

with k6D11222 1

4
(e14), provided that e14 D0.

REMARK 4.5. – The upper bound of Theorem 3.3 is lower than k6D2223,
D being the degree of the curve C, except when a41 and c1 421.

REMARK 4.6. – Theorem 4.3 can be used to obtain information on the number e ,
provided that both r and D are known. For the sake of simplicity, assume that
c1 40. Then we have:

– if rDkD , then e14 E2 kD ,

– if rGkD , then e14 ED11.

In fact, if rGkD and moreover it is known that C corresponds to a semistable
sheaf F, then Theorem 4.3 says that

0 Ge14 Gmin g4 k6D1124(kD11), k5D22kDh .

If, on the contrary, rGkD but C is the scheme of zeros of the first section of a
non-stable F, then e14 E0; if rGkD and C is the scheme of zeros of a section of
F(n), where F is non-stable and nFb, then e14 42n and c2 1n 2 4c2 1n 2 1

a 2 2a 2 Fc2 1a 2 1 (n2a)(n1a) F2n, true whenever n1a is at least 2, i.e. if C
is not a plane curve. If C is a plane curve, then of course e14 4D11. So in any
event D11 is an upper bound for e14.

Observe that, if C corresponds to the first section of a non-stable F, e can be
arbitrarily negative, even when both r and D are given (see [1, 3, (iii)].

REMARK 4.7. – Observe that, if 1

2
(e14) FkD , then the curve is not minimal

for a non-stable sheaf F. For such a curve the other bound rGk6D112

12 1

4
(e14) is not valid, also because it may be a negative number: see [9],

Remark 5.5.
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5. – Examples.

EXAMPLE 5.1. – Let F be a normalized rank 2 reflexive sheaf with c3 40,
c2 F1, whose cohomology is seminatural ([5, Theorem 2.3]. Then it can easily be

seen that a4E(o3c2 1 3

4
c1 112 1

2
c1 21). Therefore we have:

h 0 F(a) 4
1

3
(a11)(a12)(a13)2 (a12) c2 1

1

2
(a11)(a12) c1 D1

and a4b (by the main theorem of [10]). So the upper bound of Theorem 3.3 is
sharp for all c2 F1.

It easy to see that in this case the upper bound k6D2 (e14)2 1121 is
reached.

EXAMPLE 5.2. – Let F be a seminatural cohomology reflexive sheaf with
c1 4c3 40, c2 45; then a4b43, hence a curve C scheme of zeros of a section of
F(3) lies on a surface of degree 6 and not less and has degree D414. Let now Y
be the skew union of C and a general complete intersection of a plane surface of
degree 5. It is easy to see that Y lies on a surface of degree 7 and not less and we

have: 7 4E(k6(1415)23611)21.

EXAMPLE 5.3. – C4 the skew union of DD2 lines having maximal rank (true
for the general union by [7]) gives a sharp example.

In fact C is the minimal curve of a reflexive sheaf F with c1 40, a41. Since C
is (-2)-subcanonical of genus 12D and h 0 OC (n) F (n11)D, then rDn, where n
is the largest integer such that h 0 OP3 (n) G (n11) D, that is the integral part of

2 5

2
1o6D1 1

4
. On the other hand rGk6D11212 1

2
. Choosing D410 (or

other infinitely many values of D), we get a sharp example.

EXAMPLE 5.4. – Let C be the skew union of hF2 complete intersections of
type (n , n). Then we have:

rGminuk6D11212
1

4
(e14), k6D2 (e14)2 1121v4

minuk6hn 2 11212
1

2
n , k6hn 2 24n 2 1121v

and from hF5 this is a better bound than the trivial one, i.e. hn.

EXAMPLE 5.5. – Let C be the skew union of hF2n complete intersection of
type (1 , 2n21).
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Then we have:

rGminuk6D11212
1

4
(e14), k6D2 (e14)2 1121v

and this usually is a better bound than the trivial one, i.e. h .
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