Bollettino

Unione Matematica Italiana

Margherita Roggero, Paolo Valabrega
 On the smallest degree of a surface containing a space curve

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 1-B (1998), n.1, p. 123-138.

Unione Matematica Italiana
http://www.bdim.eu/item?id=BUMI_1998_8_1B_1_123_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Bollettino dell'Unione Matematica Italiana, Unione Matematica Italiana, 1998.

On the Smallest Degree of a Surface Containing a Space Curve (*).

Margherita Roggero - Paolo Valabrega

Sunto. - Sia C una curva dello spazio di grado D contenuta in una superficie di grado re non in una di grado $r-1$. Se C è integra, allora $r \leqslant \sqrt{6 D-2}-2$; questo limite superiore, raggiunto in alcuni casi (cfr. [5]), non vale però per curve arbitrarie (cfr. [?, 3 (iii)]). Ogni curva C dello spazio (anche non ridotta o riducibile) può essere ottenuta come schema degli zero di una sezione non nulla di un opportuno fascio riflessivo F di rango 2. Mediante i fasci riflessivi, siamo in grado di estendere alle curve riducibili o non ridotte e di migliorare (anche nel caso delle curve integre) la precedente diseguaglianza relativa al grado minimo r di superfici contenenti C, in quanto tale grado è collegato ai livelli α e β delle prime due sezioni indipendenti di F. I nostri limiti superiori si ottengono introducendo, oltre al grado D della curva stessa, anche il numero $e=\max \left\{n / \omega_{C}(-n)\right.$ ha una sezione globale che lo genera quasi ovunque $\}$ e la seconda classe di Chern c_{2} di F. Più precisamente proveremo che, se $(e+4) / 2 \geqslant \sqrt{D}$, allora $r \leqslant \sqrt{D}$; in caso contrario $r \leqslant \sqrt{6 D+1}-1-(e+4) / 4$. Inoltre, se C corrisponde alla prima sezione non nulla di F, si ha $r \leqslant 2 \sqrt{3 c_{2}+1+3 c_{1} / 4}-1$ ed anche $r \leqslant \sqrt{6 D-(e+4)^{2}+1}-2$.

Introduction.

Let C be a projective curve of degree D in \mathbb{P}^{3}. It is known (and easy to see) that, if C is integral, there is a surface of degree $r \leqslant \sqrt{6 D-2}-2$ containing C (indeed, count the surfaces of degree $E(\sqrt{6 D-2}-2)$, i.e. the integral part of $\sqrt{6 D-2}-2$, and impose the condition that the surfaces pass through sufficiently many points of C : see [9], Remark 5.11). By the way, this upper bound is reached some times: in his paper [5] Hirschowitz introduces a family of smooth rational curves having the following property: if C is any such curve of degree D and m is an integer such that $D m+1 \geqslant\binom{ m+3}{3}$, then C does not lie on surfaces of degree m. This means that the smallest degree r of a surface containing C cannot be less than $E(\sqrt{6 D-2}-2)$, hence it reaches $E(\sqrt{6 D-2}-2)$.

The bound above is not valid for arbitrary curves. Beside the simple example of two skew lines, we can consider, on a smooth surface X of degree D in \mathbb{P}^{3} with
(*) Written with the support of CNR and the University Ministry funds.
coordinates (x, y, z, t), the non-reduced curve C of degree D whose ideal is $\left(x^{D}, x^{D-1} y, \ldots, y^{D}, f\right), f=0$ being an equation for X and $f(0,0, z, t) \equiv 0$. Then C cannot belong to any surface of degree $D-1$ (see [1,3], (iii)).

The problem of the smallest degree of a surface containing a curve C can be restated in terms of rank 2 reflexive sheaves. If C is an (almost) arbitrary curve, locally Cohen-Macaulay and almost everywhere locally complete intersection (but perhaps reducible and not reduced), it is known that C is the scheme of zeros of a non-zero section of $H^{0} F(n)$, where F is a suitable normalized rank 2 reflexive sheaf (see [3]). More precisely, if $e=\max \left\{m / \omega_{C}(-m)\right.$ has a global section generating it almost everywhere\}, then C is the scheme of zeros of a non-zero section of $F(n)$, where $2 n+c_{1}=e+4$ and $D=c_{2}+n c_{1}+n^{2}, c_{1}, c_{2}$ being Chern classes for $F, c_{1}=0$ or -1 . Moreover, if α and β are the levels of the first and second relevant section of F, then the smallest degree r of a surface containing C is $\alpha+\beta+$ c_{1} if $n=\alpha, n+\alpha+c_{1}$ otherwise ([8], Remark 1.4).

So the problem can be turned into a problem of sections of a reflexive sheaf.

Using reflexive sheaves we have been able to point out that the expected upper bound $E(\sqrt{6 D-2}-2)$ for the smallest degree r, although valid in some circumstances, is not a good one in general; a better bound depends not only upon the degree D, but also upon the number e or, which is the same, upon the levels α and β and the second Chern class c_{2}. In our previous paper [9] we found upper bounds for non-stable and semistable sheaves, both in the case $n=\alpha$ and in the case $n>\alpha$. The most difficult part of our proof concerned the case $n=\alpha$; moreover the bounds of [9] for $n>\alpha$ are sharp and, on the other hand, it is hopeless to find an upper bound better than the one given in [9] as far as non-stable sheaves are concerned and $n=\alpha$, considering the example above ([1]).

With these remarks in mind, we want to produce new upper bounds for r when F is semistable and $n=\alpha$, that is when C is minimal for a semistable F, and these results improve [9].

Precisely we want to show that, given any curve C which is minimal for a rank 2 semistable reflexive sheaf F, then:
$r \leqslant \min \left(\sqrt{6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1}-1, \sqrt{6 c_{2}+\frac{3}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1}-\frac{1}{4}\left(2 \alpha+c_{1}\right)-1\right)$.
Note that the examples above by Hirschowitz come out to be sharp for this bound and for every degree D, but only for low α (precisely $\alpha=2$ in this case). For large α it easy to see that any curve C having α as high as possible (i.e. $=E\left(\sqrt{3 c_{2}+1+\frac{3}{4} c_{1}}-\frac{1}{2} c_{1}-1\right)$: see [3], Theorem 0.1$)$ reaches the upper bound and that there are curves whose α is not maximal, but reaching the bound. However we do not know whether the bounds are sharp for all α, small or large with respect to c_{2}.

The last section of this paper contains an account of all results of [9] and of the previous sections, but they are stated in terms of curves and not of reflexive
sheaves. So we obtain results which, given a curve C, $\operatorname{link} D, r$ and e, and allow to evaluate each one among the three numbers, provided that the other two numbers are known. Summing up, given a curve C which is the scheme of zeros of a section of a rank 2 reflexive sheaf (reducible and not reduced curves are included) then:
(i) $r \leqslant \sqrt{6 D-(e+4)^{2}+1}-1$, if $0 \leqslant e+4<2 \sqrt{D}$
(which means that F may be either semistable or non stable with $c_{2}>0$, but in the non stable case the minimal section must be excluded);
(ii) $r \leqslant \sqrt{D}$, if $e+4 \geqslant 2 \sqrt{D}$
(in this event F is necessarily non-stable);
(iii) $r \leqslant \sqrt{6 D+1}-1-\frac{1}{4}(e+4)$, if $e+4<2 \sqrt{D}$
(F may be either semistable or non-stable and C either minimal or not in this case).

We remark that for an integral curve, but not in general, the bound $r \leqslant$ $\sqrt{6 D+1}-1-\frac{1}{4}(e+4)$ follows from Riemann-Roch.

Bounds (i) and (iii) hold in a common range; it is easy to see that for low n (say $\leqslant \sqrt{\frac{1}{2} c_{2}}$), the better bound is $r \leqslant \sqrt{6 D+1}-1-\frac{1}{4}(e+4)$, while for large n the better bound is $r \leqslant \sqrt{6 D-(e+4)^{2}+1}-1$.

We observe that our results are relevant also for sheaves in themselves; in fact the inequality $\alpha+\beta+c_{1} \leqslant \sqrt{6 c_{2}+\frac{3}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1}-\frac{1}{4}\left(2 \alpha+c_{1}\right)-1$ for a semistable F has the following consequence:
for any $n \geqslant \sqrt{6 c_{2}+c_{1}+1}-1, F(n)$ has sections whose schemes of zeros are curves (see Corollary 3.4 and [2], Theorem 0.1).

1. - Notations, definitions and the three main functions.

For a reflexive sheaf F on \boldsymbol{P}^{3} (over an algebraically closed field of characteristic 0), $c_{1} c_{2}, c_{3}$ are its Chern classes; F is normalized if $c_{1}=0$ or $-1 ; \alpha(F)=\alpha$ is the first integer such that $h^{0} F(\alpha) \neq 0, \beta(F)=\beta$ is the first integer such that $h^{0}(\beta)>h^{0} \mathcal{O}_{\boldsymbol{P}^{3}}(\beta-\alpha)$, while α and b are the same for a rank 2 vector bundle E on \boldsymbol{P}^{2}; in particular $a(F):=a\left(F_{H}\right), b(F):=b\left(F_{H}\right)$ for F_{H} generic plane restriction of $F ; \delta(F)=\delta=c_{2}+c_{1} \alpha+\alpha^{2}$ is the degree of any curve C scheme of zeros of a nonzero section of $F(\alpha)$, while $\Delta=c_{2}+c_{1} a+a^{2}$ is the analogous of δ for a rank 2 vector bundle E on \boldsymbol{P}^{2}. Such curves C are called minimal curves of F and are the same for all twists of F (so also δ does not depend upon the twist).
G^{\vee} means the dual of the sheaf G and V^{*} means the dual of the vector space $V . F$ is called stable if $\alpha>0$, semistable if $\alpha+c_{1} \geqslant 0$, non-stable otherwise.

Unless otherwise stated a rank 2 reflexive sheaf F on \boldsymbol{P}^{3} and a vector bundle E on \boldsymbol{P}^{2} will always be normalized and non-split.

We recall here the following theorem, which we shall use many times in this paper:

Theorem 1.1 ([4], Theorem 0.1). - Let F be a rank 2 normalized reflexive sheaf such that $c_{2} \geqslant 0$ and let t be an integer such that $t>\sqrt{3 c_{2}+1+\frac{3}{4} c_{1}}-$ $2-\frac{1}{2} c_{1}$; then $t \geqslant \alpha$.

So $\alpha \leqslant \sqrt{3 c_{2}+1+\frac{3}{4} c_{1}}-1-\frac{1}{2} c_{1}$.
Notations 1.2. - In this paper we shall consider the following three functions of c_{1}, c_{2}, α of a semistable sheaf F :
$f\left(c_{1}, c_{2}, \alpha\right)=\sqrt{6 \delta+1}-\frac{1}{4}\left(2 \alpha+c_{1}\right)=$

$$
=\sqrt{6 c_{2}+\frac{3}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1}-\frac{1}{4}\left(2 \alpha+c_{1}\right),
$$

$g\left(c_{1}, c_{2}, \alpha\right)=\sqrt{6 \delta-\left(2 \alpha+c_{1}\right)^{2}+1}=\sqrt{6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1}$,
$h\left(c_{1}, c_{2}, \alpha\right)=2 \sqrt{3 \delta-\frac{3}{4}\left(2 \alpha+c_{1}\right)^{2}+1}-1=2 \sqrt{3 c_{2}+1+\frac{3}{4} c_{1}}-1$.
From now on t will be a positive integer satisfying one among the following conditions:
(a) $t+\alpha+c_{1}+2>f\left(c_{1}, c_{2}, \alpha\right) ;$
(b) $t+\alpha+c_{1}+2>g\left(c_{1}, c_{2}, \alpha\right)$;
(c) $t+\alpha+c_{1}+2>h\left(c_{1}, c_{2}, \alpha\right)$.

Remark 1.3. - We will prove that, for a semistable sheaf F, $t \geqslant \beta$, under whathever condition $(a),(b)$ or (c).

First of all we observe that, if $c_{2}=1$, then $\alpha \leqslant 1$ because of theorem 1.1 above, hence $2 \alpha+c_{1} \leqslant 2$. Since, by [1], we have $\alpha+\beta+c_{1} \leqslant c_{2}+c_{1} \alpha+\alpha^{2}$, we obtain that $\beta=1$. All three conditions above imply that $t \geqslant 1$, hence the claim is true in this event. So we shall assume from now on that $c_{2} \geqslant 2$ and in particular that F is not a null-correlation bundle.

Moreover, we emphasize that $g \leqslant h$ for all α allowed by Theorem 1.1, and $f \leqslant g$ if and only if $\alpha+\frac{1}{2} c_{1} \leqslant n, \sqrt{\frac{1}{3}} c_{2} \leqslant n \leqslant \sqrt{\frac{2}{3}} c_{2}$: see Figure 1.

Fig. 1. - Pictures of the functions above with $c_{1}=0$ and fixed $c_{2} \gg 0$.

Fig. 2. - Pictures of the functions above with $c_{1}=0$ and fixed $\delta \gg 0$.

2. - Reduction steps.

It is known that an unstable surface for the reflexive sheaf F gives rise to a reduction step (see [4] and [9]). Here we prove three useful lemmas concerning reduction steps.

Lemma 2.1. - Let F be a semistable rank 2 reflexive sheaf, $x \neq 0$ an element of $H^{2} F(t)^{*}$, f in $H^{0} \mathcal{O}(d)$ an annihilator of minimal degree for x. If $r=t+4-$ $d>0$, then we have:
(i) X (the surface defined by $f=0$) is an unstable surface for F and there is an exact sequence

$$
\begin{equation*}
0 \rightarrow G(-\varepsilon) \rightarrow F \rightarrow I_{Z, X}(-r) \rightarrow 0 \tag{1}
\end{equation*}
$$

where G is a normalized rank 2 reflexive sheaf with Chern classes $c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}$,
Z has codimension 1 in X, k is the degree of the curve part of Z, and moreover:

$$
\begin{gathered}
2 \varepsilon=d-c_{1}+c_{1}^{\prime}, \\
c_{2}^{\prime}=c_{2}-d\left(t+4+c_{1}-d\right)-\frac{1}{4}\left(d-c_{1}\right)^{2}-\frac{1}{4} c_{1}^{\prime}-k<c_{2}, \\
2 \alpha+c_{1}-d \leqslant 2 \alpha^{\prime}+c_{1}^{\prime} \leqslant 2 \alpha+c_{1}+d \quad \text { where } \alpha^{\prime}=\alpha(G), \\
2 \beta+c_{1}-d \leqslant 2 \beta^{\prime}+c_{1}^{\prime} \quad \text { where } \beta^{\prime}=\beta(G) .
\end{gathered}
$$

(ii) If $\alpha>\varepsilon$, then G is semistable.
(iii) If $t+4>a+d$ then $a^{\prime}=a(G)=a-\varepsilon$.
(iv) If $t+4>\alpha+d$ then $\alpha^{\prime}=\alpha-\varepsilon, \beta^{\prime} \geqslant \beta-\varepsilon$ and

$$
\delta^{\prime}=\delta(G)=\delta-d\left(c_{1}+r+\alpha\right)-k<\delta
$$

Proof. - It depends upon [9], Proposition 1.2 and Remark 1.3 except:

$$
\begin{gathered}
2 \alpha+c_{1}-d \leqslant 2 \alpha^{\prime}+c_{1}^{\prime} \leqslant 2 \alpha+c_{1}+d \text { and } \\
2 \beta+c_{1}-d \leqslant 2 \beta^{\prime}+c_{1}^{\prime} \text { when } 2 \alpha^{\prime}+c_{1}^{\prime} \neq 2 \alpha+c_{1}-d
\end{gathered}
$$

which are proved as follows.
Assume that $\alpha^{\prime}<\alpha-\varepsilon$; then the cohomology sequence of (1) gives

$$
0 \rightarrow H^{0} G\left(\alpha^{\prime}\right) \rightarrow H^{0} F\left(\alpha^{\prime}+\varepsilon\right)=0
$$

which is absurd. Let now σ be a non-zero section of $H^{0} F(\alpha)$ with image g in $H^{0} I_{Z, X}(\alpha-r)$; then $f g=0$, hence $f \sigma \neq 0$ is image of a non-zero element in $H^{0} G(\alpha-\varepsilon+d)$. Therefore $\alpha^{\prime} \leqslant \alpha-\varepsilon+d$, which implies the second claim. Assume now that $\beta^{\prime}<\beta-\varepsilon$. If $s \in H^{0} G\left(\alpha^{\prime}\right), s^{\prime} \in H^{0} G\left(\beta^{\prime}\right)$ are indipendent sections as in lemma 1.1 of [8], then, if i is the canonical embedding $H^{0} G(n-\varepsilon) \rightarrow H^{0} F(n), i(s) H^{0} \mathcal{O}_{P^{3}}\left(\beta^{\prime}-\alpha^{\prime}\right)$ and $i\left(s^{\prime}\right)$ belong to $H^{0} F\left(\beta^{\prime}+\varepsilon\right)=$ $\sigma H^{0} \mathcal{O}_{\boldsymbol{P}^{3}}\left(\beta^{\prime}+\varepsilon-\alpha\right), \sigma$ being a non-zero element of $H^{0} F(\alpha)$. Then we have: $i(s)=$ $\sigma h_{1}, i\left(s^{\prime}\right)=\sigma h_{2}$, hence $i\left(h_{2} s\right)=i\left(h_{1} s^{\prime}\right)$, which means $h_{2} s=h_{1} s^{\prime}$, so contradicting Lemma 1.1 of [8].

Lemma 2.2. - Let F be a semistable rank 2 normalized reflexive sheaf and let t be a positive integer such that $H^{2} F(t) \neq 0$. Then
(a) there is x in $H^{2} F(t)^{*}$ whose image x_{H} in $H^{1} F_{H}\left(-t-c_{1}-4\right)$ is $\neq 0, H$ being a general plane;
(b) x being as in (a), let d be the smallest integer such that x is annihiled by an element of $H^{0} \mathcal{O}_{H}(d)$ for all H. If moreover
(i) $t+3>a+d$,
(ii) $t+4>2 d-a-c_{1}$,
then x has only one (up to a unit) annihilator f in $H^{0} \mathcal{O}_{\boldsymbol{P}^{3}}(d)$.

Proof. - It depends upon [4] and [9].
REMARK 2.3. - If $d \leqslant 2 \alpha+c_{1}+1$ (for instance when $a<\alpha$), then (i) implies (ii).
Lemma 2.4. - Let F be a rank 2 semistable reflexive sheaf, H a general plane, $x_{H} \neq 0$ an element of $H^{1} F_{H}\left(-t-c_{1}-4\right), f_{H}$ in $H^{0} \mathcal{O}_{H}(d)$ an annihilator of minimal degree for x_{H}. If $t+3>a+d$, then $d \leqslant \sqrt{2 c_{2}-2 a^{2}}$; if moreover $d \leqslant 2 a+$ $c_{1}+1$ (for instance when $a<\alpha$), then $d \leqslant \sqrt{\frac{4}{3}} c_{2}$.

Proof. - First we observe that $-t-c_{1}-4+d-1 \leqslant-a-c_{1}-2$; then by Riemann-Roch we have $h^{1} F_{H}\left(-t-c_{1}-4+d-1\right) \leqslant h^{1} F_{H}\left(-a-c_{1}-2\right) \leqslant c_{2}-$ a^{2}, since $h^{1} F_{H}(n)$ is increasing for $n \leqslant-2$. Moreover by the same definition of d, we have also $\frac{1}{2} d(d+1) \leqslant h^{1} F_{H}\left(-t-c_{1}-4+d-1\right)$. By comparison we obtain that $d \leqslant \sqrt{2 c_{2}-2 a^{2}+\frac{1}{4}}-\frac{1}{2} \leqslant \sqrt{2 c_{2}-2 a^{2}}$.

If moreover $d \leqslant 2 a+c_{1}+1$ (see also [4], Proposition 4.1 for the case $a<\alpha$), then $d \leqslant \min \left(\sqrt{2 c_{2}-2 a^{2}+\frac{1}{4}}-\frac{1}{2}, 2 a+c_{1}+1\right) \leqslant \sqrt{\frac{4}{3} c_{2}}$.

Lemma 2.5. - Let F be a semistable rank 2 normalized reflexive sheaf having $c_{2} \geqslant 2, t$ an integer such that $H^{2} F(t) \neq 0$ and d as in Lemma 2.1. If t fulfils (a) or (b) or (c) of Notations 1.2, then $t+3>a+d$ and $t+4+c_{1}>2 d-a$.

Proof. - Choose x in $H^{2} F(t)^{*}$ and its image x_{H} in $H^{1} F\left(-t-c_{1}-4\right)$ as in Lemma 2.2, (a), and let d be the smallest degree of an annihilator of x_{H}. The inequality $t+3>a+d$ follows from [4], Proposition 4.3, provided we show that

$$
t+\alpha+c_{1}+2 \geqslant \sqrt{3 c_{2}+1+\frac{3}{4} c_{1}}+\frac{1}{2}\left(2 \alpha+c_{1}\right) .
$$

Case 1: t fulfils (a) of Notations 1.2.
We must show that $\sqrt{6 \delta+1} \geqslant \sqrt{3 c_{2}+1+\frac{3}{4} c_{1}}+\frac{3}{4}\left(2 \alpha+c_{1}\right)$. In fact, squaring both sides and simplifying we obtain:

$$
\left(\sqrt{3 c_{2}+1+\frac{3}{4} c_{1}}-\frac{3}{4}\left(2 \alpha+c_{1}\right)\right)^{2}+\frac{3}{8}\left(2 \alpha+c_{1}\right)^{2} \geqslant 1 .
$$

The inequality holds if $2 \alpha+c_{1} \geqslant 2$ or $=0$. If $2 \alpha+c_{1}=1$, it depends upon the inequality $c_{2} \geqslant \frac{1}{16}\left(1+2 \sqrt{10}-4 c_{1}\right)$, always true because $c_{2} \geqslant 2$.

Case 2: t fulfils (b) of Notations 1.2. First we see that

$$
\sqrt{6 \delta-\left(2 \alpha+c_{1}\right)^{2}+1} \geqslant \sqrt{3 c_{2}+1+\frac{3}{4} c_{1}}+\frac{1}{2}\left(2 \alpha+c_{1}\right) .
$$

In fact, squaring and simplifying, we obtain: $\left(\sqrt{3 c_{2}+1+\frac{3}{4} c_{1}}-\frac{1}{2}\left(2 \alpha+c_{1}\right)\right)^{2} \geqslant 1$, true because of Theorem 1.1.

Case 3: t fulfils (c) of Notations 1.2. The claim follows from Remark 1.3 and case 2.

Corollary 2.6. - Under the assumptions of Lemma 2.5, there exists a reduction step for F as described in Lemma 2.1.

Proof. - It depends upon Lemma 2.5, Lemma 2.1 and Lemma 2.2.

3. - Upper bounds for the second section of a reflexive sheaf.

In this section we discuss and prove our upper bounds for the level β of the second section of a semistable reflexive sheaf F.

Theorem 3.1. - Let F be a semistable rank 2 normalized reflexive sheaf having $c_{2} \geqslant 2$ and t an integer as in Notations 1.2. If $H^{2} F(t)=0$, then $t \geqslant \beta$.

Proof. - Riemann-Roch gives:

$$
h^{0} F(t)=2\binom{t+3}{3}-c_{1}\binom{t+2}{2}-c_{2}(t+2)+\frac{1}{2}\left(c_{3}-c_{1} c_{2}\right)+h^{1} F(t) .
$$

The inequality $t \geqslant \beta$ holds if $h^{0} F(t)>h^{0} \mathcal{O}_{\boldsymbol{P}^{3}}(t-\alpha)$. So it is enough to prove that the polynomial function

$$
P(X)=X^{3}-(6 \delta+1) X+3 \delta\left(2 \alpha+c_{1}\right)
$$

is positive when $X=t+\alpha+c_{1}+2$. Since $P(X)$ is increasing for $X \geqslant \sqrt{\frac{1}{3}(6 \delta+1)}$, it is enough to show that the right hand sides of Notations 1.2, (a), (b), (c) are not smaller than $\sqrt{\frac{1}{3}(6 \delta+1)}$ and that $P(X) \geqslant 0$ whenever $X=$ any such right hand side.

Case 1: t fulfils (a). Then it depends upon $[9$, Lemma $4.1, b) \Rightarrow a)]$.
Case 2: t fulfils (b). Let us prove that $\sqrt{6 \delta-\left(2 \alpha+c_{1}\right)^{2}+1} \geqslant \sqrt{\frac{1}{3}(6 \delta+1)}$; squaring both sides and simplifying, we obtain $4 c_{2}+\frac{2}{3}+c_{1} \geqslant 0$, which is always true. Now we compute

$$
P\left(\sqrt{6 \delta-\left(2 \alpha+c_{1}\right)^{2}+1}\right)=\left(2 \alpha+c_{1}\right)\left(3 \delta-\left(2 \alpha+c_{1}\right) \sqrt{6 \delta-\left(2 \alpha+c_{1}\right)^{2}+1}\right)
$$

since $2 \alpha+c_{1} \geqslant 0$, it is enough to prove that $3 \delta \geqslant\left(2 \alpha+c_{1}\right) \sqrt{6 \delta-\left(2 \alpha+c_{1}\right)^{2}+1}$.

Squaring and simplifying, we obtain:

$$
\left(\left(3 c_{2}+1+\frac{3}{4} c_{1}\right)-\frac{1}{4}\left(2 \alpha+c_{1}\right)^{2}-1\right)^{2} \geqslant\left(2 \alpha+c_{1}\right)^{2},
$$

true by Theorem 1.1.
Case 3: t fulfils (c). The claim follows from Case 2 and Remark 1.3.
Theorem 3.2. - Let F be a semistable rank 2 normalized reflexive sheaf having $c_{2} \geqslant 2$, t an integer as in Notations 1.2. If $H^{2} F(t) \neq 0$, then $t \geqslant \beta$.

Proof. - We proceed by induction on c_{2} (the case $c_{2}=1$ has been proved in section 1). We assume that the statement is true for every rank 2 semistable normalized reflexive sheaf with second Chern class $<c_{2}$. By Corollary 2.6 there is a reduction step giving a new sheaf G with $c_{2}^{\prime}=c_{2}(G)<c_{2}$ (Lemma 2.1). We will prove that G is semistable and $t^{\prime}=t-\varepsilon$ fulfils at least one among the conditions of Notation 1.2 , relatively to G. This will imply the claim for F, because the claim is true for G and moreover (Lemma 2.1) $t=t^{\prime}+\varepsilon \geqslant \beta^{\prime}+\varepsilon \geqslant \beta$.

We will see that:

- condition (a) for F and t implies condition (α) for G and t^{\prime}, provided that either $a=\alpha$ or that $a<\alpha<\sqrt{\frac{2}{3} c_{2}}-\frac{1}{2} c_{1}$;
- condition (b) for F and t implies condition (b) for G and t^{\prime}, provided that $\alpha \geqslant \sqrt{\frac{1}{3}} c_{2}-\frac{1}{2} c_{1} ;$

Having in mind remark 1.3, we see that this is enough to cover all cases.

Step 1: F and t fulfil condition (a), i.e. $t+\alpha+c_{1}+2>\sqrt{6 \delta+1}-\frac{1}{4}\left(2 \alpha+c_{1}\right)$. If $a=\alpha$, the claim is proved in [9]; hence we assume $\alpha<\alpha$ and then $d<2 \alpha+c_{1}$. Moreover we assume $\alpha<\sqrt{\frac{2}{3} c_{2}}-\frac{1}{2} c_{1}$. We want to show that G and t^{\prime} fulfil (a) of Notation 1.2 that is: $t^{\prime}+\alpha^{\prime}+c_{1}^{\prime}+2>\sqrt{6 \delta^{\prime}+1}-\frac{1}{4}\left(2 \alpha^{\prime}+c_{1}^{\prime}\right)$. First of all we observe that $t+4>\alpha+d$. In fact $t+\alpha+c_{1}+2>\sqrt{6 \delta+1}-\frac{1}{4}\left(2 \alpha+c_{1}\right) \geqslant 2 \alpha+$ $c_{1}+d$; it is now enough to square and recall that $2 \alpha+c_{1} \leqslant 2 \sqrt{\frac{2}{3}} c_{2}$ that is $c_{2}>$ $\frac{3}{8}\left(2 \alpha+c_{1}\right)^{2}$ and $d \leqslant\left(2 \alpha+c_{1}\right)$ (Lemma 2.4). Therefore $\alpha^{\prime}>a^{\prime}$ and so G is semistable. Using Lemma 2.1 (iv), it is enough to show that:
$t^{\prime}+\alpha^{\prime}+c_{1}^{\prime}+2=t+\alpha+c_{1}+2-d>\sqrt{6 \delta+1}-\frac{1}{4}\left(2 \alpha+c_{1}\right)-$

$$
d \geqslant \sqrt{6 \delta^{\prime}+1}-\frac{1}{4}\left(2 \alpha^{\prime}+c_{1}^{\prime}\right),
$$

i.e. that $\sqrt{6 \delta+1}-\frac{5}{4} d \geqslant \sqrt{6 \delta-6\left(t+4+\alpha+c_{1}-d\right) d+1}$.

Squaring and simplifying, we see that it is enough to prove that: $6\left(t+4+c_{1}+\right.$ $\alpha-d)+\frac{25}{16} d-\frac{5}{2} \sqrt{6 \delta+1}=\frac{5}{2}\left(t+\alpha+c_{1}+2\right)-\frac{5}{2}(d-2)+\frac{7}{2}\left(t+4+c_{1}+\alpha-d\right)+$ $\frac{25}{16} d-\frac{5}{2} \sqrt{6 \delta+1} \geqslant 0$. Since t fulfils (a) and $t+4>\alpha+d$, it is enough to show that $\frac{23}{8}\left(2 \alpha+c_{1}\right)-\frac{15}{8} d+10 \geqslant 0$, true because $d<2 \alpha+c_{1}$.

Step 2: F and t fulfil condition (b), i.e.

$$
t+\alpha+c_{1}+2>\sqrt{6 \delta-\left(2 \alpha+c_{1}\right)^{2}+1}=\sqrt{6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1}
$$

Since the case $\alpha<\sqrt{\frac{2}{3} c_{2}}-\frac{1}{2} c_{1}$ follows from step 1 (see Remark 1.3), we assume that $\alpha \geqslant \sqrt{\frac{1}{3} c_{2}}-\frac{1}{2} c_{1}$ and so $d \leqslant \sqrt{\frac{4}{3} c_{2}}$ (see Lemma 2.4 and Lemma 2.5). If $a<\alpha$ we have $d \leqslant 2 \alpha+c_{1}-1$ and therefore $\alpha^{\prime} \geqslant \alpha-\varepsilon>0$, while, if $\alpha=a$, then $\alpha^{\prime} \geqslant$ $\alpha-\frac{1}{2} d \geqslant \sqrt{\frac{1}{3} c_{2}}-\frac{1}{2} c_{1}-\frac{1}{2} \sqrt{\frac{4}{3} c_{2}} \geqslant 0$; hence G is semistable.

First of all we remark that $t+4>d+\frac{1}{3} \alpha$, i.e. that $\sqrt{6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1}-\left(d+\frac{4}{3} \alpha+c_{1}-2\right)>0$. The left side of the last inequality, as a function of $2 \alpha+c_{1}$, is decreasing, when $2 \alpha+c_{1} \leqslant 4 \sqrt{6 c_{2}+\frac{3}{2}}$, i.e. for all values of α allowed by Theorem 1.1, and moreover, when $2 \alpha+c_{1}=2 \sqrt{3 c_{2}}$, it has the value $\sqrt{12 c_{2}+\frac{3}{2} c_{1}+1}-d-\frac{4}{3} \sqrt{3 c_{2}}-\frac{1}{3} c_{1}+2>0$ (recall that $d \leqslant \sqrt{\frac{4}{3} c_{2}}$ and $c_{2} \geqslant 2$).

Now we prove our claim under the following condition:
(*) $\quad 6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1 \leqslant\left(2 \alpha+c_{1}\right)^{2}+\frac{2}{3} d\left(2 \alpha+c_{1}\right)+2 d^{2}-1$
In this event we have: $d \geqslant 2$ (Theorem 1.1). Let us prove that G and $t^{\prime}=t-\varepsilon$ fulfil (c), i.e. that

$$
\begin{aligned}
t^{\prime}+\alpha^{\prime}+c_{1}^{\prime}+3=t & +\alpha+c_{1}+3-d \geqslant \\
& \geqslant \sqrt{6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1}-d \geqslant 2 \sqrt{3 c_{2}+\frac{3}{4} c_{1}+1}
\end{aligned}
$$

In fact, squaring, simplifying and using Lemma 2.1, we see that it is enough to prove that
$6 c_{2}-12 d\left(t+4+c_{1}-d\right)-3 d^{2}+6 d c_{1}+3 c_{1}+3 \leqslant$

$$
\leqslant \frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+d^{2}-2 d \sqrt{6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+} .
$$

Using (b), we see that it is enough to show that
$6 c_{2}-10 d\left(t+4+c_{1}-d\right)+2 d(\alpha+d-2)+3-4 d^{2}+6 d c_{1}+\frac{3}{2} c_{1} \leqslant \frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}$.

Using the inequality $t+4>d+\frac{1}{3} \alpha$ it is enough to show that
$6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1 \leqslant\left(2 \alpha+c_{1}\right)^{2}+2 d\left(2 \alpha+c_{1}\right)+2 d^{2}-2+\frac{10}{3} c_{1}+4 d$, which follows from (*) since $d \geqslant 2$.

We now assume that
$(* *) \quad 6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1>\left(2 \alpha+c_{1}\right)^{2}+\frac{2}{3} d\left(2 \alpha+c_{1}\right)+2 d^{2}-1$
and $2 \alpha^{\prime}+c_{1}^{\prime}<2 \alpha+c_{1}$ hold. In this event we show that G and t^{\prime} fulfil (b), i.e. that
$t^{\prime}+\alpha^{\prime}+c_{1}^{\prime}+2=t+\alpha+c_{1}+2-d \geqslant$

$$
\geqslant \sqrt{6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1}-d \geqslant \sqrt{6 c_{2}^{\prime}+\frac{1}{2}\left(2 \alpha^{\prime}+c_{1}()^{2}+\frac{3}{2} c_{1}^{\prime}+1\right.} .
$$

Squaring and using Lemma 2.1, we see that it is enough to show that
$d\left(6 d\left(t+c_{1}+4-d\right)-2 \sqrt{6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1}+\frac{5}{2} d^{2}-3 d c_{1}\right) \geqslant 0$
or, using assumption (b) on t :

$$
4 \sqrt{6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1} \geqslant \frac{7}{2} d+3\left(2 \alpha+c_{1}\right)-12 .
$$

Squaring both sides and using (**), we obtain:
$16\left(2 \alpha+c_{1}\right)^{2}+\frac{32}{3}\left(2 \alpha+c_{1}\right) d+32 d^{2}-16 \geqslant$

$$
\frac{49}{3} d^{2}+21\left(2 \alpha+c_{1}\right) d+9\left(2 \alpha+c_{1}\right)^{2}+144-84 d-72\left(2 \alpha+c_{1}\right)
$$

i.e. $7\left(2 \alpha+c_{1}\right)^{2}-\frac{31}{3}\left(2 \alpha+c_{1}\right) d+\frac{79}{4} d^{2} \geqslant 160-84 d-72\left(2 \alpha+c_{1}\right)$, which is true because the left side is positive and the right side is negative, except when $d=$ $2 \alpha+c_{1}=1$, in which case we have $7-\frac{31}{3}+\frac{79}{4} \geqslant 4$.

We now assume that ($* *$) and $2 \alpha^{\prime}+c_{1}^{\prime} \geqslant 2 \alpha+c_{1}$ hold. In this event we show that G and t^{\prime} fulfil (b) i.e. that
$t^{\prime}+\alpha^{\prime}+c_{1}^{\prime}+2 \geqslant t+\alpha+c_{1}+2-\frac{1}{2} d \geqslant$

$$
\sqrt{6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1}-\frac{1}{2} d \geqslant \sqrt{6 c_{2}^{\prime}+\frac{1}{2}\left(2 \alpha^{\prime}+c_{1}\right)^{2}+\frac{3}{2} c_{1}^{\prime}+1}
$$

Squaring and using Lemma 2.1, (in particular the fact that $2 \alpha^{\prime}+c_{1}^{\prime} \leqslant 2 \alpha+$
$c_{1}+d$), we see that it is enough to show that

$$
6 d(t+4)-d\left(2 \alpha+c_{1}\right)+3 c_{1} d-\frac{19}{4} d^{2}>d \sqrt{6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1}
$$

Using (b) on t, it is enough to show that

$$
5 \sqrt{6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1}>\frac{19}{4}+4\left(2 \alpha+c_{1}\right)
$$

Squaring and using (**), we see that it is enough to show that

$$
9\left(2 \alpha+c_{1}\right)^{2}-\frac{64}{3} d\left(2 \alpha+c_{1}\right)+\frac{439}{16} d^{2}>0
$$

which is always true.
Theorem 3.3. - Let F be a normalized rank 2 reflexive sheaf. Then:

$$
\begin{gathered}
\beta+\alpha+c_{1} \leqslant \sqrt{6 c_{2}+\frac{3\left(2 \alpha+c_{1}\right)^{2}}{2}+\frac{3}{2} c_{1}+1}-\frac{\left(2 \alpha+c_{1}\right)}{4}-1 \\
\beta+\alpha+c_{1} \leqslant \sqrt{6 c_{2}+\frac{\left(2 \alpha+c_{1}\right)^{2}}{2}+\frac{3}{2} c_{1}+1}-1 \text { if } F \text { is semistable } \\
\beta+\alpha+c_{1} \leqslant 2 \sqrt{3 c_{2}+1+\frac{3}{4} c_{1}}-2 \text { if } F \text { is semistable }
\end{gathered}
$$

Proof. - If F is semistable, the claim follows from Remark 1.5, Theorem 3.1 and Theorem 3.2. The non-stable case is proved in [9], Remark 4.4. Observe that, for t and β integers, $t>x \Rightarrow t \geqslant \beta$ is the same as $\beta \leqslant x+1$.

Corollary 3.4. - Let F be a semistable reflexive sheaf and let s be a general section in $F(n)$. Then, whenever $n \geqslant \sqrt{6 c_{2}+c_{1}+1}-1$, the scheme of zeros of s is a curve.

Proof. - Consider, for every positive c_{2} and $c_{1}=0$ or -1 , the function $g^{\prime}(\alpha)=$ $\sqrt{6 c_{2}+\frac{1}{2}\left(2 \alpha+c_{1}\right)^{2}+\frac{3}{2} c_{1}+1}-\alpha-c_{1}-1$; it is easy to see, by a straighforward computation, that it reaches its highest value, within the interval $-c_{1} \leqslant \alpha \leqslant \sqrt{3 c_{2}+1+\frac{3}{4} c_{1}}-\frac{1}{2} c_{1}-1$ (see Theorem 1.1), when $\alpha=-c_{1}$, and such a value is exactly $\sqrt{6 c_{2}+c_{1}+1}-1$. Then it follows from Theorem 3.3 that $\beta \leqslant \sqrt{6 c_{2}+c_{1}+1}-1$ and for $n \geqslant \beta$ the general section of $F(n)$ gives rise to a curve (see [8], §1, n. 2).

Remark 3.5. - We observe that, if F is non-stable, then such a result does not exist. Indeed for every funtion $\phi\left(c_{2}\right)$ there are sheaves having $\beta>-\alpha>\phi\left(c_{2}\right)$: see [9], Example 5.12.

4. - Bounds for the degree of a surface containing a curve.

Theorem 3.3 can be traslated into the language of curves as follows.
Theorem 4.1. - Let r be the smallest degree of a surface containing a minimal curve C of the normalized semistable rank 2 reflexive sheaf F. Then $r \leqslant 2 \sqrt{3 c_{2}+1+\frac{3}{4} c_{1}}-2$.

Definition 4.2. - Let C be a curve. Define:

$$
e=\max \left\{n / \omega_{C}(-n) \text { has a section generating it almost everywhere }\right\} .
$$

Theorem 4.3. - Let C be a curve of degree D lying on a surface of degree r and not less.

If $\frac{1}{2}(e+4) \geqslant \sqrt{D}, r \leqslant \sqrt{D} ;$ otherwise $r \leqslant \sqrt{6 D+1}-1-\frac{1}{4}(e+4)$.
If moreover $0<\frac{1}{2}(e+4)<\sqrt{D}$, then

$$
r \leqslant \min \left(\sqrt{6 D+1}-1-\frac{1}{4}(e+4), \sqrt{6 D-(e+4)^{2}+1}-1\right)
$$

Proof. - Let $F(n)$ be the sheaf corresponding to C through a section of $\omega_{C}(-e)$, where F is normalized: then $e+4=2 n+c_{1}$ and $D=c_{2}+n c_{1}+n^{2}$. From the assumption $\frac{1}{2}(e+4) \geqslant \sqrt{D}$ it follows that $n>0$ and $4 c_{2}+c_{1} \leqslant 0$ (it is enough to square both members), which means that F is non-stable and the result follows from [9], Proposition 5.3.

If $\frac{1}{2}(e+4)<\sqrt{D}$ and $n=\alpha$, then the claim follows from Theorem 3.3 above for the stable case and from [9], Remark 4.4 for the non-stable case.

Finally, if $0<\frac{1}{2}(e+4)<\sqrt{D}$ and $n=\alpha>0$, then the claim follows from Theorem 3.3 above; if $n>\alpha$ from the assumption it follows that

$$
\begin{aligned}
& \min \left(\sqrt{6 D+1}-\frac{1}{4}(e+4), \sqrt{6 D-(e+4)^{2}+1}-1\right)-1 \geqslant \\
& \quad \min \left(\sqrt{6 D+1}-\frac{1}{2} \sqrt{D}, \sqrt{2 D+1}\right)-1 \geqslant \sqrt{3 D+1}-1 \geqslant \sqrt{D}
\end{aligned}
$$

(direct computation).
Then the claim follows from [9, Proposition 5.3 in the non-stable case, Proposition 5.8 in the stable case: if $n>\alpha$, then $r \leqslant \sqrt{3 D+1}-1$, which is a statement slightly stronger than 5.8].

REmark 4.4. - Let C be an integral curve (so having $e \geqslant 0$) and assume that C is not contained in any surface of degree e. Then the claim

$$
t>\sqrt{6 D+1}-2-\frac{1}{4}(e+4) \quad \text { and } \quad t>e \Rightarrow t \geqslant r
$$

follows (easily) from Riemann-Roch. In fact for $t>e$ we have $h^{0} \omega_{C}(-t)=0$ (not true for a non-integral curve); moreover $h^{0} I_{C}(t) \geqslant h^{0} \mathcal{O}_{P^{3}}(t)-h^{0} \mathcal{O}_{C}(t)$ and $p_{a}=$ $1+\frac{1}{2} e D+\frac{1}{2} c_{3}, \quad$ hence $\quad h^{0} I_{C}(t) \geqslant\binom{ t+3}{3}-h^{0} \mathcal{O}_{C}(t)=\binom{t+3}{3}+\frac{1}{2} e D+\frac{1}{2} c_{3}-$ $t D \geqslant\binom{ t+3}{3}+\frac{1}{2}(e+4) D-(t+2) D$. This last term becomes $\geqslant 0$ if we replace t with $\sqrt{6 D+1}-2-\frac{1}{4}(e+4)$, provided that $e+4>0$.

Remark 4.5. - The upper bound of Theorem 3.3 is lower than $\sqrt{6 D-2}-3$, D being the degree of the curve C, except when $\alpha=1$ and $c_{1}=-1$.

REmark 4.6. - Theorem 4.3 can be used to obtain information on the number e, provided that both r and D are known. For the sake of simplicity, assume that $c_{1}=0$. Then we have:

- if $r>\sqrt{D}$, then $e+4<2 \sqrt{D}$,
- if $r \leqslant \sqrt{D}$, then $e+4<D+1$.

In fact, if $r \leqslant \sqrt{D}$ and moreover it is known that C corresponds to a semistable sheaf F, then Theorem 4.3 says that

$$
0 \leqslant e+4 \leqslant \min (4 \sqrt{6 D+1}-4(\sqrt{D}+1), \sqrt{5 D-2 \sqrt{D}})
$$

If, on the contrary, $r \leqslant \sqrt{D}$ but C is the scheme of zeros of the first section of a non-stable F, then $e+4<0$; if $r \leqslant \sqrt{D}$ and C is the scheme of zeros of a section of $F(n)$, where F is non-stable and $n \geqslant \beta$, then $e+4=2 n$ and $c_{2}+n^{2}=c_{2}+n^{2}+$ $\alpha^{2}-\alpha^{2} \geqslant c_{2}+\alpha^{2}+(n-\alpha)(n+\alpha) \geqslant 2 n$, true whenever $n+\alpha$ is at least 2 , i.e. if C is not a plane curve. If C is a plane curve, then of course $e+4=D+1$. So in any event $D+1$ is an upper bound for $e+4$.

Observe that, if C corresponds to the first section of a non-stable F, e can be arbitrarily negative, even when both r and D are given (see [1,3, (iii)].

REmark 4.7. - Observe that, if $\frac{1}{2}(e+4) \geqslant \sqrt{D}$, then the curve is not minimal for a non-stable sheaf F. For such a curve the other bound $r \leqslant \sqrt{6 D+1}-$ $1-\frac{1}{4}(e+4)$ is not valid, also because it may be a negative number: see [9], Remark 5.5.

5. - Examples.

Example 5.1. - Let F be a normalized rank 2 reflexive sheaf with $c_{3}=0$, $c_{2} \geqslant 1$, whose cohomology is seminatural ([5, Theorem 2.3]. Then it can easily be seen that $\alpha=E\left(\sqrt{3 c_{2}+\frac{3}{4} c_{1}+1}-\frac{1}{2} c_{1}-1\right)$. Therefore we have:

$$
h^{0} F(\alpha)=\frac{1}{3}(\alpha+1)(\alpha+2)(\alpha+3)-(\alpha+2) c_{2}+\frac{1}{2}(\alpha+1)(\alpha+2) c_{1}>1
$$

and $\alpha=\beta$ (by the main theorem of [10]). So the upper bound of Theorem 3.3 is sharp for all $c_{2} \geqslant 1$.

It easy to see that in this case the upper bound $\sqrt{6 D-(e+4)^{2}+1}-1$ is reached.

EXAMPLE 5.2. - Let F be a seminatural cohomology reflexive sheaf with $c_{1}=c_{3}=0, c_{2}=5$; then $\alpha=\beta=3$, hence a curve C scheme of zeros of a section of $F(3)$ lies on a surface of degree 6 and not less and has degree $D=14$. Let now Y be the skew union of C and a general complete intersection of a plane surface of degree 5 . It is easy to see that Y lies on a surface of degree 7 and not less and we have: $7=E(\sqrt{6(14+5)-36+1})-1$.

Example 5.3. $-C=$ the skew union of $D>2$ lines having maximal rank (true for the general union by [7]) gives a sharp example.

In fact C is the minimal curve of a reflexive sheaf F with $c_{1}=0, \alpha=1$. Since C is (-2)-subcanonical of genus $1-D$ and $h^{0} \mathcal{O}_{C}(n) \geqslant(n+1) D$, then $r>n$, where n is the largest integer such that $h^{0} \mathcal{O}_{\boldsymbol{P}^{3}}(n) \leqslant(n+1) D$, that is the integral part of $-\frac{5}{2}+\sqrt{6 D+\frac{1}{4}}$. On the other hand $r \leqslant \sqrt{6 D+1}-1-\frac{1}{2}$. Choosing $D=10$ (or other infinitely many values of D), we get a sharp example.

Example 5.4. - Let C be the skew union of $h \geqslant 2$ complete intersections of type (n, n). Then we have:

$$
\begin{aligned}
& r \leqslant \min \left(\sqrt{6 D+1}-1-\frac{1}{4}(e+4), \sqrt{6 D-(e+4)^{2}+1}-1\right)= \\
& \quad \min \left(\sqrt{6 h n^{2}+1}-1-\frac{1}{2} n, \sqrt{6 h n^{2}-4 n^{2}+1}-1\right)
\end{aligned}
$$

and from $h \geqslant 5$ this is a better bound than the trivial one, i.e. $h n$.

Example 5.5. - Let C be the skew union of $h \geqslant 2 n$ complete intersection of type (1, 2n-1).

Then we have:

$$
r \leqslant \min \left(\sqrt{6 D+1}-1-\frac{1}{4}(e+4), \sqrt{6 D-(e+4)^{2}+1}-1\right)
$$

and this usually is a better bound than the trivial one, i.e. h.

REFERENCES

[1] L. Chiantini - P. Valabrega, Subcanonical curves and complete intersections in projective 3-space, Ann. Mat. Pura Appl., 136 (1984), 309-330.
[2] A. V. Geramita - M. Roggero - P. Valabrega, Subcanonical curves with the same postulation as q skew complete intersection in projective 3-space, Istituto Lombardo (Rend. Sc.) A, 123 (1989), 111-121.
[3] R. Hartshorne, Stable reflexive sheaves, Math. Ann., 254 (1980), 121-176.
[4] R. Hartshorne, Stable reflexive sheaves II, Invent. Math., 66 (1982), 165-190.
[5] A. Hirschowitz, Existence de faisceaux reflexifs de rang deux sur \boldsymbol{P}^{3} a bonne cohomologie, Publ. Math I.H.E.S., 66 (1987), 105-137.
[6] A. Hirschowitz, Sur la postulation generique des courbes rationelles, Acta. Math., 146 (1981), 209-230.
[7] R. Hartshorne - A. Hirschowitz, Droites en position general dans l'espace projectif, Algebraic Geometry, Proceedings, La Rabida, 1981, Lect. Notes in Math., 961 (1982), 209-230.
[8] M. Roggero - P. Valabrega, Some vanishing properties of the intermediate cohomology of a reflexive sheaf on \boldsymbol{P}^{n}, J. Algebra, 170 (1994), 307-321.
[9] M. Roggero - P. Valabrega, On the second section of a rank 2 reflexive sheaf on \boldsymbol{P}^{3}, J. Algebra, 180 (1996), 67-86.
[10] M. Roggero - P. Valabrega, Sulle sezioni di un fascio riflessivo di rango 2 su \boldsymbol{P}^{3} : casi estremi per la prima sezione, Rendiconti Accademia Peloritana, LXXIII (1995) 67-86.
M. Roggero: Dipartimento di Matematica, Università di Torino via Carlo Alberto 10-10123 Torino, Italy
P. Valabrega: Facoltà di Ingegneria, Politecnico di Torino Corso Duca degli Abruzzi 24-10129 Torino, Italy

