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On Multivortex Solutions in Chern-Simons Gauge Theory.

MICHAEL STRUWE - GABRIELLA TARANTELLO

Sunto. – Motivati dall’analisi asintotica dei vortici nella teoria di Chern-Simons-Higgs,
si studia l’equazione

2Du4lu e u

s
V

e u dx
2

1

NVN
v , u�H 1 (V)

dove V4R2 OZ2 é il toro piatto bidimensionale. In contrasto con l’analogo problema
di Dirichlet, si dimostra che per l�]8p , 4p 2[ l’equazione ammette una soluzione non
banale. Tale soluzione cattura il carattere bidimensionale dell’equazione, nel senso
che, per tali valori di l , l’equazione non può ammettere soluzioni (periodiche) non ba-
nali dipendenti da una sola variabile (vedi [10]).

1. – Introduction.

In (211)-dimensional Chern-Simons gauge theory, a particular role is
played by the corresponding condensate (or multivortex) solutions which are be-
lieved relevant in several aspects of theoretical physics.

Although the presence of multivortices has been predicted experimentally,
still in the general framework of Chern-Simons theory, it is very difficult to ob-
tain them analytically. Thus, a special effort has been devoted to derive specific
models for which more convenient selfdual equations would hold for the corre-
sponding energy-minimizing multivortices. See the recent monograph [4].

Through an approach of Taubes [15], the process of solving these selfdual equa-
tions is reduced to solving suitable elliptic equations for the logarithmic values of
the particle density. The elliptic equations so derived are of Liouville-type. It is
necessary to solve them on the 2-dimensional torus in order to obtain the desired
condensate solution subject to ’t Hooft periodic boundary conditions.

Here we consider a particular class of these equations which were derived in
[14]. More precisely, [14] is concerned with a selfdual model introduced in [5] and
[6]; it establishes the existence of a new class of condensate solutions which are
absent in the classical vortex theory.

When the vortex number N41 and the Chern-Simons coupling constant
tends to zero, in [14] it is shown that the asymptotic behavior of the new type of
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condensates can be described in terms of solutions of the limiting equation

2Du4lu e w01u

s
V

e w01u
2

1

NVN
v on V(1)

with l44p, V the 2-dimensional torus, and w0 an assigned function.
Notice that for l�]0 , 8p[ existence for (1) is an easy consequence of the

Moser-Trudinger inequality [9]. To extend this argument to condensate solutions
with vortex number NF2, it is necessary to insure the existence of solutions for
(1) when lF8p. This is exactly the task we have taken up here. We treat the case
w0 40 and show that (1) admits a nonconstant solution for every l in the range
8pElE4p 2.

By a result of Ricciardi-Tarantello [10], we can also guarantee that these sol-
utions are «truly» two-dimensional in the sense that they cannot reduce to a
(periodic) function of one variable. Incidentally, let us also point out that the anal-
ogous problem (with w0 40) subject to Dirichlet boundary conditions

.
/
´

2Du4l
e u

s
V

e u

u 40

on V ,

on ¯V ,

(2)

where V%R2 is a bounded domain, plays an important role in the context of sta-
tistical mechanics of point vortices in the mean field limit where (2) is referred to
as the mean field equation; see [2], [3], [7].

Since for 0 ElE8p and V simply connected (2) is known to admit a unique
solution (see [13]), by analogy one would be tempted to conjecture that problem
(1) with w0 40 and 0 ElE8p also admits only the trivial solution u40. We can
establish this result only for l small (see section 5) but we are not certain about
its validity in the whole range ]0 , 8p[. In fact, our result shows that there is an
important difference between problems (1) (with w0 40) and (2), as problem (2)
admits no solutions for lF8p, if V is a ball.

Acknowledgements. The authors wish to thank Y. Y. Li and S. Müller for use-
ful discussions.

2. – Main result.

Let V be the 2-dimensional torus, with fundamental cell domain: [21O2, 1O2]3
[21O2, 1O2]. Consider the problem

2Du4lu e u

s
V

e u dx
21v on V ,(3)
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or, equivalently, solutions of (3) on R2 of period 1 in each variable. For fixed l, we
refer to equation (3) as (3)l . Shifting a solution u of (3)l by a constant, we again
obtain a solution. We normalize solutions by requiring s

V
u dx40.

Notice that u40 is always a solution of (3)l ; here we seek nontrivial solutions.
Let E4 ]u�H 1 (V); s

V
u dx40( with norm VuV4 s

V
N˜uN2 dx. Then (weak) sol-

utions of (3)l correspond to critical points of the analytic functional

Il (u) 4
1

2
VuV

2 2l lnus
V

e u dxv on E .

REMARK 2.1. – By Jensen’s inequality we have s
V

e u dxFe s
V

u dx 41 for all u�E;

in particular, the map lKIl (u) is monotone decreasing for any u�E.

REMARK 2.2. – By Trudinger-Moser’s inequality [9], it is easy to check that, Il

is bounded from below, coercive, and weakly lower semicontinuous if lE8p. So Il

achieves its infimum, which, however, could correspond to the trivial solution u40.

On the other hand, we shall see that for lD8p the functional Il is unbounded
from below, while the trivial solution uf0 remains a strict local minimum for
lE4p 2. Thus, for 8pElE4p 2 the functional Il exhibits a mountain-pass struc-
ture and we expect the existence of non-trivial critical points of Il for l in this
range. This, in fact, is our main result.

THEOREM 2.1. – For every l�]8p , 4p 2 [ there exists a non-trivial solution ul

of (3)l satisfying Il (ul ) F (12lO4p 2 ) c0 for some constant c0 D0 independant
of l.

The solutions ul will be obtained by a variational method using, in particular,
the strategy of obtaining a priori bounds on Palais-Smale sequences by par-
ameter variation, as introduced in [11], [12]. We expect these solutions to form a
continuous «branch», bifurcating from the trivial branch uf0 at l44p 2 and
asymptotic to the line l48p. However, at this stage we cannot rigorously prove
that this is the case. Moreover, we do not know if non-trivial solutions also exist
for lG8p, in particular, for l48p, but some analytical evidence seems to sug-
gest that they do.

We also point out that the solution ul cannot reduce to a (periodic) function
of one variable. In fact, for the corresponding one-dimensional problem:

u
n n

1lu e u

s
21/2

1/2

e u dx

21v40(4)

a recent result of Ricciardi-Tarantello [10] asserts that (4) admits a nonconstant
solution of period T41 if and only if lD4p 2. Thus, Theorem 2.1 captures, in an
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essential way, the two-dimensional nature of problem (3)l and this justifies the
special role played by the value l44p 2.

3. – Existence of solutions for almost every l.

In a first step we show that nontrivial solutions to (3)l exist for almost every
l�]8p , 4p 2 [.

LEMMA 3.1. – If lE4p 2, then u40 is a strict local minimum for Il .

PROOF. – Il is smooth. Thus it suffices to observe that the second variation of
Il at u40 in direction v�E can be estimated

I 9l (0)(v , v) 4VvV

2 2ls
V

v 2 dxFu12
l

4p 2
vVvV

2 . r

For eD0 and x�V let

ve (x) 4 lnu e 2

(e 2 1pNxN2 )2
v ,

extended periodically, and let ue4ve2s
V

ve dx�E.

LEMMA 3.2. – Il (ue ) 42(8p2l) ln (1Oe)1O(1), where NO(1)NGC as eK0.

PROOF. – We estimate

N˜ue N2 44N˜ ln (e 2 1pNxN2 )N2 4
16p 2 NxN2

(e 2 1pNxN2 )2
.

Substituting y4xOe, we obtain

Vue V

2 416p 2s
V e

NyN2

(11pNyN2 )2
dy ,

where V e4 ]y ; ey�V(. Introducing polar coordinates around 0, the latter
equals

Vue V

2 432p 3 s
0

e21

r 3 dr

(11pr 2 )2
1O(1) 432p ln

1

e
1O(1) ,

where NO(1)NGC for eK0.
On the other hand, we have

lngs
V

e ue dxh4 lngs
V

e ve dxh2s
V

ve dx ,
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and

s
V

e ve dx4s
V

e 2 dx

(e 2 1pNxN2 )2
4 s

V e

dy

(11pNyN2 )2
4O(1) ,

while

s
V

ve dx4s
V

lnu e 2

(e 2 1pNxN2 )2
v dx42 ln e22 s

V

ln (e 2 1pNxN2 ) dx42 ln e1O(1) .

Thus, we obtain, with NO(1)NGC as eK0, the estimate

Il (ue ) 4
1

2
Vue V

2 2l lnus
V

e ue dxv4 (16p22l) ln
1

e
1O(1) ,

as desired. r

REMARK 3.1. – Note, in particular, that Vue VKQ as eK0.

Fix l�]8p , 4p 2 [. By Lemma 3.2 there exists e 0 4e 0 (l) D0 sufficiently small
such that for u0 4ue 0

we have

Il (u0 ) E0 and Vu0 VF1 .

Hence also for any mFl we have Im (u0 ) GIl (u0 ) E0.
Define

P4 ]g : [0 , 1 ] KE ; g is continuous g(0) 40, g(1) 4u0 (

and for mFl let

cm4 inf
g�P

max
t� [0 , 1 ]

Im (g(t) ) .

In view of Remark 2.1, the map mKcm , mFl is monotone decreasing, hence dif-
ferentiable at almost all values m�]l , 4p 2 [.

In addition, by Lemma 3.1, there exists a constant c0 D0 (independent of l)
such that

cmFu12
m

4p 2
vc0 .

LEMMA 3.3. – Suppose the map: mKcm is differentiable at mDl. Then cm de-
fines a critical value for Im . In particular, problem (3)m admits a nontrivial sol-
ution for almost every m�]l , 4p 2 [.

PROOF. – Let m be a point of differentiability of cm . Consider a monotone de-
creasing sequence (m n ) such that m n Km(nKQ). For n�N and any path g n �P
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such that

max
t� [0 , 1 ]

Im (g n (t) )Gcm1 (m n 2m)(5)

consider any point u4g n (tn ) such that Im n
(u) Fcm n

22(m n 2m).
Then, letting a42 c 8m 13 and choosing n0 �N sufficiently large, for nFn0

we have

(6) cm2a( m n 2m) Gcm n
22( m n 2m) GIm n

(u) GIm (u) G

G max
0 G tG1

Im (g n (t) )Gcm1 (m n 2m) .

Note that n0 is independant of the choice of g n . In particular, (6) implies
that

0 G
Im (u)2Im n

(u)

m n 2m
4 lnus

V

e u dxvGa11

and hence that

(7) VuV

2 42Im (u)12m lngs
V

e u dxhG2cm12(m n 2m)12m(a11) GC1

for any such point u4g n (tn ), any nFn0 . To proceed, we need the following
estimates.

LEMMA 3.4. – i) For any u , v�E , any mF0 there holds

Im (u1v) GIm (u)1 aI 8m (u), vb1
1

2
VvV

2 .

ii) For any C1 F0 there exists a constant C such that for any m , n�R there
holds

VI 8m (u)2I 8n (u)VGCNm2nN ,

uniformly in u�E with VuV

2 GC1.

PROOF. – i) Expanding to second order, we have

Im (u1v)2Im (u)2 aI 8m (u), vb2
1

2
VvV

2 4

42 m{lnu s
V

e u1v dx

s
V

e u dx
v2

s
V

e u vdx

s
V

e u dx
}42 ms

0

1

s
0

s 8

d 2 f

ds 2
(s9) ds 9 ds 8 ,

where f (s) 4 ln (s
V

e u1sv dxOs
V

e u dx) .
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Since by Schwarz’ inequality

f 9 (s) 4
1

g s
V

e u1sv dxh2
{s

V

e u1sv v 2 dx Qs
V

e u1sv dx2us
V

e u1sv v dxv2}F0 ,

the desired estimate follows.

ii) For any v�E with VvVG1, since s
V

e u dxF1, VvVL 2 G (1O2p)VvVG1, we
have

aI 8m (u), vb2 aI 8n (u), vb 4 (n2m)
s

V
e u v dx

s
V

e u dx
GNm2nNus

V

e 2u dx Qs
V

v 2 dxv1/2

G

GNm2nNus
V

e 2u dxv1/2

Ge C1 O8p Nm2nNus
V

e 4p(u 2 OVuV

2 ) dxv1/2

,

where we used that

2NuNG4p
u 2

VuV

2
1

VuV

2

4p
G4p

u 2

VuV

2
1

C1

4p
.

The claim now follows from the Trudinger-Moser inequality

sup
u�E

s
V

e 4p(u 2 OVuV

2 ) dxEQ ;

see [9]. r

Proceeding with the proof of Lemma 3.3, we can now construct a special
(bounded) Palais-Smale sequence (un ) for Im at the energy level cm.

LEMMA 3.5. – There exists a sequence (un ) in E such that Vun V

2 GC1 ,
Im (un ) Kcm and I 8m (un ) K0 as nKQ.

PROOF. – Otherwise, there exists dD0 such that VI 8m (u)VF2d for all u�E
with VuV

2 GC1 and NIm (u)2cm NE2d. We may assume that a(m n 2m) Ed for
nFn0 .

Choose a function W�C Q (R) such that 0 GWG1, W(s) 41 for sF2 1,
W(s) 40 for sG2 2, and for n�N , u�E let W n (u) 4W((Im n

(u)2cm n
)O(m n 2m) ).

Choose g n �P satisfying (5) and define

gA n (t) 4g n (t)2km n 2m QW n (g n (t) )
I 8m (g n (t) )

VI 8m (g n (t) )V
.
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Note that (6) holds true for any u4g n (tn ) with Im n
(u) Fcm n

22(m n 2m), and
hence (7) is valid for such u, if nFn0 . Moreover, (6) also implies NIm (u)2cm NE

2d and thus VI 8m (u)VF2d.
By (7) and Lemma 3.4 ii), for such u and sufficiently large nFn0 we also

obtain

aI 8m n
(u), I 8m (u)b 4VI 8m (u)V

2 2 aI 8m (u)2I 8m n
(u), I 8m (u)b F

F
1

2
VI 8m (u)V

2 2
1

2
VI 8m (u)2I 8m n

(u)V

2 F
1

2
VI 8m (u)V

2 2CNm2m n N2 F
1

4
VI 8m (u)V

2 Fd 2 .

Thus, by Lemma 3.4 i), for such u, letting uA 4gA n (tn ),

Im n
(uA) GIm n

(u)2
1

4
km n 2m QW n (u)VI 8m (u)V1

1

2
Nm n 2mNW 2

n (u) G

GIm n
(u)2

d

4
km n 2m QW n (u) GIm n

(u)

for nFn0 , and we can estimate

cm n
G max

0 G tG1
Im n

(gA n (t) )4 max
]t ; Im n

(g n (t) )Fcm n2 (m n2m)(
Im n

(gA n (t) )G

G max
0 G tG1

Im n
(g n (t) )2

d

4
km n 2mG max

0 G tG1
Im (g n (t) )2

d

4
km n 2mG

Gcm1 (m n 2m)2
d

4
km n 2mGcm n

1a(m n 2m)2
d

4
km n 2mEcm n

for nFn0 , giving the desired contradiction. r

PROOF OF LEMMA 3.3 (completed). – Let (un ) be a sequence as determined in
Lemma 3.6. We may assume that un � u weakly in E as nKQ, and e un Ke u in
L 2. Thus,

o(1) 4 aI 8m (un ), un 2ub 4Vun 2uV

2 2o(1) ,

where o(1) K0 as eK0. The claim follows. r

By Lemma 3.3 problem (3)l admits a non-trivial solution for almost every
l�]8p , 4p 2 [. We now show that this is in fact true for all l in this range.

4. – Compactness.

Theorem 2.1 will be a consequence of Lemma 3.3 and the following compact-
ness result.
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LEMMA 4.1. – Let l n Kl and let un �E be a solution for (3)l n
. If lc8pm ,

m�N, then un admits a subsequence which converges smoothly to a solution
of (3)l .

PROOF. – Our proof relies on a result of Brezis-Merle [1] and its completion
given by Li-Shafrir [8]. r

THEOREM 4.2 (Brezis-Merle). – Let D be a bounded domain in R2 and ]wn ( be
a sequence satisfying:

2Dwn 4Vn (x) e wn on D

with 0 GVn (x) Gb1 on D. Also suppose that s
D

e wn Gb2 . Then ]wn ( admits a sub-

sequence ]wnk
( satisfying one of the following:

i) ]wnk
( is uniformly locally bounded in D;

ii) for any compact set K%D, there holds

sup
K

wnk
K2Q as kK1Q ;

iii) there exists S4 ]a1 , R , ap ( %D (blow up set) and a sequence ]x i
nk

( %D
such that, as kKQ , x i

nk
Kai , wnk

(x i
nk

) KQ , i41, R , p.
Moreover, for any compact set K%D0S we have, sup

K
wnk

K2Q as kKQ.
(Li-Shafrir): In addition, if Vn KV in C 0 (V), then

Vnk
e wnk K !

i41

p

8pmi d x4ai

in the sense of measures, with mi �N and d x4ai
the Dirac distribution support-

ed in ]ai (, i41, R , p.

Theorem 4.2 implies Lemma 4.1, as follows.

PROOF OF LEMMA 4.1. – After translation we may assume that

un (0) 4 sup
V

un .

Let

wn (x) 4un (x)2 lnus
V

e un dxv2
l n

4
NxN2 ,

satisfying

2Dwn 42 Dun 1l n 4l n
e un

s
V

e un dx
4l n e (l n O4)NxN2

e wn
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with

s
V

e wn dxG1 .

Thus, the hypotheses of Theorem 4.2 are satisfied for wn with Vn 4l n e (l n O4)NxN2
G

l n e l n , b2 41.
By Theorem 4.2, passing to a sub-sequence if necessary, (wn ) satisfies (i), (ii)

or (iii). Suppose alternative (iii) of Theorem 4.2 holds. Since Vn Kle (lO4)NxN2
, this

implies

l n 4s
V

Vn e wn K l �8pN as nKQ .

But l n Kl�]8p , 4p 2 [, showing that (iii) cannot occur.
Consequently, there exists C such that

CF sup
B1/2 (0)

wn F sup
B1/2 (0)

un 2 lngs
V

e un dxh2
l n

8
,

and we conclude that

un (0)2 lngs
V

e un dxh4 sup
V

un 2 lngs
V

e un dxhGC .

Hence Dun �L Q (V) with

sup
V

NDun NGl n sup
V
u e un

s
V

e un dx
11vGl n (e C 11) .

Consequently, there exists a constant C2 such that

Vun VC 1, a (V
–

) GC2 for all n�N

and any fixed a�]0 , 1[. Therefore, (un ) admits a subsequence which converges in
C 1 (V)—hence smoothly—to a solution of (3)l . r

PROOF OF THEOREM 2.1. – Fix l�]8p , 4p 2 [. By Lemmas 3.3 and 4.1 there
exists a sequence (l n ) of numbers l n Gl and corresponding solutions un of
(3)l n

, u of (3)l such that Il n
(un ) 4cl n

, l n Kl, and un Ku smoothly as nKQ.
Since clGcl n

for all n, we conclude that

Il (u) 4 lim
nKQ

Il n
(un ) FclD0 ,

showing that uc0. r
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5. – Nonexistence for small lD0.

Although we cannot say at this stage whether the «branch» of non-trivial sol-
utions to (3)l constructed in Theorem 2.1 extends to lG8p, we can exclude the
existence of non-trivial solutions to (3)l for small lD0.

LEMMA 5.1. – There exists a constant C such that for any solution u to (3)l

with 0 GlE4p there holds

sup
V

NuN1VuV

2 GCul1u l

4p2l
v2v .

PROOF. – Let G be the Green’s function to 2D on V, satisfying s
V

G(x , y) dy40
for all x. We have

G(x , y) 4
1

2p
ln

1

Nx2yN
1g(x , y) ,

where g, the regular part of G, is smooth on V3V.
Then for any y�V we find

(8) u(y) 42s
V

DuG(x , y) dx4l
s

V
e u G(x , y) dx

s
V

e u dx
G

G
l

2p

s
V

ln (1ONx2yN) e u dx

s
V

e u dx
1lVgVL Q .

Using the inequality

abGe a 1b( ln b21) for bD0, a�R ,

which follows from the equation

sup
a

]ab2e a ( 4b( ln b21) ,

and letting a4a lnu 1

Nx2yN
v4 lnu 1

Nx2yNa
v, b4

e u

a
for 1 GaE2, the first

term may be estimated

(9)
s

V
ln (1ONx2yN) e u dx

s
V

e u dx
G

s
V

(1ONx2yNa ) dx

s
V

e u dx
1

s
V

e u u dx

a s
V

e u dx
1CG

G
C

22a
1

s
V

e u u dx

as
V

e u dx
,
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for any 1 GaE2, where we also used that s
V

e u dxF1. Now observe that

VuV

2 4l
s

V
e u u dx

s
V

e u dx
.

Together with the above estimate this implies that

VuV

2 Gl sup
V

uG
Cl 2

22a
1

l 2

2p

s
V

e u u dx

as
V

e u dx
4

Cl 2

22a
1

l

2pa
VuV

2 .

Thus for lE4p we obtain the estimate

VuV

2 G inf
1 GaE2

Cl 2

(22a)(2pa2l)
GCu l

4p2l
v2

with a uniform constant C.
From (8) and (9) with a41 we then also derive that

sup
V

NuNGCl1
1

2p
VuV

2 GCl1Cu l

4p2l
v2

,

as claimed. r

THEOREM 5.10. – There exists LD0 such that for 0 GlEL any solution
u�E of (3)l vanishes identically.

PROOF. – By Lemma 5.1 for any solution u of (3)l for 0 GlGLE4p we can
bound

sup
V

NuNGCl

with a constant C4C(L). Thus, we also have

Ne u 21NGe Cl u .

Since s
V

u dx40, s
V

e u dxF1, it follows that

VuV

2 4l
s

V
e u u dx

s
V

e u dx
4l

s
V

(e u 21) u dx

s
V

e u dx
Gle Cls

V

u 2 dxG
le Cl

4p 2
VuV

2 ,

and the claim follows. r
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