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On Multivortex Solutions in Chern-Simons Gauge Theory.

MICHAEL STRUWE - GABRIELLA TARANTELLO

Sunto. — Motivati dall’analisi asintotica dei vortici nella teoria di Chern-Simons-Higgs,
st studia Uequazione

DY AL IS T
Jetde |2|
Q

dove Q2 =R? /7 ¢ il toro piatto bidimensionale. In contrasto con Uanalogo problema
di Dirichlet, si dimostra che per . €18, 47?[ Uequazione ammette una soluzione non
banale. Tale soluzione cattura il carattere bidimensionale dell’equazione, nel senso
che, per tali valori di A, Uequazione non puo anvmettere soluzioni (periodiche) non ba-
nali dipendenti da una sola variabile (ved:i [10]).

1. — Introduction.

In (2 + 1)-dimensional Chern-Simons gauge theory, a particular role is
played by the corresponding condensate (or multivortex) solutions which are be-
lieved relevant in several aspects of theoretical physies.

Although the presence of multivortices has been predicted experimentally,
still in the general framework of Chern-Simons theory, it is very difficult to ob-
tain them analytically. Thus, a special effort has been devoted to derive specific
models for which more convenient selfdual equations would hold for the corre-
sponding energy-minimizing multivortices. See the recent monograph [4].

Through an approach of Taubes [15], the process of solving these selfdual equa-
tions is reduced to solving suitable elliptic equations for the logarithmic values of
the particle density. The elliptic equations so derived are of Liouville-type. It is
necessary to solve them on the 2-dimensional torus in order to obtain the desired
condensate solution subject to ’t Hooft periodic boundary conditions.

Here we consider a particular class of these equations which were derived in
[14]. More precisely, [14] is concerned with a selfdual model introduced in [5] and
[6]; it establishes the existence of a new class of condensate solutions which are
absent in the classical vortex theory.

When the vortex number N =1 and the Chern-Simons coupling constant
tends to zero, in [14] it is shown that the asymptotic behavior of the new type of
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condensates can be described in terms of solutions of the limiting equation

ewu+u 1

1) —Au=21 - — on 2
fewoJru |Q|
0

with 1 =4z, Q the 2-dimensional torus, and w, an assigned function.

Notice that for 1e]0, 8 existence for (1) is an easy consequence of the
Moser-Trudinger inequality [9]. To extend this argument to condensate solutions
with vortex number N = 2, it is necessary to insure the existence of solutions for
(1) when A = 8. This is exactly the task we have taken up here. We treat the case
wy =0 and show that (1) admits a nonconstant solution for every A in the range
8w <i<d4m®

By a result of Ricciardi-Tarantello [10], we can also guarantee that these sol-
utions are «truly» two-dimensional in the sense that they cannot reduce to a
(periodic) function of one variable. Incidentally, let us also point out that the anal-
ogous problem (with w, = 0) subject to Dirichlet boundary conditions

—Au=21
©) Je"

U =0 on 09,

where 2 cR? is a bounded domain, plays an important role in the context of sta-
tistical mechanics of point vortices in the mean field limit where (2) is referred to
as the mean field equation; see [2], [3], [7].

Since for 0 <1 < 8x and 2 simply connected (2) is known to admit a unique
solution (see [13]), by analogy one would be tempted to conjecture that problem
(1) with wy =0 and 0 < A < 8 also admits only the trivial solution » = 0. We can
establish this result only for A small (see section 5) but we are not certain about
its validity in the whole range ]0, 8x. In fact, our result shows that there is an
important difference between problems (1) (with w, = 0) and (2), as problem (2)
admits no solutions for 4 = 8, if Q is a ball.

Acknowledgements. The authors wish to thank Y. Y. Li and S. Miiller for use-
ful discussions.

2. — Main result.

Let £ be the 2-dimensional torus, with fundamental cell domain: [—1 /2, 1 /2] X
[-1/2,1/2]. Consider the problem

u

3) —Au =2

-1 on Q,
e"dx
!
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or, equivalently, solutions of (3) on R? of period 1 in each variable. For fixed A, we
refer to equation (3) as (3),. Shifting a solution » of (3);, by a constant, we again
obtain a solution. We normalize solutions by requiring [« da = 0.

Q
Notice that « =0 is always a solution of (3);; here we seek nontrivial solutions.
Let E = {ue H'(Q); [udx =0} with norm |ju|| = [ | Vu|*dx. Then (weak) sol-
Q Q

utions of (3); correspond to critical points of the analytic functional

1
L(u) = E||u||2—l ln(fe“dx) on E .

Q

REMARK 2.1. — By Jensen’s inequality we have [e"di = /"% =1 for all u e E;

Q
in particular, the map A—1I,(u) is monotone decreasing for any ueFE.

REMARK 2.2. — By Trudinger-Moser’s inequality [9], it is easy to check that, I,
is bounded from below, coercive, and weakly lower semicontinuous if 1 < 8. So I,
achieves its infimum, which, however, could correspond to the trivial solution % = 0.

On the other hand, we shall see that for 1 > 8 the functional 7, is unbounded
from below, while the trivial solution # =0 remains a strict local minimum for
A < 4> Thus, for 87 < 1 <4ma? the functional I, exhibits a mountain-pass strue-
ture and we expect the existence of non-trivial critical points of I, for A in this
range. This, in fact, is our main result.

THEOREM 2.1. — For every A €18, 47°[ there exists a non-trivial solution u,
of (3); satisfying I,(u;) = (1 —A/47*?) ¢y for some constant ¢, >0 independant
of A.

The solutions u, will be obtained by a variational method using, in particular,
the strategy of obtaining a priori bounds on Palais-Smale sequences by par-
ameter variation, as introduced in [11], [12]. We expect these solutions to form a
continuous «branch», bifurcating from the trivial branch 4 =0 at 1 =4x% and
asymptotic to the line 1 = 8 7. However, at this stage we cannot rigorously prove
that this is the case. Moreover, we do not know if non-trivial solutions also exist
for A < 8, in particular, for A = 87, but some analytical evidence seems to sug-
gest that they do.

We also point out that the solution %; cannot reduce to a (periodic) function
of one variable. In fact, for the corresponding one-dimensional problem:

. e"
(4) M‘Fl 1/2——1 =0

[ e"dx

~12
a recent result of Ricciardi-Tarantello [10] asserts that (4) admits a nonconstant
solution of period 7 = 1 if and only if A > 472 Thus, Theorem 2.1 captures, in an
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essential way, the two-dimensional nature of problem (3); and this justifies the
special role played by the value A =4x2

3. — Existence of solutions for almost every A.

In a first step we show that nontrivial solutions to (3), exist for almost every
Lel8xm, 477

LEMMA 3.1. — If A <4x? then u=0 is a strict local minimum for I,.

PrOOF. - I, is smooth. Thus it suffices to observe that the second variation of
I, at uw =0 in direction ve £ can be estimated

A
L@, v = ol 2 [v?de= [1- 2 ).
Q 47‘[2

For e>0 and xe 2 let

82
o) n((s2+n|x|2)2)’

extended periodically, and let u, =v, — [v,dcxeE.
Q
LEMMA 3.2. - I;(u,) =2(87 — 1) In(1/e) + O(1), where |O(1)| <C as e —0.

Proor. — We estimate

1672 |x|?
Va, [2= 4 [Vin(e? + |a|?) |2 = —07 121
(€% + m|w|?)?
Substituting y = x/e, we obtain

=162 — gy,
Q, (1+”|?/| )

where Q.= {y; eye 2}. Introducing polar coordinates around 0, the latter
equals

el

3

1
Hué,||2=327t3f _TA L 0(1) =322t +0(1),
J(1 4 ar?)? €

where |O(1)| <C for e—0.
On the other hand, we have

ln(fe“fdac) =ln(fe”fdac) —fvgdac,
Q

Q Q
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and

2d d
fe”*dac=f 2 i :f Y 2y2 =0(1),

P g (+a|x|?? o (1+x|y|

while

Q

fv dx—fl d.oc=21ne—2fln(82+n|ac|2)dac=21ns+0(1).
(&2 +n|x| )2 P

Thus, we obtain, with |O(1)| < C as ¢—0, the estimate

1 1
L(u,) = EHqu—lln(fe“fdx) = (167 —21) In= + 0O(1),
&

Q

as desired. =
REMARK 3.1. — Note, in particular, that |ju,||— « as e —0.
Fix 1 €]8x, 47%[. By Lemma 3.2 there exists ¢, = £,(1) > 0 sufficiently small
such that for uy=u,, we have
Li(ug) <0 and  jue|=1.

Hence also for any u =4 we have I,(ug) < I;(u,) <O0.
Define

P={y:[0,1]—FE; y is continuous y(0) =0, y(1) =u,}
and for u =1 let
= inf max I, L(y@®) .

,u veP te

In view of Remark 2.1, the map u—c,, 4 = 4 is monotone decreasing, hence dif-
ferentiable at almost all values u€]i, 47°[.
In addition, by Lemma 3.1, there exists a constant ¢, > 0 (independent of 1)

such that
u
c,=z|1—— Jco.

LEMMA 3.3. — Suppose the map: u—c, is differentiable at uw> A. Then c, de-
fines a critical value for 1,. In particular, problem (3), admits a nontrivial sol-
ution for almost every uell, 4m°[.

PRrOOF. — Let u be a point of differentiability of c¢,. Consider a monotone de-
creasing sequence (u,,) such that u,— u(n— ). For n e N and any path v, e P
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such that
®) tg[lgug]l,, (@) <c,+ (u, —u
consider any point u =y, (t,) such that 1, (u) =c, —2(u, —u).
Then, letting a = — ¢, +3 and choosing n, e I\ sufficiently large, for n =n,
we have

®6) co—alu,—p)sc,, —2(u,—p) <1, (u) <I,(u) <

I\

()Illtai(ll’u (Vn(t)) g C# + (/u% _lLt)'

Note that n, is independant of the choice of y,. In particular, (6) implies

that
I,(w)—1, ()
0s L~ % " —n fe“dx <a+1
Uy —H Q

and hence that

0 |ulP=2I,(u) +2,u1n(fe“dac) <2¢,+2(u, —p) +2u(a+1)<C
I

for any such point w =1y,(t,), any n=mn,. To proceed, we need the following
estimates.

LEmMMA 34. — i) For any u,veE, any u =0 there holds
1
L(w+v) <L, (w)+ (1, (w), v)+ EHUHZ .

ii) For any C; = 0 there exists a constant C such that for any u, ve R there
holds

11, () = I;(w)|| < Clu—v|

uniformly in weE with |julf < C..

Proor. - i) Expanding to second order, we have

1
Ilu(u + /U) - I‘u(u) - <Iu’ (u)) ,U> - EHUHZ =

Je  vdx Je"vdx
Q

1 Q

1 s’
[[4
= — - _ —(S”)ds”ds’,
u /40 : ds2

Je dx Je dx
Q Q

where f(s) = ln(fe““’”dac/fe“dx).
o Q
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Since by Schwarz’ inequality
1 2
f”(s):—z feu+sv,u2dx_feu+svdx_(fequsvvdx) ?0,
(feu+svdx) Q Q
Q

the desired estimate follows.

ii) For any ve E with || <1, since [e"dx =1, |v],2< (1/27) |0 <1, we
have @

Je dx Q Q

Q

12 1/2
o 2 2
< |/,¢—V|(f@2“dac) <eO AT |u—v| (fe“’““ M )dac) ,
Q Q

e vdax 1/2
(L (w), vy = (I (), v) = (v =) T < u— v (fez'“dac-fUde) <

where we used that

2 2 2
wt B, ot G

2|lul <4x —.
ST e SR

The claim now follows from the Trudinger-Moser inequality

2 2
sup fe““*‘“ M) e < o0
uwek g

see [9]. =

Proceeding with the proof of Lemma 3.3, we can now construct a special
(bounded) Palais-Smale sequence (u,) for I, at the energy level c,.

LEMMA 3.5. — There exists a sequence (u,) in E such that |ju,|?<C,
I,(u,) —c, and I, (u,) =0 as n—> .

PrOOF. — Otherwise, there exists 6 >0 such that |1, (w)|| =26 for all ueE
with [u|f<C, and |I,(u)—¢,| <20. We may assume that a(u, —u) <9 for
n=nyg.

Choose a function ¢ eC*(R) such that 0 <@ <1, ¢(s)=1 for s= -1,
@(s) =0 for s < — 2, and for ne N, ue E let ¢, (u) = o({U,, (w) —¢,,)/(, — ).
Choose y, € P satisfying (5) and define

L (y,,(@®)

~n(t): n(t)_ n 4 n( n(t))—
PO =N b O
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Note that (6) holds true for any u=1y,(t,) with I, (u)=c,, —2(u, —u), and
hence (7) is valid for such u, if n = n,. Moreover, (6) also 1mp11es |1, (u) —c,| <
26 and thus |1, (w)|| = 2.

By (7) and Lemma 3.4 ii), for such % and sufficiently large n = n, we also
obtain

(L (), I (w)y = L, w)|F = (L (w) = 1 (w), I (w)) =

1 1 1
> Il = I G0 - 1,60 = Il = Clu -, 122 ol = 0,
Thus, by Lemma 3.4 i), for such u, letting % =y ,(t,),

~ 1 — 1
Iﬂ,,(u) sl,u,l(u) - Z\/Iun _ﬂ¢7z(u)||l/4,(u)” + E |1un _ﬂlq)i(u) =

p)
<1, (u) - 7 Vi —wg,(uw) <I, (u)

for n =n,, and we can estimate

Cu, S Jmax IM ¥,t) = max I, 7,®) <

{t; 1, . (ra@®) = Cup— Wn —w}

) 0
< Orgtagl I,u,,,(yn(t)) - Z Vid, — 1< 012%11*‘ (Vn(t)) - Z Vidy, — 1 S
0 0
gC#‘F (ﬂn_lu)_ Z llln—lLtgcﬂn—}_a(lLt’n_lLl)_ Z V;un_:u<cun

for n = n,, giving the desired contradiction. =

Proor or LEMMA 3.3 (completed). — Let (u,) be a sequence as determined in
Lemma 3.6. We may assume that «,—u weakly in £ as n— o, and e¢*»—e" in
L2. Thus,

0(1) = <I/A’ (un)7 Uy — ZL> = ||u’ﬂ - u”z - 0(1)5
where 0(1) —0 as ¢ —0. The claim follows. =
By Lemma 3.3 problem (3); admits a non-trivial solution for almost every
A €l8m, 47*[. We now show that this is in fact true for all A in this range.

4. — Compactness.

Theorem 2.1 will be a consequence of Lemma 3.3 and the following compact-
ness result.
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LEMMA 4.1. — Let A,—A and let u, € K be a solution for (3), . If A = 8am,
melN, then u, admits a subsequence which converges smoothly to a solution

of 3);.

PrOOF. — Our proof relies on a result of Brezis-Merle [1] and its completion
given by Li-Shafrir [8]. =

THEOREM 4.2 (Brezis-Merle). — Let D be a bounded domain in R* and {w,} be
a sequence satisfying:
—Aw, =V, (x)e™ on D
with 0 <V, (x) < by on D. Also suppose that [e" < b,. Then {w,} admits a sub-
D

sequence {w,, } satisfying one of the following:

i) {w,,} is uniformly locally bounded in D;

ii) for any compact set Kc D, there holds

sup w,,—> —® as k— + «;
K

iii) there exists S = {ai, ..., a,} c D (blow up set) and a sequence {x,, } cD

such that, as k— o, 1} —a;, w, (@)= o, i=1,..,p

Moveover, for any compact set KcD\S we have, supw, — —® as k—> .
(Li-Shafrir): In addition, if V,—V in C°(Q), then™

P
ankewnkﬁ E Sﬂmi(S'x:ai

i=1

in the sense of measures, with m;e N and 0, _,, the Dirac distribution support-
ed in {a;},1=1, ..., p.

Theorem 4.2 implies Lemma 4.1, as follows.
ProOF OF LEMMA 4.1. — After translation we may assume that

u,(0) = sup u,.
Q

Let

w, (x) =un(ac)—ln<f “”dac) — |x|?,
Q

satisfying

¢ n

:l 6(171/4)‘x|26wn
ferde "
Q

—Aw, = — Au, +1, =1,
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with

f emdr<1.

Q

Thus, the hypotheses of Theorem 4.2 are satisfied for w, with V, = 1,,e*/V1=* <
At by=1.

By Theorem 4.2, passing to a sub-sequence if necessary, (w,) satisfies (i), (ii)
or (iii). Suppose alternative (iii) of Theorem 4.2 holds. Since V, — e #®12I° this
implies

lnszne“’”%IESnN as n—> .
Q

But 1,—Ae]8x, 472, showing that (iii) cannot occur.
Consequently, there exists C such that

A
C= sup w,= sup u, —In fe“ﬂdac - =,
By2(0) By2(0) Q 8

and we conclude that
u,(0) —In ( fe””dac) = supu, —In ( fe“”dx) <C.
Q Q Q

Hence Au, e L *(£2) with

Uy,

+1]|<i,(e’+1).

sup |du,, | <A,sup
e e | [femda
Q

Consequently, there exists a constant C, such that

||un ||C1'“(§) < Cz for all nelN

and any fixed o €]0, 1[. Therefore, (u,) admits a subsequence which converges in
C'(Q)—hence smoothly—to a solution of (3);. m

PROOF OF THEOREM 2.1. — Fix A€]8x, 47%[. By Lemmas 3.3 and 4.1 there
exists a sequence (4,) of numbers 1, <A1 and corresponding solutions u, of
3),, w of (3); such that I; (u,)=c;, , 4,—4, and u,—u smoothly as n— o.
Since ¢; < ¢, for all n, we conclude that

I,l(u) = nli_r)r}DIM(un) = c, > 0 ,

showing that u=0. =
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5. — Nonexistence for small A > 0.

Although we cannot say at this stage whether the «branch» of non-trivial sol-
utions to (3); constructed in Theorem 2.1 extends to 4 < 8, we can exclude the
existence of non-trivial solutions to (3), for small 4 > 0.

LEMMA 5.1. — There exists a constant C such that for any solution u to (3);
with 0 <A <4x there holds

/1 2
sup |u| + ulf<C |1+ .
Q 47— 2

PRrOOF. — Let G be the Green’s function to —A on £, satisfying [G(x, y) dy=0
for all x. We have @

1
G(x,y)=—1In
P eyl

where y, the regular part of G, is smooth on Q x Q.
Then for any y e 2 we find

+ y(x, ¥),

fe"G(x, y) dx

Q
S

®  wy)=- fAuG(x, y) de = A
Q [e"dx
Q

SIn(1/jx—y|) e"du
g
< = + Ayl -
2n Je"dax
Q

Using the inequality
ab<e®+b(nb—-1) for b>0, aeR,
which follows from the equation
s%p{ab —e’}=b(nb-1),

1 u
and letting a = aln( ) =ln(—), b= ‘e for 1 < a <2, the first

|~y e —y|* a

term may be estimated
SIn(1/je—ype"de [(1/|x—y|de [e'udw
Q <.Q Q

< + 10<
Jerdx Je dx a [e"dx
Q Q Q

9

c Qfe udx

< + ,
2—a  afe’dx
e
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for any 1 < a <2, where we also used that f e"dx = 1. Now observe that
Q

Je udax
lulf? = 42— .
[e"dx
Q

Together with the above estimate this implies that

) 9 12 Qfe wdx WE 1 ;
> < 4 sup u < + — = + el
Q 2—a 27 gqfetde 2—a 2ma
Q

Thus for A <4m we obtain the estimate

2 2
W< inf C4 <o 2
1sa<2 (2 —a)2ma — 1) 47— 1

with a uniform constant C.
From (8) and (9) with a =1 we then also derive that

2
1 A

sup |[u| SCL+ —|u|f<Ci+C ,

Q 27 47— A

as claimed. =

THEOREM 5.10. — There exists A >0 such that for 0 <A <A any solution
uel of (3), vanishes identically.

ProoF. — By Lemma 5.1 for any solution % of (3), for 0 <1< /A <4x we can
bound

sup |u| < CA
Q
with a constant C = C(A). Thus, we also have
le"—1| <eu.

Since [udxr =0, [e"dr =1, it follows that
Q Q

e udx fe*—1) udx 16Ot

el = 22 / =12 / siec’lfuz dae < — |ulf*,
Je"dx Je"dx Q 4
Q Q

and the claim follows. =
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