BOLLETTINO UNIONE MATEMATICA ITALIANA

Sezione A – La Matematica nella Società e nella Cultura

CORRADO MARASTONI

Teoria dei fasci e trasformazioni integrali per D-moduli tra varietà di Grassmann

Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. **1-A**—La Matematica nella Società e nella Cultura (1998), n.1S (Supplemento Tesi di Dottorato), p. 129–132.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_1998_8_1A_1S_129_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

La matematica nella Società e nella Cultura Bollettino U. M. I. (8) 1-A Suppl. (1998), pag. 129-132

Teoria dei fasci e trasformazioni integrali per O-moduli tra varietà di Grassmann.

CORRADO MARASTONI

1. - Le trasformazioni integrali nel linguaggio di fasci e O-moduli

Date due varietà X e Y, in generale non è dato un morfismo tra esse. Tuttavia, euristicamente parlando, dei dati su X (funzioni, classi di coomologia...) possono essere trasformati in dati su Y tramite una funzione «nucleo» K(x, y) definito in $X \times Y$: dato un elemento di volume dx su X, tale corrispondenza dà

$$f(x) \mapsto (\Phi_K f)(y) = \int_X K(x, y) f(x) dx$$

(si pensi ad esempio alla trasformata di Fourier, ove $X = \mathbb{R}^n$, $Y = (\mathbb{R}^n)^*$ e $K(x, y) = \exp(-ix \cdot y)$). Formalmente, denotate con q_1 e q_2 le proiezioni di $X \times Y$ su X ed Y, si è effettuato un pull-back di f in $X \times Y$ (ovvero $(q_1^{-1}f)(x, y) = f(x)$), quindi una moltiplicazione per il nucleo K(x, y), ed infine un push-forward di K. $(q_1^{-1}f)$ in Y (ovvero un'integrazione lungo la mappa q_2 , di fibra X). Questo procedimento può essere effettuato anche nella categoria dei fasci e (se X e Y sono analitiche complesse) dei @-moduli, ove @ è il fascio di anelli degli operatori differenziali lineari a coefficienti olomorfi: l'idea (vedi [2]) è di separare gli aspetti geometrici della trasformazione (stima di supporto, regolarità dei dati...), tipicamente di fasci, da quelli analitici (sistema di E.D.P. che intervengono nella descrizione degli spazi di dati in X ed in Y), tipicamente di Ω -moduli. In queste categorie, rimandando a [4] per le notazioni, il pull-back diventa il funtore di immagine inversa per fasci q_1^{-1} (oppure per $\mathcal{O}\!\!$ -moduli sinistri q_1^{-1}), la moltiplicazione il prodotto tensoriale $\otimes = \otimes_{C_{X\times Y}}$ (oppure $\otimes_{\mathcal{O}_{X\times Y}}^L$) ed il push-forward il funtore di immagine diretta propria per fasci $Rq_{2!}$ (oppure per \mathcal{O} -moduli $q_{2!}$). In altre parole, sia $\mathbf{D}^b(\mathbf{C}_X)$ (risp. $\mathbf{D}^b(\mathcal{O}_X)$) la categoria derivata dei complessi di fasci di C-spazi vettoriali (risp. \mathcal{O} -moduli) a coomologia limitata: dati $K \in \mathrm{Ob}\left(\mathbf{D}^b(\mathbf{C}_{X \times Y})\right)$ e $\mathfrak{K} \in \mathrm{Ob}(\mathbf{D}^b(\mathcal{O}_{X \times Y}))$, sono definiti dei funtori

$$\begin{split} & \boldsymbol{\Phi}_{K} \colon \mathbf{D}^{b}(\mathbf{C}_{X}) \to \mathbf{D}^{b}(\mathbf{C}_{Y}) \,, \qquad \boldsymbol{\Phi}_{K}(F) = Rq_{2!}(K \otimes q_{1}^{-1}F) \,, \\ & \underline{\boldsymbol{\Phi}}_{\mathfrak{K}} \colon \mathbf{D}^{b}(\mathcal{O}_{X}) \to \mathbf{D}^{b}(\mathcal{O}_{Y}) \,, \qquad \underline{\boldsymbol{\Phi}}_{\mathfrak{K}}(\mathfrak{M}) = \underline{q_{2!}}(\mathfrak{K} \otimes_{\mathcal{O}_{X \times Y}}^{L} \underline{q_{1}}^{-1}\mathfrak{M}) \,, \end{split}$$

e dei funtori simili (che denoteremo con gli stessi simboli) nelle direzioni opposte. Se \mathcal{K} è un $\mathcal{O}_{X \times Y}$ -modulo «olonomo regolare» (nozione che generalizza quella, in una variabile complessa, di \mathcal{O} -modulo associato ad equazioni differenziali ordina-

rie a singolarità regolari), e

$$K = R \mathcal{H}om_{\mathcal{O}_{X \times Y}}(\mathcal{K}, \mathcal{O}_{X \times Y})$$

è il complesso («perverso» alla Deligne) delle sue soluzioni olomorfe, nel caso che X e Y siano varietà analitiche complesse compatte di dimensione d_X e d_Y , si dimostrano le seguenti formule d'aggiunzione (vedi [2]), che legano le soluzioni globali di un \mathcal{O}_X -modulo a quelle del suo trasformato: per ogni « \mathcal{O}_X -modulo» $\mathcal{M} \in \mathrm{Ob}(\mathbf{D}^b(\mathcal{O}_X))$ e ogni «fascio su Y» $G \in \mathrm{Ob}(\mathbf{D}^b(\mathbf{C}_Y))$ vale

$$\operatorname{RHom}_{\mathcal{O}_X}(\mathcal{M},\ \varPhi_K(G)\otimes\mathcal{O}_X)\simeq\operatorname{RHom}_{\mathcal{O}_Y}(\underline{\varPhi}_{\mathcal{K}}(\mathcal{M}),\ G\ \mathcal{O}_Y)[-d_X]$$

$$\operatorname{RHom}_{\mathcal{O}_X}(\mathfrak{M},R\mathcal{H}om(\Phi_K(G),\mathcal{O}_X)) \simeq \operatorname{RHom}_{\mathcal{O}_Y}(\underline{\Phi}_{\mathfrak{N}}(\mathfrak{M}),\,R\mathcal{H}om(G,\,\mathcal{O}_Y))[-d_X+2d_Y].$$

Queste formule racchiudono in sè un approccio alle trasformazioni integrali in cui il problema analitico (calcolo di $\underline{\Phi}_{\mathcal{K}}(\mathcal{M})$) ed il problema geometrico (calcolo di $\underline{\Phi}_{K}(G)$) sono separati. Differenti scelte del \mathcal{Q} -modulo \mathcal{M} e del fascio G conducono a differenti problemi di trasformazioni integrali tra X e Y.

In questa tesi ci occupiamo del calcolo della trasformata di una classe particolarmente semplice di ϖ -moduli, nel quadro delle varietà di Grassmann.

2. - La trasformata di Radon-Penrose generalizzata.

Dati due interi $n \ge 3$ e $1 \le p \le n-2$, siano $V = \mathbb{C}^{n+1}$ uno spazio vettoriale complesso di dimensione n+1, \mathbf{P} lo spazio proiettivo di V, \mathbf{G} la varietà di Grassmann dei (p+1)-sottospazi lineari di V, e $\mathbf{F} = \{(x,y) \in \mathbf{P} \times \mathbf{G} \colon x \in y\}$ la flag manifold di tipo (1,p+1). Le varietà \mathbf{P} e \mathbf{G} sono analitiche complesse e compatte, di dimensione n e (p+1)(n-p). La sottovarietà complessa chiusa (n-p)-codimensionale \mathbf{F} di $\mathbf{P} \times \mathbf{G}$ induce una trasformazione integrale geometrica tra $X = \mathbf{P}$ e $Y = \mathbf{G}$: i funtori saranno $\Phi_{\mathbf{C}_{\mathbf{F}}[-n+p]}$ e $\underline{\Phi}_{\mathcal{B}_{\mathbf{F}}}$, ove $\mathbf{C}_{\mathbf{F}}$ è il fascio costruttibile su $\mathbf{P} \times \mathbf{G}$ associato a \mathbf{F} e $\mathcal{B}_{\mathbf{F}}$ è il $\mathcal{D}_{\mathbf{P} \times \mathbf{G}}$ -modulo olonomo regolare delle iperfunzioni olomorfe lungo \mathbf{F} (si noti che $R \mathcal{H}om_{\mathcal{D}_{\mathbf{P} \times \mathbf{G}}}(\mathcal{B}_{\mathbf{F}}, \mathcal{O}_{\mathbf{P} \times \mathbf{G}}) \cong \mathbf{C}_{\mathbf{F}}[-n+p]$). Considerata la «corrispondenza»

$$\mathbf{P} \stackrel{f}{\leftarrow} \mathbf{F} \stackrel{g}{\rightarrow} \mathbf{G}$$
,

ove f e g sono le restrizioni ad \mathbf{F} delle proiezioni q_1 e q_2 , vale $\Phi_{\mathbf{C_F}}(\cdot) \simeq \underline{g_!f}^{-1}(\cdot)$ e $\underline{\Phi}_{\mathcal{B}_F}(\cdot) \simeq \underline{g_!f}^{-1}(\cdot)$. Si tratta di un quadro geometrico studiato da molti autori, sia nel caso complesso (Eastwood-Penrose-Wells, D'Agnolo-Schapira...) che reale (Radon, John, Gelfand et al.,...). Dato $\lambda \in \mathbf{Z}$, sia $\mathcal{O}_{\mathbf{P}}(\lambda)$ il fibrato olomorfo in rette su \mathbf{P} ottenuto dalla λ -esima potenza tensoriale del fibrato tautologico (in effetti, tutti i fibrati in rette su \mathbf{P} sono di questo tipo, a meno di isomorfismo), e sia $\mathcal{O}_{\mathbf{P}}(\lambda) = \mathcal{O}_{\mathbf{P}} \otimes_{\mathcal{O}_{\mathbf{P}}} \mathcal{O}_{\mathbf{P}}(\lambda)$ il $\mathcal{O}_{\mathbf{P}}$ -modulo localmente libero di rango 1 associato. Si prova che la corrispondenza induce microlocalmente una trasformazione di contatto «a parametro olomorfo»; usando i risultati di [2, J.F.A.] ed esibendo

sezioni «nondegenerate» che quantizzano tale trasformazione, si prova che:

TEOREMA 1. – Per ogni $\lambda \leq -p-1$ il trasformato $\underline{\Phi}_{\mathcal{B}_{\mathbf{F}}}(\mathcal{O}_{\mathbf{P}}(-\lambda))$ è concentrato in grado zero, ed è il $\mathcal{O}_{\mathbf{G}}$ -modulo associato ad un certo operatore differenziale (detto «ultraiperbolico») $P_{\lambda} \colon \mathcal{H}_{\lambda} \to \widetilde{\mathcal{H}}_{\lambda}$ agente tra le sezioni di certi fibrati vettoriali \mathcal{H}_{λ} e $\widetilde{\mathcal{H}}_{\lambda}$ su \mathbf{G} : ovvero, c'è una sequenza esatta di $\mathcal{O}_{\mathbf{G}}$ -moduli (ove P_{λ}^* è l'operatore trasposto di P_{λ})

$$\mathcal{O}_{G} \otimes_{\mathcal{O}_{G}} \widetilde{\mathcal{H}}_{\lambda}^{*} \stackrel{P_{\lambda}^{*}}{\to} \mathcal{O}_{G} \otimes_{\mathcal{O}_{G}} \mathcal{H}_{\lambda}^{*} \to \underline{\Phi}_{\mathcal{B}_{F}}(\mathcal{O}_{P}(-\lambda)) \to 0.$$

La descrizione dei fibrati \mathcal{H}_{λ} e $\widetilde{\mathcal{H}}_{\lambda}$ e dell'operatore P_{λ} è piuttosto complicata: essi possono essere visti ad esempio anche in [1, cap. 9]. Questo risultato apparirà in [3, cap. 9] in forma generalizzata e con varie applicazioni, ottenute dalle formule d'aggiunzione con diverse scelte di fasci G su G.

3. - La dualità di Grassmann.

Dati due interi $n \ge 2$ e $1 \le p \le n/2$, siano $V \simeq \mathbb{C}^n$ uno spazio vettoriale complesso di dimensione n, G la varietà di Grassmann dei p-sottospazi lineari di V, G^* la varietà di Grassmann duale degli (n-p)-sottospazi lineari di V,

$$\Omega = \{(x, y) \in \mathbf{G} \times \mathbf{G}^* \colon x \cap y = 0\}$$

l'aperto denso delle coppie generiche ed $S = (\mathbf{G} \times \mathbf{G}^*) \setminus \Omega$ l'ipersuperficie complessa singolare, che ha una stratificazione di Whitney fatta dalle sottovarietà localmente chiuse $S_j = \{(x, y) \in \mathbf{G} \times \mathbf{G}^* : \dim(x \cap y) = j\}$ (ove j = 1, ..., p).

Considereremo la trasformazione integrale tra $X=\mathbf{G}$ e $Y=\mathbf{G}^*$ determinata da Ω , ovvero i funtori $\Phi_{\mathbf{C}_{\Omega}}$ e $\underline{\Phi}_{\mathcal{B}_{\Omega}}$, ove \mathbf{C}_{Ω} è il fascio costruttibile su $\mathbf{G}\times\mathbf{G}^*$ associato a Ω e \mathcal{B}_{Ω} è il $\mathcal{O}_{\mathbf{G}\times\mathbf{G}^*}$ -modulo olonomo regolare delle funzioni meromorfe a polo su S (si noti che R $\mathcal{H}om_{\mathcal{O}_{\mathbf{G}\times\mathbf{G}^*}}(\mathcal{B}_{\Omega},\mathcal{O}_{\mathbf{G}\times\mathbf{G}^*}) \simeq \mathbf{C}_{\Omega}$). Usando le proprietà geometriche di Ω (in particolare, si osservi che per ogni $y \in \mathbf{G}^*$, $\mathbf{G}_y = \{x \in \mathbf{G} : x \cap y = 0\}$ è una carta affine di \mathbf{G}), proviamo che:

Teorema 2. – Il funtore

$$\Phi_{C_o}: \mathbf{D}^b(\mathbf{C}_{\mathbf{G}}) \to \mathbf{D}^b(\mathbf{C}_{\mathbf{G}^*}) \quad (risp. \ \underline{\Phi}_{\mathcal{B}_o}: \mathbf{D}^b(\mathcal{O}_{\mathbf{G}}) \to \mathbf{D}^b(\mathcal{O}_{\mathbf{G}^*}))$$

è un'equivalenza di categorie, che induce equivalenze tra le sottocategorie piene degli oggetti a coomologia ${f R}$ - o ${f C}$ -costruttibile (risp. coerente o olonoma regolare).

Anche per le varietà di Grassmann denoteremo con $\mathcal{O}_{\mathbf{G}}(\lambda)$ (con $\lambda \in \mathbf{Z}$) il fibrato olomorfo in rette su \mathbf{G} ottenuto dalla $-\lambda$ esima potenza tensoriale del determinante del fibrato tautologico, e con $\mathcal{O}_{\mathbf{G}}(\lambda) = \mathcal{O}_{\mathbf{G}} \otimes_{\mathcal{O}_{\mathbf{G}}} \mathcal{O}_{\mathbf{G}}(\lambda)$ il $\mathcal{O}_{\mathbf{G}}$ -modulo localmente libero di rango 1 associato. In questo caso, la corrispondenza induce microlocal-

mente una trasformazione di contatto tra due aperti densi di T^*G e T^*G^* ; usando ancora la tecnica delle sezioni «nondegenerate», la teoria delle b-funzioni (Sato, Bernstein, Kashiwara) e l'equivarianza della corrispondenza rispetto all'azione del gruppo SL(V), si prova il seguente risultato, che era stato congetturato, in forma un po' diversa, nella parte finale della tesi e che generalizza [2, Duke]:

Teorema 3. – Si ponga
$$\lambda^* = -n - \lambda$$
. Per ogni $\lambda \ge -n + p$ vale
$$\underline{\Phi}_{\mathcal{B}_{\mathcal{Q}}}(\mathcal{O}_{\mathbf{G}}(-\lambda)) \simeq \mathcal{O}_{\mathbf{G}^*}(-\lambda^*).$$

Applicando allora le formule d'aggiunzione, per ogni $F \in \mathrm{Ob}\left(\mathbf{D}^b(\mathbf{C}_{\mathbf{G}})\right)$ ed ogni $-n+p \leq \lambda \leq -p$ vale

$$\mathrm{R}\varGamma(\mathbf{G}\,;\,F\otimes\mathcal{O}_{\mathbf{G}}(\lambda))\simeq\mathrm{R}\varGamma(\mathbf{G}^*\,;\,\varPhi_{\,\mathbf{C}_o}(F)\otimes\mathcal{O}_{\mathbf{G}^*}(\lambda^*))[p(n-p)]\,,$$

$$\mathrm{R}\Gamma(\mathbf{G};R\mathcal{H}om(F,\mathcal{O}_{\mathbf{G}}(\lambda))) \simeq \mathrm{R}\Gamma(\mathbf{G}^*;R\mathcal{H}om(\Phi_{\mathbf{C}_{\mathcal{Q}}}(F),\mathcal{O}_{\mathbf{G}^*}(\lambda^*)))[-p(n-p)].$$

I risultati di questa sezione, con diverse applicazioni, sono stati annunciati in [5, C.R.A.S.] ed appariranno in [5, Ann. Ecole Norm. Sup.].

* * *

Gran parte di questa ricerca è stata svolta presso l'Université Paris 6 con la supervisione di Pierre Schapira, che desidero ringraziare per l'attenzione ed i numerosi consigli che mi ha riservato. Per gli stessi motivi, sono riconoscente anche ad Andrea D'Agnolo, Masaki Kashiwara e Giuseppe Zampieri.

BIBLIOGRAFIA

- [1] Baston R.J. and Eastwood M.G., The Penrose transform: its interaction with representation theory, Oxford Univ. Press (1989).
- [2] D'AGNOLO A. and SCHAPIRA P., Radon-Penrose transform for @-modules, J. Funct. Anal., 39 (1996) 349-382; Leray's quantization of projective duality, Duke Math. J., 84 (1996), 453-496.
- [3] D'AGNOLO A. and MARASTONI C., The ultrahyperbolic Ω -module. Real forms of the Radon p-plane transform: an approach by sheaves and Ω -modules, Prepubblicazioni.
- [4] Kashiwara M. and Schapira P., Sheaves on manifolds, Springer Grundlehren, 292 (1990).
- [5] Marastoni C., La dualité de Grassmann pour les Φ-modules. Quantification de la dualité de Grassmann, C. R. Acad. Sci., 322/324 (1996/1997); Grassmann duality for Φ-modules. In apparizione su Ann. Sci. Ec. Norm. Sup.l (1998).

Dipartimento di Matematica Pura ed Applicata, Università di Padova e-mail: marasto@math.unipd.it

Dottorato in Matematica (sede mministrativa: Padova) - Ciclo VII Direttore di ricerca: prof. Giuseppe Zampieri (Università di Padova)