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SEZIONE SCIENTIFICA
B R E V I NOTE

A note on a global existence resuit of K. Conti

AARON STRAUSS (*) (U.S.A.)

Suminary. - If V(t, x) —*• o© as | x | —* oo for each fixed t, and if
V(t, x)<0, then ail solutions of x'= f(L x) exist in the future. This
corrects a previous resuit due to R. Conti.

1. - Main results.

Let | ' | dénote auy norm in Euclidean n-space Rn and let R
dénote JR1. Consider the ordinary differential équation

(E) x' = f(t, x) (' = d'dt)

where f:RxRn—>Ril is continuous. Let {E\ have uniqueness,
i.e., for each (£0, xQ) in R X R" there is a unique solution x(t; t0, oco)
of {E), defined in a neighborhood of tQ? such that x{tQ; t0, xG) = x{].

Let I be an interval, possibly unbounded, and let V\IxMn —+ R.
We say that V is locally Ldpschitz if it is continuous on I x Rn

and if for each (t, x) in I X R11 there is a neighborhood Àr of
(t, x) and a constant k ;> 0 such that

\V(s, y)- Vis, 0 ) i ^ * | i / - 0 |

for ail (s, y) and (s, 0) in N {] (IxR"). Let

/ = I — sup I.

Define V: Jx Rn — R by

y(^, x) = lim sup h-l(V{t + h, x + hf(t, x)) — V(t, x)).

(*) Supported by a National Science Foundation postdoctoral fellow-
ship. The author is indebted to Professor ROBERTO CONTI for many helpful
discussions regarding this paper.
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If y its locally LTPSCHITZ on I x Ru, then

V[t, x) = lim sup h~l{V(t + h, x(t + h; t, x)) — V(t, x\)

ou the set J X R'1, MS is proved in [0, p. 3].
COXTI [1] has stated the following resuit.

THEOREM 1. - Let V: R x R 1 — R be locally Lipschits. Let

{1) V(t, x)'— oo as \x\ — o o for each fixed t,

<md

&) W, *)<£*[*, V[t9 x)).

Suppose o : RxR — R is continuons and for every real t0 and
r0 the maximal solution r(t: t0. r0) of the comparison équation

(CE) r' = ©(«, r)

exists in the future (exists for ail t > tQ). Then every solution of
(E) exists in the future.

I n f.he proof, CONTX showed tha t if. in fact, some solution x(-)
of (E\ fails to exist in the future, then

{S) \x(t)\ "~* ° ° a s t — o)—

for some finite w ; hence

(4) V[t, x(t)) - oo

as t — W-. Stuce V(t, x(t\) is a solulion of

it follows that

r(t; t01 V(*o, x(t0))).

Therefore, from (4), r(t; tQ, V[tQ, x(t0))) —» oo as i - > w", a contra-
diction to the existence assumption on (CE).

The îhiw in this argument is that {3) does not immediately
imply (4). This implication is immédiate, howeArer, if (1) is repla-
ce d by

(1*) V(t, x) — oo as \x\ — oo

uniformly in t for t in any compact set.
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Indeed, Theorem 1 was proved uuder this stronger hypothesis,
using the above argument, by LASALLE aud LEFSCHETZ [4, p. 108].
Furthermore, KATO and STRAUSS [3] hare shown that if all solu-
tions of (E) exist in the future, then there exists a locally LIP-
SCHITZ V: R X Rn —- R satisfying (1*) and (2). Thus there would
seem to exist a natural correspondence between existence in the
future on one hand and locally LTPSCHITZ V satisfying (1*) and
(2) on. the other.

The purpose of this note is threefold: first, to prove that
CONTI's resuit (Theorem 1) is true; then, to show by an example
that a partieulnr V satisfying (1) and (2) need not satisfy (1*), so
that KATO and STRAUSS' resuit shows some other V must satisfy
(1*) and (2); and finally, to prove the following theorem, thereby
establishing conditions under which (1) and (1*) are equivalent.

THEOREM 2. - Let V: RxRn — R be locally Lipschitz, let (t>
hold, and let

(5) +(*, v(t, X))<L m *0<<p(*, V(t, x)).

Suppose f and •]> are continuons, all maximal solutions of

r' = *(*, r)

exist in the future, and all maximal solutions of

r' = W, r)

exist in the past. Then all solutions of (E) exist forever [past and
future) and V satisfies (1*).

E.EMARK. - KATO and STRAUSS [3] proved a converse to Theo-
rem 2, namely, if all solutions of (E) exist forever, then there
exists a locally LIPSCHITZ V satisfying (1*) and (5). Thus the na-
tural correspondence mentioned earlier is not quite right. The
natural correspondences seem to be between existence in the fu-
ture on one hand and locally LIPSCHITZ V satisfying (1) and (2)
on the other, and betweeu existence forever ou one hand and
locally LIPSCHITZ V satisfying (1*) and (5) on the other.

2. - Proofs.

PROOF OF THEOREM 1. - Suppose the result does not hold, sa
that some solution x(') of (E) fails to exist in the future. This.
jneans that

\x(t)\ — oo as t -* io-,
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for some o>. Choose tQ <L o> sufficiently close to OJ that some solu-
tion x(-) exists ou [tOi w]. Let L be the line segment

L = t zx = Mt0) + (i - *)x(to) : 0 < x <ç î j ,

and let

X* = inf | X ; x(o> ; t0, Su) is finite for X < a < 1 }

From zx = x(tQ) and continuous dependence, we see that
We claim that x(t; t6, zij does not exist on tQ ̂  t < o). If it

did, then X̂  > 0, and by continuous dependence, #(w; t0) z) would
be finite for ail s in a neighborhood of z\^t contradicting the de-
finition of Xjjj. This establishes the claim.

Thus

(6) \x[t] tot 3)J\ - oo a s i - o>^-

for some t0 < oi^ < w. If the set

B= | % ; t0, zx) : X^<X<:1!

were bounded, we could choose X( — X̂  such that

for some v G JR". By continuous depend ence and (6),

(7)

for some séquence J, — ô —. By local existence at (w^, u), the so-
lution x(t ; o)^, v) exists on tô  — s <Ç i ^ w^ for some s > 0. There-
fore by continuous dependence

x(tt; t0, «^) = «(*,; w * , a;(w*; *0) 2f\.)) — v,

contradictiug (7j. Hence B is unbounded.
Thus we can choose oc,- e 5 such that 15cm-1 —* oo, and

for some X̂  < Xf < 1. From (1)

(8) V(&i#, # ( « * ; <0, 0?rf)) - o o as Î - o o .

Let «!,(*)= V(*. »(<; *0, ^..)) for <0 < i < <,,*.
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Since the line segment L is compact and V is continuous,

r0 = sup î V(t0. 0) : 0 e L) i

is finite. Then the maximal solution r[t: tQ. rn) of {CE) exists in
the future. Now m,(«) is a solution of the diffcrential iiieqiuility

'>'';<©(*, r,

{in the upper right-and derivative sense) and «M^l^r,, for all i
Therefore (see [2, p. 26J or |/>, Theorem 9.5 and Re mark 9.3])

for all tQ^t<<*>% and all t, a contradiction to (8) at t — oi:ï.. This
proAres Theorem 1.

The following result can easily be proved with analogous
arguments. It should be noted that V is siill an upper right-hand
derivative (see [5, Theorem 9.6]i.

. - Let V : B x Bn — R be locally Lipschite and sa-
tisfy (1) and

V[t, x)>W, V(L x)).

Suppose & : RxB -* R is continuons and for ever y real tu and,
r0 the maximal solution p(t; tQ, re) of r' = ty(t, r) exists in the past.
Then every solution of {E) exists in the past.

In the example below we construct a locally LÏPSCHITZ fun-
otion V satisfying (1) and (2), but not (1*).

EXAMPLE. - Consider [E) where f(t} x) — — cc {x, for x renl.
Since f is continuously differentiable, (E) has uuiqueness. Pur-
thermore, all solutions exist in the future (although not in the
past) and all tend to zero as t — oo. In fact

y(y(-t) + l)-> if y>0,
i9) x[s : t, v = <

J i — WÖrt« — *) — l ) - 1 if 2 / < 0 .

We define V on [0, 1] x B bj

x(l ;t,y)- 1)'(1 - t)(y> + 2y*) + *•(!; *, y)

(10) V(t, y) = if 0 < t < 1 and j / > 0,

/2 elsewhere on [0, 1] x B.
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Ueing (9), we have

/ [iyt - 1)«(1 - t)(y* + 2yt).+ tf\ \y{\ - t) + l]-«

(H) V{t, y) = j if 0 < * < 1 and y > 0,

' ?/2 elsewhere ou [0, 1] x R.

Usiiig (11), we see that V(t, y) —» oo as \y\ —- oo for each fixed
£, hence (1) holds. However

V[t, t-*) = 1 for 0 < * < 1.

Thus V(£. ?/) —* oo as |2/| —'00 non-uniformly in t for i e [0, 1],
so that (1*) does not hold.

Clearly dVjdy is continuous ou (0,.l) X R aud F i s continuous on
[0, 1] X R. Furthermore, by a long but straightforward computa-
tion, dVjdy is continuous on [0, 1] X R. Thus V is locally L I F -
SCHITZ there. Therefore we may compute V" on [0, 1] x R by ta-
kiug the (upper right-hand) derivative of V(s, x(s)).

Let 0 < t < 1 aud y e R. If y < 0, then for s > *,

V(«, x|s: ^ ^)) = a;!(s; ^ #)<2/ 3 .
Therefore

If î / > 0 , then using (10) for s > £, we have

V(a, cc(s; *, 2/)) = x5(l; t, x) +

+ (x(l; *, 2/) - 1)*(1 - s)(^(s; U y)

Thus, from (.#),

= - ( « ( 1 ; t, 2/) - 1 W + %3) ~

- (x(l, t, y) - 1)'(1 - Q(4ÎT + 6^) ^ 0,

so that Vit, y)<,0 for ail (̂  y) in [0, 1) X R.
Now we extend Y to R X R bj periodicity, i.e., so that

V(t + 1, y) = V(t, y)

for ail real t and y. Then y and dVjdy are continuous on R X R,
hence V is locally LTPSCHITZ there. Furthermore, (1) holds but
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(1*) f ails for t iu any compact interval of length greater than one.
Since iu this exaraple (E) is autononious, the solutions on [i, i + 1)
are merely translates of those on [0, 1) for every i = 1, 2r ... ,.
Hence

on RxR. Thus (2) holds with s = 0.

REM ARK. - In the above example we defined Y to have period l
for convenience. The same type of construction can be used to
prove that given any oc > 0, there exists a locally LIPSCHITZ Va

satisfying (1) and (2), but not satisfying (1*) on any compact
interval of length greater than a. Thus the following question
arises : is there a locally LIPSCHITZ V satisfying (1) and (2) such
that (1*) fails on every compact interval of positive length? This
question remains open.

PROOF OF THEOREM 2. - Because of Theorem 1 and its corol-
lary, we need only prove that such V satisfy (1*). Suppose there
were a locally LIPSCHITZ V satisfying (1) and (5) but not (1*).
Then there exist Ü f > 0 , t0 real, and séquences \x(\ and |^f such
that | xt | —- oo, tt —>• tQ monotonically, and

V{t.. xx)<M.

We shall assume t, /* tQ and use the second inequality of (5);
if it were the case that tt \ ^ t0 we would use the first.

Since the solution x[t; t{i xt) exists in the future for every %
we see that

x(tQ, tt, Xi) = yt

is finite. The séquence \yt\ is unbounded by the same argument
as that used to prove B is uubounded in the proof of Theorem 1.
Thus we may assume that \y{\ — oo as i — oo. Therefore

(12) V(/o, î / J - o o a s i - oo.

Let ml(t)= V(t, x(t; tti x,)) for tx < t < tQ. Then ml(tt)<M for
every i. Now © is bounded on the square

\(t, r ) : | * - M < l , | r - J f | < l |

and m,(') is a solution (in the upper right-hand derivative sensé) of

r' < <L(t, r) .
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for £ i<#<£ 0 . Thus, by comparison with solutions of r'= v(t, r),
there exists Q>0 such that m\t)<Q for ail * and £, <;*<*„.
This contradicts (12) at t = £0, completing tlie proof.
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