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SEZIONE SCIENTIFICA
BREVI NOTE

A note on a global existence result of R. Conti

A ARON StrRAUSS (%) (U.S.A.)

Summary. - If V(i ®) ~ oo as |x| — co for each fixed ¢, and if
Vi(t, ) <<O0, then all solutions of x' = f(t, x) exist in the future. This
corrects a previous result due to R. Conii.

1. - Main results.

Let || denote auy norm in Buclidean n-space R" and let R
denote R'. Consider the ordinary differential equation

(E) ' =[it, x) (=ddi

where f: R>< R"— R" is continuous. Let (E) have uniqueness,
i.e., for euch (,, x,) in R > R" there is a unique solution «(f; £y, a,)
of (E), defined in a neighborhood of #,, such that xt; {,, 2,) = =, .

Let I be an interval, possibly unbounded, and let V:I><X R" — R.
We say that V is locally Lipschitz if it is continuous on I < R"
and if for each (f, ) in I > R" there is a neighborhood N of
(¢, ) and a constant &> 0 such that

Vis, ) — Vis, 2)i <kl|y—2
for all (s, ¢) and (s, 2) in N [ (I X< R"). Let
J=1I—supl.
Define V:J > R" — R by

Vit, ) = lim sup h=Y(V{t + h, = + hf(t, x) — V{t, x)).
h— o0+

(*) Supported by a National Science Foundation postdoctoral fellow-
ship. The author is indebted to Professor RoBErRTO CONTI for many helpful
discussions regarding this paper.
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If V is locally LupscHITZ on I X R*, then

V(t, x) = lim sap =Y V({t 4+ h, =(t + h; ¢, x)) — V{¢, x)
h—o0+

on the set J > R", as is proved in [6, p. 3]
Coxtr [1] has stated the following result.

TaeoreM 1. - Let V: R> R* — R be locally Lipschitz. Let

1 Vit, ) — oo as |x| — oo for each fixed ft,
and
2 Vi, x) < olt, Vit, =)

Suppose o R X B — R is continuous and for every real I, and
¥, the maximal solution r(i; t,. ry)) of the comparison equation

(CE) = oft, 7)

exists in the future (exists for all t =1t,)). Then every solution of
(E) exists in the future.

In the proof, ConTi showed that if. in fact, some solution x(-)
of (E) fails to exist in the fauture. then

{3) lx(t)| — o0 a8 t — o~
for some finite w; hence

4) Vit, x(t)) — oo

as t — w—, Since V{(¢, x({)) is a solution of

' < oft, ¥),
it follows that
Vit, =) < v(t; ¢, Vik,, (i)

Therefore, from (4), #(¢; t,, Vi$,, «it,))) — oo as ¢ — w—, a contra-
diction to the existence assumption on (CE).

The flaw in this argument is that (3) does not immediately
imply (4). This implication is immediate, however, if (1) is repla-
ced by

(1%) Vi, z) — oo as (x| — o

uniformly in £ for ¢ in any compact set.
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Indeed, Theorem 1 was proved under this stronger hypothesis,
using the above argument, by LASALLE and LEFScHETZ [4, p. 108].
Fuorthermore, KaTo and Strauss [3] have shown that if all solu-
tions of (E) exist in the fufure, then there exists a locally Lip-
scHITZ V: R X R" — R satisfying (1¥) and (2). Thus there would
seem to exist a natural correspondence between existence in the
future on one hand and locally LipscHirz V satisfying (1*) and
(2) on the other.

The purpose of this note is threefold: first, to prove that
Contr’s result (Theorem 1) is true; then, to show by an example
that a particular V satisfying (1) and (2) need not satisfy (1%), so
that Karo and STRaUSS’ result shows some other V must satisfy
(1*) and (2); and finally, to prove the following theorem, thereby
establishing conditions under which (1) and (1% are equivalent.

THEOREM 2. - Let VR X R* — R be locally Lipschilz, let (1)
hold, and let

() Ut, Vi, ) << ViE, @) <ot Vb, @)
Suppose « and b are continuous, all maximal solutions of
' =ult, 7)
exist in the future, and all maximal solutions of
r' =Y, r)

exist in the past. Then all solutions of (E) exist forever (past and
future) and V satisfies (1%).

ReEMARK. - Kato and StrRaUss [3] proved a converse to Theo-
rem 2, namely, if all solutions of (E) exist forever, then there
exists a locally LipscHiTz V satisfying (1*) and (5). Thus the na-
tural correspondence mentioned earlier is not quite right. The
natural correspondences seem to be between existence in the fu-
ture on one hand and locally Lipscritz V satisfying (1) and (2)
on the other, and between existence forever on one hand and
locally LipscHITZ V satisfying (1*) and (5) on the other.

2. - Proofs.

ProoF or THEOREM !. - Suppose the result does not hold, so
that some solution x(-) of (E) fails to exist in the future. This
means that

|x(8)| — oo as t — v,
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for some ». Choose f, < sufficiently close to » that some solu-
tion x(-) exists on [f,, w]. Let L be the line segment

L = fay =alty) + (1 — Na(to) 10 <A< 11,
and let

Me=1inf | 2(w; £,, z,) is finite for A <u<11.

From z, = aT:(t,,) and continuous dependence, we see that 0<<i, <1.
We claim that x(¢; {,, #,) does mot exist on ¢, <<?<<w. If it
did, then A, > 0, and by continuous dependence, z(v; #,, 2) would
be finite for all z in a neighborhood of z),, contradicting the de-
finition of X,. This establishes the claim.
Thus

() |2(t; 5, 22,)] — oo as t — vy~
for some ¢, << oy, <<w. If the set

B = {x(wg; Ly, 22) L A <A <1
were bounded, we could choose A, — ), such that

Xy by, z;_’_) —
for some v € R". By continuous dependence and (6),
(7) [x(t.; By, 22)] — o0
for some sequence #, — w,~. By local existence at (w,, v), the so-
lution «(f; w,, v) exists on w, — ¢ <<{<<w, for some ¢ > 0. There-
fore by continuous dependence
wlbis by, 1) = il vy, 204 b, 2)) —

contradicting (7). Hence B is unbounded.
Thus we can choose x; € B such that |x;| — oo, and

Z, = 2log; tys )
for some ), < A, << 1. From (1)
(8) Vien, ®log; t,, 2))) — oo as 4 — oco.

Let m(f) = Vi, =(¢; ¢, Z)_'_)) for {, <t << u,.
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Since the line segment L is compact and V is continuous,
re =sup ! V(t,. 2):ze L)}

is finite. Then the maximal solution #(¢: #,. ) of (CE) exists in
the future. Now m,(:) is a solution of the differential inequality

r < oft,

{in the upper right-and derivative sense) and mi,(f))<<#, for all ¢
Therefore (see [2, p. 26] or [A, Theorem 9.5 and Remark 9.3))

m(t) < olt; &y, 7o)

for all {j<<t<Cw, and all 4, a contradiction to (8) at { = «,;. This
proves Theorem 1.

The following resuit can easily be proved with analogous
arguments. It should be noted that V is siill an upper right-hand
derivative (see [b, Theorem 9.6]).

CoroLLARY. — Let V. R X< R" — R be locally Lipschitz and sa-
tisfy (1) and )
Vig, x) = (¢, Vit x)).

Suppose V. B X B — R is continuous and for every real {, and
r, the maximal solution o(t; t,, r,) of v' = (I, r) exists in the past.
Then every solution of (E) exists in the past.

In the example below we construet a locally LipscHirz fun-
ction V satisfying (1) and (2), but not (1%).

ExampLE. ~ Consider (E) where f({, x) = — a,x, for x real
Since f is continuously differentiable, (E) has uniqueness. Fur-
thermore, all solutions exist in the future (although not in the
past) and all tend to zero as £ — oco. In fact

ylyls — ) + 1)~ if y=0,
9) x(s; b y) =
—ylyls — ) — 1)~ if y <O.
We define V on [0, 1] < R by
(@(1; ¢, y) — 1)L — by’ + 2% + (L; ¢, @)
(10) Vit, y) = if0<i<1 and y>0,

y* elsewhere on [0, 1] <X R.
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Using (9), we have
lyt — 1%L — Oy + 29°) oF &'l [y(1 — ¥) + 1}~°
{11) Vit, y) = if 0<t<! and y> 0,
'yi' elsewhere on [0, 1] < R.

Using (11), we see that V({i, y) — oo as |y| — oo for each fixed
t, hence (1) holds. However

Vig, t—)=1 for 0 <t < 1.

Thus V{t. y) — oo as |y| —'co non-uniformly in ¢ for ¢ e [0, 1],
so that (1*) does not hold.

Clearly aV/ay is continuous on (0,.1) X R and V is continuous on
[0, 1] <X R. Furthermore, by a long but straightforward computa-
tion, 2V/fay is continuous on [0, 1] <X R. Thus V is locally Lip-
scHITZ there. Therefore we may compute V on [0, 1] < R by ta-
king the (upper right-hand) derivative of V{s, x(s)).

Let 0<<f{<1 and ye R. If y<<0, then for s >,

Vis, zis; t, y)) = x'(s; ¢, Yy<y".
Therefore )
Vit, y)< 0.

If y> 0, then using (10) for s > ¢, we have
Vis, x(s; t, y)) = «*(1; ¢, x) +
+ (@15 4 y) — 1)1 — s)zl(s; b y) + 2%(s; L, y))
Thus, from (E),
Vit, y) = ¢ Vis, als; b, 9))lom =

= —(x(1; ¢ y) — 1P(y* + 2¢°) —
— (@ll, £, y) — 11 — B4y + 6y") <O,

so that V(t, )<< 0 for all {, ) in [0, 1)< R.
Now we extend V to B <X R by periodicity, i.e., so that

ViE+1, y)= Vi, y)

for all real { and y. Then V and 2 V/oy are continuous on R < R,
hence V is locally LipscHITz there. Furthermore, (1) holds but
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(1*) fails for ¢ in any compact interval of length greater than one.
Since in this example (E) is autonomous, the solutions on [4, ¢ + 1)
are merely translates of those on [0, 1) for every ¢=1, 2, ...,.
Hence

Vit, y)<<0
on R < R. Thus (2) holds with ¢ =0.

REMARK. — In the above example we defined V to have period 1
for convenience. The same type of construction can be used to
prove that given any «>>0, there exists a locally LipscHITz V,
satisfying (1) and (2), but not satisfying (1*) on any compact
interval of length greater than «. Thus the following question
arises: is there a locally LipscH1rz V satisfying (1) and (2) such
that (1*) fails on every compact interval of positive length? This
question remains open.

Proor or THEOREM 2. — Because of Theorem 1 and its corol-
lary, we need only prove that such V satisfy (1%). Suppose there
were a locally LipscHIrz V satisfying (1) and (5) but not (1%).
Then there exist M > 0, {, real, and sequences |x;{ and {?;{ such
that |x,| — oo, {, — {, monotonically, and

Vit,. x) <M.

‘We shall assume ¢ /1t and use the second inequality of (5);
if it were the case that {,\, ¢, we would use the first.

Since the solution x(f; f;, x,) exists in the future for every i,
we see that

x(toa i, wi) =Y

is finite. The sequence |y,! is unbounded by the same argument
as that used to prove B is unbounded in the proof of Theorem 1.
Thus we may assume that |y,| — oo as ¢ — oo. Therefore

(12) Vity, y) — oo as ¢ — oo.

Let m,(t) = Vii, =(t; ¢,, =) for ¢, <t <<{,. Then m,(t)<<M for
every i. Now ¢ is bounded on the square

f(t’ 'I‘): |t_ tolSI:ff‘—MISU
and m,(-) is a solution (in the upper right-hand derivative sense) of

r' <olt, 7).
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for t;, <t <t,. Thus, by comparison with solutions of r' = ¢(t, 7),
there exists @ > 0 such that m,(f) < @ for all ¢ and ¢ <t<f{,.
This contradicts (12) at { = {,, completing the proof.
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