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RELAZIONE SCIENTIFICA

RECENT TRENDS IN THE THEORY OF BOUNDARY
VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL
EQUATIONS

ROBERTO CONTI (Firenze)

PREFACE

The theory of boundary value problems for ordinary differen-
tial equations almost exclusively included, until a few years ago,
problems with side conditions assigned over a compact interval
of the independent variable. By contrast, problems involving the
behavior of solutions over nom compact intervals were usually
labelled as «asymptotic».

Recent developments of the theory show a tendency to reduce
more and more this traditionally accepted distinction. We have
tried, by this report, to give an account of such trend and to
recognize, at the same time, the common features of the under-
lying techniques.

Correspondingly our bibliography mainly refers to the litera-
ture of the last 15 years; earlier references may be found in the
expository papers of W. T. Remp [1], G. SrampaccHIA [2] and
W. M. WrYBURN [3] or in books like E. A. CoppingroN - N.
LevinsoN [1] and G. SANSONE [1]

The report is divided into two parts. Part 1, essentially alge-
braie, is devoted to the vector equation x — Ax = f, when f does
not depend on .

In Part IX, where f depends on «, boundary value problems
are first reduced to the search for solution of some functional
equation, i.e. for fixed points of suitable mappings. The most
frequently used fixed point theorems, like SCHEAUDER-TYCHONOV’S,
BanNacm’s ete, are listed in the Appendix, for the reader’s con-
venience. The LERAY-SCHAUDER topological degree theory has
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136 ROBERTO CONTI

not been considered because, as was noted in J. CroNIN’S book
[L}, boundary value problems for ordinary differential equations
considered so far involve mappings with topological degree equal
to + 1, so that only a partial corollary of the LERAY-SCHAUDER
theory is needed, namely Th. A’ of the Appendix. There is howe-
ver an exception at least, represented by. a problem studied by
G SrampaccHIA, [1] to which we devote Sec. 19.

Throughout our exposition a denotes a real n-vector function, i.e.
a function whose values belong to R". A part of the theory can
be extended to differential equations in a BANACH space, provided
that A be bounded. This situation is fairly described in the recent

book by J. L. MassEra - J. J. ScHAFFER [3].

To render our exposition as organic as possible we had also to
ignore the myriads of particular b.v.p. connected with n.th order
scalar differential equations.

Finally another intentional omission refers to b.v.p. with para-
meters (eigenvalue problems, perturbation theory, etc.). This was
due to the fact that in our opinion this kind of problems, and also
problems involving arbitrary functions, as in control theory, or
differential inequalities, should find their natural and most appro-

priate place within the theory of «differential relations», z — Axe F,
where F represents a set-valued function. This part of differential
calculus, essentially a revival of MARCHAUD-ZAREMBA’S « équations
au contingent», is now rapidly developing and most promising,
but still fragmentary and incomplete.

Most probably, unintentional omissions should be added to the
above mentioned intentional ones, a fact, which, I hope, will
stimulate the reader’s criticisms and suggestions.

0. — Introduection.

The present report deals with boundary value problems for a
differential equation

(I) dx[dt — A(t)x = y(t)

or, more generally,

(IT) da/dt — A(t)x = f(¢, x).
In the sequel we shall denote by:

t, a real variable, {€ J= ], w[, an open, possibly unbounded,
interval of R, the real numbers space;
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R" the space of real m-vectors = with components x,, ..., x,
and any norm |x'. (not necessarily the euclidean one);

@ the algebra of real n by » matrices I with the norm |M|=
= sup | Max|/|x|;
xE R

t— A(f) a function from J into d;
t — y(f) a function from J into RE";
t, €— fl¢, =) a function from J < R" into R".

If A is a subinterval of J, a solution of (I) on A will be any
function ¢-—«(f) from A into R" locally absolutely continuous

on A, i.e. absolutely continuous on compact subintervals of A, such
that

dx(t)/dt — A{f)x\t) = y(t) a.e. on A.

A solution of (IT) on A is defined similarly.

The locution «boundary value problems» is part of a termi-
nology traditionally used for partial differential equations. In that
context it refers to determining solutions of a p.d.e. which, in
addition, satisfy some conditions on the boundary of a prescribed
domain. When transferred to ordinary d.e. this would mean, lite-
rally, conditions to be satisfied at the endpoints of some interval,
a problem which is a very particular (though important) case of
situations encountered in the field of «b.v.p.» for ordinary d.e.

Therefore we prefer to talk about <«additional» rather than
about «boundary» condifions.

To be more specific, throughout this report, such «additional »
conditions will be of the form

(C) xe

where Q is a given infinite subset of CA, B"), the linear space of
continuous functions ¢ — x(f) from a prescribed subinterval A of
J into R".

Therefore a boundary value problem will henceforth consist of
equation () or (II) plus an additional condition (C) to be specified
from time to time.
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Parr I

EQUATION (I)

1. — The evolution operator.

In what follows we shall constantly assume that {-— A(f) is
a (LEBESGUE) measurable and locally integrable function of fe J
into &, i.e., that the entries of the matrix A are real measurable
functions of ¢ e J, integrable on compact subintervals of .J.

This implies that {—|A(f)| is a real function of ¢{eJ, mea-
surable and locally integrable on J.

It follows the well known, basic theorem

TH. 1.1. — There exists only one function (¢, s)— UL, s) of
J < J into & which is continuous and such that

t
(1.1) U, s)=1+ [A(r) Ule, s)dr, s,ted

t
1.2) U, s)=1I+ f Ut D)A()ds, s, ted

where I denoles the identity of .

‘We sketch the proof in order to put into evidence some pro-
perties of U needed later.

Let K be any compact subinterval of J and let s be any point
of K. The linear space C(K, &) of continuous ®; K~ & normed by

t
1¢|=ts;lglw)lexp(—xLﬂA(rndr!), =0

is complete. If A > 1, then
t
T @I+ (Ao, s

is a contractive mapping of C(K, &), therefore (See Appendix)
there is only one solution of (1.1) in C(K, &). Since K and s are
arbitrary, U is defined in J > J.
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Similarly one can prove the existence of a unique function
(¢, 8)— V{(¢, s) of J><J into & such that

t
(1.27) T, )= I + / V@, HAmdt, s, te J.

From (1.1) and (1.2") we obtain a(V(¢, »)U(r, s))/or = 0, the zero
of 4, for ae. reJ and-all s, teJ. Since r— V(¢, r)U(r, 8) is
absolutely continuous it fcllows U(¢, s) = V{{, s) so that (1.2) is
proved by (1.2). Further ¢(U(, s)U(s, r))/éss =0 for ae. seJ and
all t, r e J. Hence also

(1.3) Uit, s)U(s, r) = U(¢, 1), r, s, ted

and since t— U(t, s), r— U(s, 7) are continuous and multiplica-
tion in & is a continuous operation it follows that U is continuous
on J < J.

Dgr. 1.1. - The function U: (f, s)— U(t, s) defined by Th. 1.1
is called the evolulion operalor generated by {-— A(Z).

Remarx 1.1. - From (1.3) we have, for »=1%, U(t, s)U(s, t)=1,
which means that for every (f, s) there exists the inverse U~{¢, s)
and

(14) U-'t, s)=Uls, 1) &, sel.

ReMARK 1.2. - For each (£, s)eJ < J, U(l, s} is the limit of
the PICcARD sequence

(1.5) Uyt, s)=1
t
Ut s)y=1 +[A('r) U,(z. s)dr

go that it is also the sum of the Praxo series
t t T1
(L8 U o) =1+ [ Aw)ds, + [ At ( [ Az, )i, + ..
8 S S

2, — Problem I. - The Cauchy problem for equation (I).

Since 4 is assumed to be measurable and locally integrable on
J, if x is a solution of (I} on any subinterval ACJ, then the function
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t—dx(t)/dt— A(l)x(?) is necessarily measurable and locally integrable
«on A. Therefore, denoting by Liec(J, B") the linear space of functions
of teJ into RB® which are measurable and locally integrable on
J, it is natural to assume that

H) t — y(t) belong to Liec(J, R").

In this Sec. conditions (C) is, in a sense, the simplest possible
as the Q of (C) will be the set of functions of C(J, R") taking a
given value e R" at a given veJ. We thus have:

ProBLEM I. - The Cauchy problem for equation (I).

With given e J, £e R, determine the solution of (I) on J such
that

(2.1) a(t) =

A
.

From Th. 1.1 we have immediately

TH. 2.1. - For every teJ, every te R® and every ye LiolJ, R")
the unique solution of Problem 1 is

t
(2.2) t— Ult, =) —I—[U(t, s\y(s)ds, teJ.

We use this classic result for a few remarks.
The linear operator defined by

(2.3) D = djdt — A(t)

has domain (D) C(J, R") and range R(D) Lioc(J, R"). In fact,
writing (I) as

iy Dx =y

Th. 2.1 asserts that R(D) = Lioc{J, R").

Further, the null space 9UD) of D is isomorphic to R". For
every veJ the isomorphism 1s given by % — U(-, 7).

For each ye Lioe(J, R") its inverse image Dy by D, i.e., the set
of solutions of (I), is represented by the linear variety of C(J, B")

4
24) Dy = 9Y(D) + { ] Ult, s)y(s)ds E

T
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and using (1 3) one easily sees that the right hand side does nof
depend on T.

The operator D, being onto, has right inverses, i.e. there are
linear operators Dt of LioJ, R") into C(J, R") such that, DD+ is
the identity operator on i/, B"). For each treJ a right inverse
of D is

t
(2.5) Dy — f Uit syy(s)ds

so that the solutions of (I'), i.e. of (I), are represented by
(2.6) x =y + Dty, y. € 9UD).

Remark 2.1. — All the solutions of equation (I) are defined for
te .

3. - Problem II.

We consider now

ProBLEM II. - Let A be a real linear space and let L be a
linear operator with D(L)= C(J, R"), KLYy A, OYL) | 01. Given
le KLY, determine the solutions of equaiion (I) (on J) such that

B1) L = 1.

Problem I is a particular case of Problem II (A = R", Lz —
— (7)) and Problem II is in turn a particular case of (I)-(C), cor-

responding to = LI, the inverse image of I by L.

Since le &(L), OUL)F=1{0}, Ll is a linear variety of CJJ, R")
having dimension greater than zero.

Using the same notations of Sec. 2, we look for solutions
xe CJ, R") of

(3.2) Dx=y, Lax=I1

By virtue ot (2.6}, having fixed te./ arbitrarily v —}—D;’_y will
be a solution of (3.1) if and only if y € OY(D) is a solution of

Ly, =1— LDy,

having denoted by [, the restriction of L to 9UD).
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Since y = U(-, 1);, te R",
Ly=L,U

is a linear operator of R" into A and U(., )t 4+ D;i_y will be a so-
lution of (3.1) if and only if £e R" is a solution of

(3.3) Ly =1— LDTy.

Since O(Ly) = R" we have dim R(Ly) = m << n, so that Ly (can
be represented by an m > n matrix and it) has generalized inverses.

This means that there are linear operators LY of R(Ly) into R™
such that

(3.4) LyLYLy = Ly,

and it means, also, that (3.3) will have solutions if and omnly if

(3.5) (In — LyL%) (1 — LDTy) =0,

where I, is the identity operator on A. In fact if £ is a solution
of (33) we have (In — LyL{) (1 — Lny) = (In — LoLY) Lyt =0 by
(3.4). Conversely if (3.5) holds, (3.3) can be written Lyi=LyL{(l —

— LDYy), ie. Lyl — LH(1 — LDTy) =0, so that &+ LY — LDFy)
is a solution of (3.3) for each %, 9U(Lp).

In general there will be infinitely many L% satisfying (3.4), but
it is readily seen that (3.5) is either valid for all of them or for
none.

In particular (3.4) (3.5) hold when Ly has a right inverse LE?:
ToLy = Ia, and, more in particular, when Ly has the inverse Ly ':
Ly Lyg=Ig», LyLy = Ix. In this last case 9U(Ly)={0}. Thus:

Tr. 3.1. - A necessary and sufficient condition in order that
Problem II have solutions is that (3.5) hold for any LY satisfying

(3.4). Solutions are given by

(3.6) ULYL + U5, + [DF — ULYLDT |y, % eSLy)

If Ly has a right inverse L then ((8.4) holds and) (3.5) holds for
any ye LiooJ, B"). Solutions are given by (3.6) with LY replaced by L.
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If Ly has the inverse Ly then for each ye Lnoo(J, R") the unique
solution of Problem II is

(3.7) ULyl + (DY — ULz LD ).

Nore: About generalized inverses of linear bounded operators
between finite dimensional or hilbert spaces see, also for the biblio-
graphy: W.V. PETRYSHYN, Jour. of Math. Anal. & Appls., 18 (1967).

4. - Some remarks about Problem II.

REMARK 4 1. - Problem II is said to be incompatible when
(4.1) D=0, Lt =0 = x =0,

compatible otherwise.

It should be noted that (4.1) is equivalent to the existence of left

inverses Ly of Ly, i.e. of linear operators Ly : A — R", LyLy =
= Ip», so that, in general, incompatibility is nof enough to insure
the existence of solutions of Problem II for all le A, y e Lioc(J, B").
According to (3.5) solutions will exist only for those le A, ye Lioc(J, R")
such that

(I — LyLy) (I — LDEy) =0

and for any such pair [, ¢, there will be a unique solution, namely

ULyl + (0} — ULzLDH.

It is easily verified, however, that if dim A = » then the existence

of Ly (or of L_r'}) is equivalent to that of the inverse Ly'. Therefore
if dim A =m», Problem II is incompatible if and only if the inverse

Ly exists, i.e. if and only if Problem II has a unique solution
for each le A, ye Lioo(J, B").

REMARK 4.2. - To verify the validity of (835) is not easy in
general. The most favorable situation is encountered when Ly has
the inverse. This suggests to write equation (I) as

(4.2) dx/dt — B(tyr = [A(f) — Bt + y(t)

and then look for some B whose evolution operator V has the

property that Lv" exists. If it is so then Problem II can be dealt
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with by the methods which will be described in See. 16 for
Problem V.

Such methods require some conditions which will involve not
only B and [ but also the right hand side of (4.2), hence 4 and y.

These conditions are only sufficient ones, while (3.5) is also
necessary.

REMARK 4.3. - The existence of the inverse Ly of Ly depends
on L and, via U and the PEANO series (1.6), on A4. Sufficient
criteria involving A directly can be given for particular L.

ReMarRK 4.4. - For particular operators L it is possible to
represent solutions in a more compact form than (3.6) by defining
an appropriate Green operator (See Secs. 6-9).

Again, for particular L it is also possible to define a pair of
linear operators D*, L* such that the solvability of Problem II
can be expressed by means of a relationship between the pair 1,
y, and the solutions z of

(4.3) D#z =0, L*z = 0.

Such a relationship is, necessarily, a disgnised version of (3.4)
(3.2).
System (4.3) is called the adjoint of

(4-4) Dx=0, Lt =0

and reciprocally.

Extensive investigations have been made in order to define a
sufficiently «satisfactory» adjoint of (44) with several particular
L. (See Secs 6-9).

5. — Examples. - The generalized Cauchy problem for
equation (I).

Let ~eJ, le A= R™ and let L be defined as x — Mx(r) where
M is an m < n real matrix, so that (3.1) becomes

(5.1) Mz(x)=1, leR",

and we have a «generalized CaAucHY problem» for equation (I).

Now Ly can be represented by the matrix M itself. Since
LD;}'y =0 for all y, then if M9 is any generalized inverse of I,
MMIM = M, there will be solutions of equation (I) satisfying (5.1)
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if and only if (Ig» — MM9)l = 0, and these solutions are given by

(5.2) t — O, =) (Mol + %] + f U, s)y(s)ds,
with MZ, = 0.

The CavcHY problem corresponds to m = n, M = Ig~ and (5.2)
then reduces to (2.1).

6. - Examples. - Two-point b.v.p. for equation (I).

a) Let again le A= R" let v, 1,eJ, 7,91, and let L be
defined as « — M,x(r)) + M,x(t,) where M,, M, are real m X n
matrices.

Condition (3.1) then becomes
{6.1) M a(x,) + Myx(r,) =1

and we have a «two-point b.v.p.» for equation (I).
Let 7, <7, and take ©=1r,. Then Ly can be represented by

the m > n matrix M, + M,U(x,, t,) and LDIy f M,Uz,, syy(s)ds.
If [M, + M,U(r,, =,)]9 satisfies

62)  [M,+ M0, )] [M, + MU0, w)W(M, + M,O(c,, =)] =
=M1+M2U(Tz’ ™)

then for all le R", y € Lyoc(J, B*) such that

(6.3) { Ipm — [M, + M, U(x,, )][M, + M,Ulx,, =)t [1 —
— [ 3,06, spsids =0
the solutions of (I)-(6.1) are given by

64)  t— U, <) | 1M, + M,U(s,, <)ol + 5 | + f U(t, shyls)ds —

— [ v, =1, + 2,005, <M U, siytsias

T1
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where £, is any solution of [M, + M,U(r,, )k, =0.
b) While (6.4) is valid for all teJ, a simpler form of (6.4)
restricted to te[r,, T,] is

6.5) t— U, v,) | [M, + M,Ukx,, v)|90 + 5 | + f G(t, s)y(s)ds,

where #, s— G{{, s) is the «generalized » GREEN operator of problem
(I)-(6.1) defined by taking

— U(t, ) [M, + MUlr,, 7)|9M,Ulr,, s)+
G(t, s) = + U, s), s <t<T,
( — U, =M, + M, U(x,, <)M, Ulr,, s), n=t<ls<r,
The «ordinary» GREEN operator corresponds to the case m=mn

when [M, + M, U(r,, 1,)]* exists, and (6.5) is replaced by

T2

6.6) t— U, <) [M, + M,U,, ,)]-2 + ] Git, syyls)ds

where G can be defined more symmetrically by taking

U, =) [Ml + M, Ur,, Tl)]_—l M, Ulx,, s), n=s<t<m,

G{t, s) =
) g — Ult, =) [M, + M, U(z,, =) 72M, Ulx,, s), n<<t<]ls<rt;.

¢) When ! =0, denoting as usual by M* the transpose of a
matrix M, (6.3) can be written

T2

67 [z*(s)y(s)ds =0
with
(6.8) a(t) = Ux—1(t, =,)Ms H*f, ieR"

H = Ipm— [Ml + M, U{xy, t)|[M, + M,U(r,, t,)]9.

It is readily verified that z defined by (6.8) is a solution of the
equation

i dedt + A=(t)z = 0.
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If N,, N, are two real # < k matrices such that
(6.9) N M, = N, M,

then by {6.2) we see that the z represented by (6.8) are the solutions
of (I)s satisfying

(6.1) N2} + N z(x,) = 0.

It rank (M,: M,)=m <2n and k=2n —m it can be proved
that there is a wunique (2n — m) <X » matrix (Nf:N:) of rank

= 2% — m, such that (6.9) holds and we say that (I);-(6.1)s is the
adjoint of

I, dx/dt — A()e =10
(6.1), M x(r) + Myx(c,) = 0

and reciprocally.

Therefore we can state the classical result: the two-point b.v.
problem (I)-(6.1), has solutions if and only if y satisfies the
< orthogonality » condition (6.7) for all the solutions z of the adjoint
problem (1) -(6.1)5 .

d) A case of special interest is m=un, M, = — M, = Ig,
l=0eR" i.e.

(6.10) x(t,) — x(ty) = 0.

When ¢ — A(f) and { — y(!) are periodic functions with period

T, —T,, then problem (I)-(6.10) is equivalent to that of determining
the <harmonic» solutions of (I}, i.e. solutions of (I} with period

13 —1,. In this case we can take N, = — N, = Ig» so that (I) will
have harmonic solutions if and only if the «perturbing term» ¥y
is «orthogonal» in the sense of (6.9) to all the harmonic solutions

of equation (L) .
References: J.S. BRapLEY [1]; W.J. Cours [1]; J. B. GARNER [U];

J.B. GarxErR-L.P. BurToN [1]; A.JA. Hoxrvaxov [1]; W.S. Loup
[1]; M.I. UrBarovic [1]; W. M. WrYBURN [3]; O. WYLER [1].

7. - Examples. - k-point b.v.p. for equation (I).

A generalization of the two-point b.v.p. is the following.
Let le A=R", let 7, ..,7,ed, 7, <..<7,, and let L be defined
as x — Mx(v)) + ... + M,x(v,), where IM,, .., M, are k real m <X n
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matrices. A «k-point b.v.p.» (also known as «NICOLETTI b v.p.»
for equation (I) is then that of finding solutions of (I) such that

Ma(c)) + o + Mya(z,) = L.

Taking ©v=r,, Ly can be represented by the m X » matrix
M, + M,Ur,, )+ ... + M, Ulr,, 7,) and

Ty Tx
LDty = [ MU, eids + o+ [ M0, shyls)ds.

Instead of going into further details as in Sec. 6 we wish to
point out that a k-point b.v.p. is, for instance, that of finding an
integral curve of (I) intersecting k given linear varieties lying
in the hyperplanes t =1, ..., { = 1, respectively.

References: L. N. Esgukov [1]; W. M. WHYBURN [3].

For k=3: W.J. Corgs [1]; J.B. GARNER [1], [2], [3]; J.B. GARNER-
L. P. Burroxn [1].

8. - Examples, - B.v.p. for equation (I) with conditions at a
countable set of points.

We have so far considered b.v.p. with conditions bearing on
the value of the solutions at a finite number of points of J. The
case of conditions at a couniable set of points of J can be dealt
with along similar lines as follows.

Let A be a compact subinterval of J, let {t,| be a sequence in
A, and let { M, | be a sequence of real m <X » matrices such that

[e 0]
2 My | <oo, | M, | =sup|Muaxl/|x|
1 xE hin

o0 [ee]
If xe C(A, R") we have | I, M,x(r,) | << max |«(t)| X, | M, | < oo, so
1 ted 1

(o2}
that it makes sense to define L as x — X, Mx(r,), and (3.1) will
become 1

<
21% Mx(t) =1

with 1e R".
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o
b3

Ly is represented by %, M, Uir,, 7,) and (r =r1))
1

Th

Loty =3, / M, Ule,, s)yls)ds.

References: R.H. Cour [1]; W.M. WHYBURN [4].

9.- Examples. - B.v.p. for equation (I) with integral conditions.

There are also b.v p. with side condition (3.1) involving an inte-
gral over a compact subinterval A of J and this, in furn, may involve
the values of solutions at all points of A.

a) For instance, let ¢ — M(f) be a given real m X # matrix
whose entries are integrable functions of {e€ A. Then (3.1) can be
written

k
Z“h th(‘!.‘,‘) + M(c)x(c)dc =1
A

1

with Ie¢ B™, and <,, M, as in Sec. 7, or, more generall
’ ko h b g Y
(o]

Eh Mlzx(‘rh) + M(G).’L'(G)dc =1
' A

again with e R", but with v,, M, as in Sec. 8.

References: R.H. CoLr {1]; W.R. JoNEs [1]; A.M. Kravryu [1];
M. Pacny1 [1]; W. M. WrYBURN (3], [4]

b) Conditions containing StiELTJES integrals arise when L is

represented by a — /dF(c)x(c‘) where {— F(l) is a given real m < #»
A

matrix whose entries are functions of bounded variation on
A=[r, ,]CJ.

Condition (3.1) becomes then

@1 dFe)(e) = 1,
J

with le E”. The operator Ly can be represented by the m xn
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matrix de{G)U(c, 7,) and (vt =r1))
A
T T2

LDy = / [ [ dF(6)U(s, s)} y(s)ds.

TT 8

f [[dF{c)U(o-, TI)F is an » > m maftrix such that

Udﬁ(c)U(c, TJ)J Udma o, } “dF ,]

then for all le RB™, y & Lioc(J, R") such that

Ipm — UndF(c) Uls, r,)] [A[dF(G) U, Tl)]g t{ -
_f U T;F (o) U, s)}y(s) ds f =0

a4

the solutions of (I)-(9.1) are given by

t— T, v | | AF@ T, <) 1 +5 | + tU(t, s)yls)ds —
A T

. o
_ [ o, = U ar@) T, =) [[ aFE) e, )| yls)ds

where £, i{s any solution of [[ F(s)Uls, Tl)k 0.
4
A

For teA ={[r,. 7,] the solutions can be represented by

t— U, 1) g [ [ dF (o) Uls, f,)rz + % + f 2G(t, syy(s)ds
A T
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where {, s — G(t, s) is the GREEN operator defined by taking

— Ui, T,)[ f AF () U(e, Tl)]g f ;F(G)U(c, s) + Ui, 3),

G, s)= : n=s<lt<sn,

— 0, <) | [ar@Ue, | [0 9, w<t<s=n,
A 8

—1
‘When [/dF(c)U(a, -cl)} exists, G can be defined by taking
A

~0it, )| [ 4R T, )| [ AR ), n=s<i<s,
A s
G(t’ S) =

T2
—U{t, T,)[ / dF(s) I(s, TI)] de(c)U(c, 5), T <t<s<n,.
A s
References: A. SM0oGORSHEWSKY [1]; W. M. WaYBURN [3].

10. - Problem III.
As we stated at the beginning of Sec. 3, Problem II is a par-

ticular case of (I)-(C) corresponding to Q = L. a linear variety of
C(J, R*) defined by means of the linear operator I, whose domain
D(L) is the whole of C{J, B"). There are also problems where Q,
although a linear variety of C(J, E"), is not represented this way.

For instance the set of xze C\J, R"), J = ]z, »[, for which the
limit a(w —) =1lim () exists is clearly a proper subspace of C(J, R")

tsw—
so that a condition like

2w —) =E, e R"

cannot be written as Lax =% with 9(L) = C(J, R").
We are thus led to consider

ProBLEM I[I. — To determine the solutions x of equation (1) such
that
(10.1) xeV

where V is a given linear variety of C(J, R"), such that V [} D(D)
has dimension > 0.

"
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RemMarx 10 1. - It can always be assumed that V is a subspace
of C(J, R"), otherwise taking any v,e V [} D) we would have
V={ov,} + W. W being a subspace of C(J, R") and the translation
z=x —v, in C{J, B") would replace the original problem, i.e.
De =1y, xe V by another problem of the same kind, Dz==y — Duv,.
ze W. Therefore Problem IIT is equivalent to

ProsrLEM IIT'. - Let V be a given subspace of C(J, R"). such
that V[ D(D)={0{. We wish to determine the solutions of equation
(I satisfying the side condition (10.1).

Remark 10.2. - Owing to the linearity Problem III’, i.e. Dx=y,
xeV, V a subspace of C{J, R"), will have solutions for the y belonging
to a certain subspace B of LjeclJ, B"). Using the terminology of
J. L. MassErRa-J.J. SCHAFFER [3] we say that the pair (B, V) is
admissible for D, if for every ye B, Dx =y has solutions xze V.
(V-solutions).

Then problem III' can be reformulated in a more exhaustive

way as

ProsrEM 1I01”. - Let V be a given subspace of C(J, R") such
that V[ DD)3=1{01}. It is required a) to determine the maximal
subspace B Lioc(J, B") such that the pair (B, V) is admissible

for D; b) for each ye B to determine all yeDU(D) such that y —|—D;" ye V.

11. - Examples.

Clearly Problem III is extremely general. It includes Problem
11, hence practically all traditional b.v.p. for equation (I), as well
as a quantity of other problems which are far apart from that
class or halfway. ]

We are going fo illustrate this point by a number of examples.

a) Let Vbe the subspace C"(J. B") of functions 2 with continuous
rt* derivative (r =1). Problem ITI is then that of determining the
solutions of (I) with a prescribed «degree of regularity».

b) Let us denote by L¥w, R"), 1<p < co, the space of functions
xz of teJ=]x of into R", such that /ix(t)l”dt<oo for some feJ,
and let V= L?w, R") [} CJ, R"). ¢

Symmetrically we can consider L”(x, B"), or else L?(J, R"), the
space of x such that /[m(t) [P dt <oc.
o'I
[
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¢) Define V as the intersection of C(J, R") with the space of
n-vector functions ¢ — «x(f) whose first k(< #) components are in
L? on [8, o for some e .J, or on Ju 3] for some BeJ, or on J. This
includes for instance the well known problems of determining
L’(0, co) or L*— oo, co) solutions of a second order linear diffe-
rential equation.

d) Let L>(w, R") be the space of  which are essentially bounded

on [8, o[, BeJ, ie. such that esssup|z(l)| < oo.
te(Bwl

Then V = L>»(w, R") (] C(J, R") is the space of n-vector functions
continuous on J, bounded at w.

Similarly we can consider L®(x, R"), and L*(J, R") and their
intersections V with C(J, R").

e) In particular given a sequence of real m > ® matrices
o]

{ M, | such that X,|M,| <<oco as in Sec. 8, let |7, | be a sequence
1

on J having » as a limit point. Then take as V the linear manifold
of xe L>(w, R") [} C(J, R") such that

oo
2, Myx(r,) =1, le R™.
1

f) The «asymptotic> CAUCHY problem
(1.1 (o - )=1%, e R®

already considered in Sec. 10 is a Problem III where V is the
linear variety of xe L®(w, E*) [} Ci.J, R") which satisfy (11.1).

It should be noted that, contrary to the ordinary CauvcaY problem,
the <asymptotic. version may have no solution or infinitely many:
for instance take dx/dt +x=0, n=1, with {3=0 or {=0 respectively.

g9) Without going into details we shall indicate problems
analogous to those considéred in Secs. 6, 7, 8, where one or both
limits x(x+4), 2» —) enter together with values of x at given points
of J.
Again, we could consider problems similar to those of See. 9, in
which the integrals (LEBESGUE or STIELTIES) are extended over
an interval [, w[, or ], B], or over J.

hi The problem indicated at the end of Sec. 7, of finding
solutions of (I) «intersecting» k given linear varieties of the (¢, x)-
space is no more a Problem II, but a Problem IlI, with J= R, if

one at least of those varieties is not contained in a hyperplane
t = const.
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i) Auother problem IIT with J= R is that of finding solutions
of (I) which are periodic with a given period T, i.e. x(f) — «(f+ T}=0.

If also 4 and y have period T, this will be a Problem II (Sec.
6, d) but not otherwise.

J) The problem of finding solutions of equation (I) which are
almost periodic is again a Problem III, with J = R.

12. - Non linear problems for equation (I).

In all the problems which have been considered so far, the set
Q of condition (C) is a linear variety of C(7, R"). There are other
problems in which the linearity of Q is replaced by the weaker
assumption of convexity. For instance let p >0 and let Q be
defined as

Q=|zeCJ, B")!|a(f)|<p, f<t <o}

Part 11

EQUATION (IT)

.

13 - General remarks about problem (II)-(C).

Before we turn our attention to problems of type (II)-(Cj there
are a few general remarks to be made.

First of all, while the solutions of equation (I) are all defined
over the whole interval J = Jx, w[ and, for a given y, they form
an n-dimensional linear variety of C(J, RB"), this is no longer true
for equation (II). In fact, to every solution « of (II) there corresponds
a (maximal) interval of existence, which, in general, is a proper
subinterval of J, depending on . From this follows that, when
dealing with equation (IT), @ will no longer be a subset of C{J, R"),
but rather of C(A, R") where A is a prescribed subinterval of J.

Secondly, the treatment of problem (I)~(C), at least as long as
Q is a linear variety, is alinost entirely algebraic. The only point
requiring some topology is the existence of the evolution operator
U (Th. 1.1). On the contrary to solve problem (II)-(C) systematically
requires such tools, as fixed point theorems, which are essentially
topological. This will require, in turn, the introduction of a topology
into the linear space C|A, R") and this is done in different ways
according to whether A is compact or not.
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If A is compact one usually uses the norm topology with the
norm |z|=sup|a(f)| and then C(A, B") is a BANACH space (=
teA

linear, normed, complete space).

If A=][B, o[, or A=]x, B}, or A=J, one can use the compact
topology, i.e. the topology of uniform convergence on compact
intervals K A, and C(A, R") then becomes a FRECHET space (=
linear metric, locally convex, complete space).

‘We are now going to look more closely at the connection between
fixed point theorems and problem (IN)-(C)

Given A J, define first the operator F which transforms
x:t— x(t) of C(A, R*) into Fx .t — fit, x(f)), so that equation (II)
can be written Dx = Fx. It is clear that if Fx does not belong to
the image DQ of @ by D there is no solution of problem (II)-(C),
so that a mecessary condition for (II}-(C) to be solved is

(13.1) Fa () DO+ @,

where FQ is the image of Q by F. Let us replace (13.1) by the
stronger assumption

(13.2) Foc DO,

which means that for each we Q there are x € Q such that Fw = Dx.
Therefore (13.2) means that

(13.3) Dx = Fw, xeQ,

a problem of type (I)-(C), has solutions for all we Q.
Take we Q, then Fw, then its inverse image DFw by D, and

finally the intersection set DFw [} Q, i.e. the set of solutions of
(18.3). Since, generally, this set contains more than one point, we
have thus defined a set-valued mapping

%: w— BGw=DFw [ Q

of O into the class P(Q) of subsets of Q. Its fixed points, x e T, if
there are any, are solutions of

(13.4) Dx = Fzx, xe,

i.e. of problem (II)-(C) and conversely, so that every fixed point
theorem for © will also be an existence theorem for (II)-(C). It
does not seem, however, that this procedure has been followed so
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far, probably because the existing fixed point theorems for set-
valued mappings are not suitable. The current trend is rather that
of replacing % by an ordinary, point-to-point mapping T of Q into
itself, obtained by selecting a single point Tw from DFw [} Q. We
thus have

(13.5) weQ = DTw= Fmw, Twe

so that every fixed point w = Tw is a solution of (134) ie. of
(1I)-(C). In other words one has to define a convenient selection
mapping S of P(Q) into Q and then replace G by the composition
T = 8%.

It should be noted that since DFw = 3D;|LF701 + 9YUD), the effect
of S will be that of singling a certain UZ, out of 9U(D) and, ultimately,

a certain %, out of RB", such that U%, + Dj-F'meQ and T will be
given by

(13.5) T: w— Tw= Uk, + DI Fn.

Finally, to prove the existence of fixed points of T one can
either use theorems based on «compactness» properties (such as
Ths. 4, B of the Appendix) or on «contractivity» (such as Ths.
C, D, E of the same App.).

14. - Problem IV. - The Cauchy problem for equation (ID.
Existence.
a) The simplest b.v.p. for equalion (IT) is

ProsLEM 1V. - The Cauchy problem for equation (11).
Given an interval A J, te A, te R*, determine the solutions of
(IT) on A such that

x(t) = &,

Contrary to what happens for Problem I, there are A J Wwhere
Problem IV has no solution. For instance, the equation (7 =1,

J=R)
(14.1) dajdt = | x|t

with ¢ > 1 and the condition «(0)=1%>> 0 has no solution on A if
A9, (g -- 1)y—18r—q].
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b) In accordance with (13.2) we have to impose conditions on
the data A, 4, f, 7, £ in order that

14.2 Dx = Fw, x(t) =¢

have solutions on A for all we C(a, R") suce 'hat w(r) =% By
virtue of Th. 2.1 if we C(A, R") implies Fw € LiocfA, R"), i.e. if we
assume that

H,) t— f(t, w(t)) belong to ILnoc(A, R*) for all we C(A, R"),
then (14.2) has a unique solution, namely
(14.3) Tw = U + D Fw,
8o that we have a point-to-point mapping T of
O =|mwe Cd, R"):wrx)=E]}

into itself whose fixed points are solutions of Problem IV, and
no selection is needed.

However assumption H,) does not insure the existence of fixed
points of T, as is shown by the example of equation (14.1), so one has
to impose on f stronger assumptions.

¢) The simplest set of such conditions is represented by
CARATHEODORY’S ones, namely

«) for each te A let x — (i, x) be conlinuous on R";
B) for each xe R" let t — [(t, x) be (Lebesgue) measurable on A,
v) let
| F(E, )| < B(Y). xe R", a.e. teA,
for some ¢ — B(t) belonging to Licc(s, R).
It is readily seen that «), 8), y) imply H,) so that T can be
defined by (14.3), i.e. by

(14.4) T: w— Tw= UL, *); —I—/ U(t, s)f(s, =(s))ds.

If A is compact, C(A. B") is a BANACH space in the norm topology
(Sec. 13). To prove the existence of fixed points of T we can use
SCHAUDER’s theorem (Appendix, Th. A), since T turns out to be
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continuous, TQ is bounded and the xe TQ are equicontinuous on
A, hence, by AscoLrs theorem, TQ is compact.

Alternatively, since, again by Ascorr’s theorem, T turns out
to be compact, hence completely continuous, we can apply Th. B
of the Appendix by showing that there are sequences {w,}| in Q
which are bounded and such that Tw, — w, — 0 in C{A, R").
Assuming, for instance, A =[r, v 4 3], 8 > 0, ToNELLI’S sequence

U, o tels v+ 3]
t—38/k
Ut i+ [ U, oifis, wylolds,  telx 2k, =+ 3

T

Wilt) =

has both properties. It should be noted that Th. B does nof insure
the convergence of | w,({)| but only the existence of a subsequence
which converges to a fixed point.

‘When A is non-compact, for instance A =[8, o[ then C(A, B"
can be made into a FRECHET space (Sec. 13) and we may replace
ScHAUDER’S theorem by TycHoNOV’S one (Appendix, Th. A4).

Summing up we have:

Ta. 14.1. - If Caratheodory conditions «), 8, v) are satisfied on
A, then Problem IV huas solutions for each te A and each te R"

d) When A=J Th. 21 is a Corollary of Th. 14.1 as far as
existence is concerned. However assumption y) is exceedingly
restricted. For instance it does not apply to equation (14.1) with
0 <g=<1 for which Problem IV has solutions on J = R for all
possible © and & This example suggest to replace y) by the weaker

v) let
|fit, &) | < Bf) + () @], xeR", ae teA

for some pair of functions ¢ — B(t), t — y(f) belonging to Lioc(A, R)
and 0<<qg<T1.

By using an artifice it is then possible to deduce from Th. 14.1
the two extensions represented by Ths. 14.2 and 14.3.

Ta. 14.2. - 1f assumptions =), ), ¥') are satisfied on A and 0<<qg < 1,
then problem IV has solutions for each 1€ A and each e R".

Proor. - Let A be compact. Then Ijoe(d, B) = L(A, R). Since
0<<q <1 it follows that there are r > 0 such that

(14.5) r — MAWA[ y(s)ds = M_\[] £] -i-Af ﬁ(s)ds]
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where
(14.6) My =sup| U({, 9)|, t, s)e A > A.

The artifice, largely used in the literature, consists of replacing
f by

fit, ) =

_ fit, @), it |a|<r.
{f(t,rlxl—lx), it |2]>r.

Clearly f satisfies «), 8) and also y) since from ') follows
(147) Ifit, #)| <<B()+r%(t), =xeR", ae teA.

By virtue of Th. 14.1 there are fixed point of the mapping

t
T: w— Tw= U(t, <} + j U\t s)fis, w(s))ds.

But if @ = Tz from (14.7) and (14.5) follows |a(f)|<<r, t € A, hence
f_(s, x(s)) = fls, x(s)) a.e. seA. Therefore x = Tx, ie. ® is a fixed
point also for T defined by (14.4), hence a solution of Problem IV.

If A=[8, o[ let {7, | be a sequence in A, 1, — 0, <7 <7, <T...
and let =' be a solution of (II) on [8, 7,] such that a'(x) =§, let a*
be a solution on [r,, t,] such that x*(r,)=ax!(t)), etc. The x defined
by ! on [8, 7,], by «* on [r,, 7,], etc. will be a solution on A hence
a solution of Problem IV.

e) When ¢ =1, (14.5) would become
(1 — Ma {y(s)ds) "= MA[] 24+ [Q(s)ds]
A A

and to insure the existence of such an >0 we have to make the
additional assumption

(14.8) 1— Ma / y{s)ds > 0, for every compact ACJ,
A

with M, defined by (14.6) We thus have

Tu. 14.3. - If assumptions «), 8), y') are satisfied on A, with q =1,
and if (14.8) holds, then Problem IV has solutions for each teA
and each te R".



150 ROBERTO CONTI
REMARK 14.1. - When g =1 the inequality in ¥
Lt @) | < B(&) + 1(f) | = |
could be replaced by the stronger one
(14.9) i, @) — y(f)» | < BiE)

without any farther assumption on y(t) like (14.8). In fact if (14.9)
holds we can write equation (II) as

dx/dt — [A(t) + 1) IrJe = f(t, =)~ 1tz

and then apply Th. 14.1.

f) The same artifice used to deduce Ths. 14.2 and 14.3 from
Th. 14.1 can be applied to prove

TH. 14.4. - Let Caratheodory hypotheses «), §) hold and let y) be
replaced by the assumption that there is sonie pair v >0 and t— B,(1)
belonging to L(A, R) such that

ted |el<r=|fd, )| <B.@)

My [,B,,(s)dsgr
A
with M, defined by (14.6).
Then Problem IV has solutions for each ve A and each te R"
such that

i< My 'r — [ﬁ,(s)ds.
a

This Theorem covers such cases as that of equation (14.1) with
g>1.

g) All the existence theorems considered in this Sec. are based
on a majoration of the norm |f] of f. Other theorems, insuring
the existence only on the left or on the right of 1, can be obtained
by using instead a minoration or a wmajoration, respectively, of
the inner product x¥f. This is the starting point of a comparison
principle which is largely used in various branches of the theory
of ordinary d.e. A presentation of this principle would go beyond
the scope of this report and ve refer the reader to the exposition
of F. BrRAURR [1] and to R. Cowntr [3], [4].
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15. ~ Problem IV: the Cauchy problem for equation (II),
Uniqueness.

a) Another remarkable feature of Problem IV is that, con-
trary to Problem I, it may admit more than one solution. For
instance x =0 and x = (1 — q)V1—9¢1/1—¢) for t> 0 are distinct
solutions of equation (14.1), 0 << ¢ << 1, such that «(0) = 0.

The structure and the properties of the set of solutions of
Problem IV with given A, were investigated in detail by G.
Prsawo, H. KyEser, M. ForkUHARA, M. Nagumo, E Kamxe and
others. For more complete references and more recent results
see: K. HavasHr [1], Cr. C. Puecsa [1], &. R. SELL [1].

When there is only one solution of Problem IV on A if is
customarily denoted as & = x(t, v, {). The continuity of the mapping
E—vx(+, +, & of BR" into CI/A, R") can be proved by observing
that it transforms sets of RE" which are relatively compact (i.e.
bounded) info sets of C(A, B") which are also relatively compact
{(i.e. bounded and equicontinuous), while the inverse mapping
x{+, +, §y— & has a closed graph.

See for instance A. F. FiLierov [1], [2]

b) The theorems of Sec. 14 not only do not insure the uni-
queness of the solution but they are not of a constructive kind.
Both these disadvantages are eliminated when the assumptions
on [ allow the use of BanvacH contraction principle in a form or
another (See Ths. C. D, E of the Appendix), so that a unique fixed
point of T is obtained by the «method of successive approxima-
tions », i.e. as the limit of a sequence of iterations o, T'x,, Tz, ...
Since all soluttons of Problem IV are also solutions of x= UE—I—DjFx,
i.e. fixed point of the mapping 1 defined by (14.3) we have, for
instance

Ta. 15.1. - Let A be a compact subinterval of J, let Caratheodory
hypotheses «), 8) hold and let, further

(15.1) [ft, ) —f(t, )| < )|z —y|, =, yeR", ae teA
for some t— A{) belonging to L(8, R) If, either
(15.2) 1 - MAJ?\(s)ds >0

A

with My defined by (14 6), or Caratheodory’s y) holds, then Problem
IV has a unique solution. This solution s the limit in C(A, R%)
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of the sequence

i
(15.3) @, 41(8) = U(t, 7+ f U, s)f(s, x(s)ds

with x, any function of C(A, B").
Proor. - Let (15.2) hold. Then by (14.4) we have

| T — Tylg(Mif%(S)dS)lw—y[

where | | denote norms in C(A, B”), and (15.2) means that T is a
contractive mapping of C(A, RB").

Let now CARATHEODORY'S y) hold. Then T is continuous and
it is easy to prove that there is a positive integer v such that 7T is
contractive. The result follows from Th. D of the Appendix. Al-
ternatively we could use the device we already used in the proof
of Th. 1.1, due to A. Breveckr [1], consisting of 1endering T a
contraction by introducing a suitable norm into C(A, B") and then
apply Th. C of the Appendix.

¢) The inequality (15.1) does not hold for «stronglys mnonli-
near f such as |x|? with ¢ > 1. In cases like this one has to as-
sume the validity of (15.1) for «, y restricted to a certain ball of
B" and to make use of «locally» contractive mappings, like that
of Th. E of the Appendix.

d) A remark amalogous to that made in Sec. 14, g) holds.
Namely Th. 15.1 is based on a majoration of the norm |Af| of
Af ={ft, x + Ax) — f(t. ) by means of a linear function of Axz.
More general uniqueness theorems like PERRON's or KAMEE’S
criterion (See C. OLECH [2]} using an inequality of the form |Af|<C
< oft, |Ax|) are known. However, unilateral uniqueness (i.e. only
on one side of 7) can be obtained by using a majoration or a
minoration of the inner product (Ax)*(Af), or, more in general, by
means of the comparison principle already mentioned. We refer,
also for the literature to R. Conti [3], R. D. MoYER [1] and C.
CruiBErTO [1]

e) It is quite natural to ask whether there are conditions
under which the sequence of iterations can be nsed to obtain a
solution of Problem IV when there is no uniqueness. This is
still an open question, apparently (See E. A. CoppingToN ~ N.
Levinson [1]; also R. M. Bra~cHi~1 [1]).



RECENT TRENDS IN THE THEORY OF BOUNDARY VALUE PROBLEMS, ETC. 163

16. - Problem V.

a) We consider now for equation (II) the correspcnding of
Problem II, namely:

ProBrLEM V. - Let A be a given compact subinterval of J. Let
A be a real linear mormed space and let L be a linear bounded
operator with D(L)= CA, R"), KL)T A and OUL)F={0}. Given
an le RUL), determine the solutions of equations (II) on A such that

(16 1) La = 1.

We proceed, as for Problem IV, along the lines sketched in
Sec. 13.

In accordance to (13.2) we have to put conditions on A, 4, f,
L, 1, in order that

(16.2) Drx = Fw, L =1

have solutions on A for all w such that Lw = 1.
To apply Th. 3.1, we define the operators Ly, LY as in Sec.
3. Then (16.2) will have solutions for all w, Lw = [, if and only if

(16.3) ILw=1= (I — LuLy)(l — LDY Fw) =0,

with ©e A arbitrarily fixed. According to (3.6) the set of solutions
of (16.2) is

w = UM (Ly) + | ULY(1 — LDT Fr) + DT Fw

so that w— Gw is a point-to-set mapping of Q= Ll into P(Q),
unless 9ULy) = {0}, ie. unless Ly has a left inverse. But, ob-
viously, 9ULy) does not depend on w so that to replace % by a
point-to-point mapping T of Ll into itself all we have to do is
to select %, € 9ULy), tor instance i, = 0, and define

(16.4)  T: w— Tw = U% + ULY(l — LD Fw) + DT P

b) A set of conditions insuring the existence of fixed points
of T is, again, represented by CARATHEODORY’S «), B), y) of Sec. 14.
To see this note first that Q = Ll is closed since I, is continuous,
by assumption. Next, LY is also continuous since it maps &R(Ly),
a finite dimensional space, into R". Then writing T as

Tw = U¢, + LY ) — ULGLDY Fw + DI Fw
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it is not difficult to prove, using =), 8), y}, that w,—w in C(A, R?)
implies Tw,— Tw in CiA, BR"), so that T is continuous.

Again by o), 8), v), we have that the functions ¢-— Tw(f) are
uniformly bounded and equicontinuous on A, hence by Ascorr’s

theorem it follows that TLI is a compact subset of C(A, R".
Therefore SCHAUDER-TyYCHONOV’S theorem (Th. A of the Appendix)
insures the existence of fixed points of T. Summing up we have:

Tr. 16.1. - Problem V has solutions if 1) f satisfies Caratheodory’ s
condilions «), B), ), of Sec. 14, and i) the problem

(16.5) dx/dt — A(t)x = f(t, w(t)), Lx=1
has solutions for each we CA, R"), Lw =1

¢) Let A be a compact subinterval of J and assume, in addition
to the assumgptions of Th. 16.1, that the CAucHY problem

Dx = Fz, 2(t)=F

has a wunique solution for each ¢ e R". Denote this solution by ag
and define the mapping

St E— 8 =%, + LYl — LYLDT Fae

of R" into itself. Since { - xg is a continuous mapping of R” info
CiA, R" (Sec. 15, a)), it follows, under CARATHEODORY conditions,
that S 1s continuous and it maps R" into a bounded set. Brou-
WER’'S theorem then insures the existence of fixed points § = Si.

But if ¢ = S then

s = UE + DF Fae = UE, + LYl — LELDT Fre) + DY Fag = T,

i.e ¢ is a fixed point of T.

Therefore, the additional assumption of uniqueness for the
CavucHY problem allows to replace ScHAUDER’s theorem by the
more elementary BROUWER'S theorem in the proof of Th. 16.1.

d) To prove Th. 16.1 we could also have used Th. B of the
Appendix, but to construct a snitable sequence |w,| would require,
in general, the application of BrRoUWER'S theorem for each Fk,
which is substantially equivalent to a unique application of ScHavU-
DER’S theorem.
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e) As was already observed in Sec. 14. d), assumption y) is
a very restrictive one. 1t can be replaced however by more general
assumptions like y') (Sec. 14, d)) and existence theorems similar to
Ths. 14.2, 14.3 and 14.4 can be obtained through the artifice used
in the proof of Th. 14.2. We have, for instance:

TH. 16.2. - Problem V has solutions if ©) [ satisfies conditions
@), B) of Sec. 14, i) there are two functions t— B(t), t — y(§) integrable
on A such that

(16.6) |fit, x)| << BiE) + y(E) ]2, x e R", ae tel

t— Myt + | T || M) [ o)ds > 0
A

with My defined by (14.6), and 4ii) the problem (16.5) has sclutions
for each we ClA, BY), Lw = 1.

f) It is easily verified that, provided (16.3) hold, not only
every fixed point of T is a solution of Problem V, but also, con-
versely, every solution of Problem V is a fixed point of 7. The-
refore conditions on f which insure some kind of contractivity
for T will also insure uniqueness of the solution of Problem V.
Fuarther, such conditions will also insure that the solution can
be obtained as the limit of a sequence of iterations | T'*x,} starting
from some x, € C(A, RB"). arbitrarily chosen.

The dependence of the solution from the data 4, f, L.! would
certainly deserve further investigation.

g) When I =0, taking ¢, = 0 the mapping T is defined by
Tw= KFw

where K = — L‘bLDj' -+ D;l- is a linear operator of L (A, B") into
C(A, R") Therefore the fixed points of T are the solutions of a
HAMMERSTEIN equation w = KFw Such equations have been exten-
sively investigated: we refer to the expository papers of H. Exr-
MANN [2], [3], also for the bibliography, and to M. M. VAINBERG'S
book [1].

h) We repeatedly observed that &(Ly) is a subspace of A
of dimension m << . If m > » the incompatibility of Problem II
(Remark 4.1), 1e.

Dx =0, Le. =0 = 0,
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or, equivalently, the existence of a left inverse Ly of Ly does not
insure per se that (16.2) i.e. (16.5), has solutions for each w, Lw=l.
However, this will be the case when m =, since then Ly= LE1
and (16.3) is satisfied for all w e C(A, R"), even those for which
Lw=1.

This case is the one most frequently encountered in the lite-
rature. For instance, when L is defined by Lx = x(r,)— x(r,) as
in the problem of harmonic solutions (Sec. 6, d)) it is called the
«non resonance» case.

When A = R", so that m = n, and L is into A = R”, it can be

proved (A. Liasora-Z. OpiaL [2]) that there is a t— A(f) from A
into L(A, &) such that denoting by U the evolution operator
associated with 4, the corresponding operator Lg has the inverse

Lgl. Writing equation (IT) as
dafdt — Aty = f{t, )

with fit, @) =[(t, «)+ [A(t) — A(t)]x, it suitable assumptions are
satisfied by f such, for instance, as CARATHEODORY’S «), B), Y), the
existence of solutions of Problem V can be proved. It must be
noted however that imposing conditions like y) om fimplies a
restriction both on A and L, hence on Ly.

t) A case which frequently occurs is that of Problem V for
an equation (II) of the form

(I1) dxfdt = &(t, x)x -+ 9(t, x)

where o satisfies CARATHEODORY’S «), 8), y) and ¢ is- a function
(t, ) into & which also satisfies CARATHEODORY’S assumptions.
More precisely ¢ is continuous (in the norm topology of &) with
respect to x € R* for each ¢{e A, (LEBESGUE) measurable (in the
same topology) with respect to ¢ for each x e R™, and | ?(¢, )| <Iy(t),
x e R* a.e. te A, for some v & Lioc(d, R).

Equation (IT') can be considered as a special case of (II) with
A(t) =0, f(t, x) = @, x)x + (?(t3 x),

[f(E, x)| < |t @)| ||| olt, )| < B() + vit)| |-

Since A(#) = 0 the corresponding evolution operator is the iden-
tity I in R" and Ly = L7 will be the restriction of L to RB", con-
sidered as the subspace of constant x € C(4, R"). Since My =1, we
derive from Th. 16.2 the conclusion that Problem V for equation
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(IT1"), i.e.
(16.7) dx/dt = o(t, x)x + o(t, x), Lax =1

has solutions if, in addition fo the assumptions made on & and
v, we have

(16.8) 1_(1+1L‘;,1|L|)fY(s)ds>o
A
and
(16 9) daydt = o(t, wE)w(t) + o, ), Lex=1

has solutions for each w, Lw = 1. In particular, if A = B* and
det Ly=3=0 there will be a solution of (16.7) provided that (16.8)
holds, with L{ replaced by L1 .

j) Another way of dealing with Problem (16.7) is the fol-
lowing. For each w, Lw =1, the function

Ap: t— Aw(t) = (I)(t, W(t))

of A into &, is infegrable by virtue of the assumptions on ®.
Instead of (16.9) let us consider the problem

(16.10) doefdt — Anltye = off, w(f), ILx=1

and assume that it has solutions for each w, Lw = 1. Next we
define (Th. 1.1) the evolution operator U, associated with A4, for
each w, the restriction L, o of L to the null space 9UD,) of
Dy = dJdt — An(t), the composition Ly, = Ly, ¢Uw, and its genera-
lized inverse LY, -

The fixed points of

t
w(t) — Un(t, 0L, (1 — L j Un(t, s)4(s, w(s))ds) +

t
+ f Tft, 8)els, wis))ds

will then be solutions of problem (16.7). To insure the existence
of such fixed points one has to assume that the set spanned by
|LY,| for Lw =1 is bounded.

12
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This assumption will be satisfied, in particular, if A = R",
dx/dt — An(t)x =0, Le=0 > =0
for each w, Lw =1, so that LE:” exists and, further,
Lw=1= |detLy,|=8>0

for some ¢ > 0.

References: H. A. AxmosieEwicz [l], [2]; L. BarBanar - A.
Havavay [1]; R. Conrr [1], [2], [5], [6], {7], [8]; L. N. EsHUKOV
[2]; S. N. Hiur [1]}; A. Lasora [1]; A. Lasora - C. OvkcH {1];
A. Lasora - Z. Op1avr [1], [2]. [3], [4]; Z. Op1av [1]; P. SanToRrO [1];
V. P. SkripNIK [1]; G. Vivnar: [1]; W. M. WaysUrN [1], [2], [5].

17. - Problem VJ.

a) The linear variety Ll defined by Lw =1 can be considered
as the l-level set of the linear operator L of C(A, RB") into the

space A. This remark suggests the following gemneralization of
Problem V.

ProBLEM VI. - Let A be a given compact subinterval of J. Let
A be a real linear normed space and let € be a continuous, non
necessarily linear, mapping of C(A, R") into A such that the set

Q={xe CA RY):Qx =0}

is infinite. It is required to determimne the solutions x of equation
I belonging to Q, i.e. such that

(17.1) Qx = 0.
b) We assume (Sec. 13) that
Dx = Fw, Qx =0

has solutions for each w, Qw = 0. Next we define a function ¢
of (w, y) e Q> 9UD) into A by taking te€ A and

o(w, 7) = Q4 + DI Fw).

The assumption just made means that to each w e Q there cor-
responds a non empty subset S, of 9UD) such that y e S,=
= d(w, y) = 0.
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A criterion to select a single v, out of S, will then be repre-
sented by any implicit function theorem insuring the existence
of one mapping w— yn of Q into 9UD) such that ®(w, yn)=0.

A fixed point w= Tw of the mapping T:w— Tw = yn -+
+ D;"Fw of Q into Q is a solution of Problem VI.

Reference: C. Avramescu [1].

¢) Problem VI has also been treated by a different method
which is closer to the one used for Problem V.
‘Write @=L — H, with H=L— @ and L linear, &(L) = C(A, R"),
OUL) 41014, such that Ly has right inverses L§ (or, in particular
the inverse Lgy'). Then

T: o — Tz = U%, + ULG(Hx — LDT Fx) + DY Fx
is a mapping ol C(A, R") into itself such that
DTx = Fx, @Tx = Hx — HTx.

Therefore, in general, T' does not map Q into Q, but anyway
its fixed points, if there are any, belong to .Q and are solutions
of Problem VI.

References: R. Conrtr [6]; H. EErRMANN [1}, [3]; G. PULVIRENTI
[1}; G. Sanracar: [1], [2]; E. Scrucca [1].

18. - Problem VII.

a) Problem V can now be generalized in another direction.
Observe that the linear variety Ll defined by Lw=1 is a convex
and also (due to the assumptions on L) infinite and closed subset
of C(a, R"). This suggests:

ProBLEM VII. - Let A be a given subinterval of J. Let Q be
an infinite, convex closed subset of C(A, R"). We want to determine
the solutions x of equation (II) such that

(18.1) x e Q.

It should be noted that Problem VII does not include Problem
VI because the set {z e C(A, R"): Qx = 0} needs not to be convex.
This time, as we shall see, the selection criterion is provided,

under suitable assumptions, by a fundamental lemma due to Mas-
SERA and SCHAFFER.
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b) In accordance with Sec. 13 we should assume that Dx = Fuw,
x € Q has solutions for each we Q. In fact we shall assume, more
restrictively, that the span of Q (i.e. the set of linear combinations
of elements in {!) and the span of FQ, are subspaces VC C(A, R")
and BC Lioo(A, R"), respectively, such that the pair (B, V) is ad-
missible with respect to D in the sense of MASSERA-SCHAFFER
(Sec. 10). This means that

Dx =y, xe V

has solutions for each y e B.

Having fixed re A let X, R" be the subspace of m-vectors
%(z) corresponding to y e OUD)[) V, let X, be any complement of
X, to B* and let P be the projection of R" onto X,. Since X,
X, are both finite dimensional, hence closed, it can be proved:

Massera-Schaffer’s lemma. If the pair (B, V) is admissible for
D and if 5, € X, then to each y e B the recorresponds a unique x,
such that
Dx, =y, x, eV, Pr, () =E,.
Moreover the mapping y—x, of B into DB}V 4s continuous.

This is a selection criterion which allows to define a point-
to-point mapping T of Q into ) (Sec. 13) and the existence of
fixed points can then be proved under suitable assumptions.

This technique has been successfully applied both for compact
and non compact A.

References: H. A. Anrtosiewicz [2]; W. A. Copprn [1]; C.
CorDUNEANU [2], [3]. [4]; P. HartMAN [1]; P. HarrMAN - N. ONU-
cuic [1]; J. L. Massera [1]; J. L. Massgra ~ J. J. ScHAFFER |[1],
(2} B3l

¢) A remark analogous to the one made in Sec. 16, d) about
the inconvenience of using Th. B of the Appendix instead of
ScEAUDER-TyYCcHONOV'S or BaANACH’S theorems to prove the exi-
stence of solutions of Problem V is valid also for Problem VII,
in general. However Th. B suits well to solve the asymptotic
Cavcny problem (11.1) for equation (II) by using a modified ver-
sion of ToNELLY'S sequence (Sec. 14) (See for instance Ia. D.
MameDOV [1)).

19. - A problem of G. Stampacchia.

The following problem considered by G. SrampaccHIA [1] is
an extension fo equation (IT) of the one considered in Sec. 11, h)
for equation (I).
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Let A be a compact subinterval of J. Let V,, .., V,, be given
subsets of A > RB" It is required to determine solutions of equa-
tion (1I) whose graph has a non empty intersection with each set V,.

Therefore in this problem £ will be the subset of x € C(A, B®)
whose graph intersects each set V,, hence it needs not to be convex.

Take v e A and let U, denote the set of points y(z) € R® corre-
sponding to y € OU(D) whose graph intersects V,. In other words
each set V, is projected into the hyperplane { =1t along the integral
curves of Dx =0 and the projection is U,.

Then let 6, ; x— 6,(x) be defined on R" by

8,(x) = d(z, U), =xeR"

Assumptions are made about the existence of solutions of the
gystem 6,(x) =0, ¢=1,.., n, so that |J,U, == @ or, equivalently

Dx =0, xe )

has solutions.

Finally equation (II), Dx = Fz, is imbedded in the family Dx =
= AFz, h e [0, 1] and it is assumed that the CaTCHY problem with
arbitrary initial data has a unique solution on A for each A. This
allows to define % sets U, ) for each 2 by projecting the sets V,

along the integral curves of Dx = 3Fx and to define % functions
8,2 in B", by

8, 2(2) = d(z, U,,)), x e R", e [0, 1]

The problem is thus transformed into that of proving |J,U,, .30,
or equivalently the existence of solutions of 6, ,(x)=0, ¢=1,..., n.

This is done under additional assumptions on the U, ,= U,
which insure that the mapping = - 6;3(x) has an odd topological
degree (not necessarily equal to -4 1), by applying BROUWER’S
invariance theorem.

The assumption about the uniqueness for the CaucHY problem
can be replaced by using ToNELLI'S sequence |wg,;} but this re-
quires an application of BROUWER’s theorem for each k. It seems
likely that a unique application of LERAY-SCHAUDER'S theory
would be equivalent, a remark analogous to that of Sec. 16, d).

20. - Generalized solutions and interface conditions.

In all what precedes solutions are always supposed to be abso-
lutely continuous. Technical applications require however to extend
the definition of solution so as to include functions of bounded
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variation, possibly discontinuous. Such discontinunities will then
necessarily be of the first kind (both limits a(r —), x(z +) exist
for each 7) and they will be countably many at most.

It makes sense therefore to ask for such generalized solutions
which in addition to side conditions like those entering the va-
rious b v.p., also satisfy a finite or countable set of equalities

(20.1) M,‘_x(v,., —)+ N,.a:(r,‘ +)=¢,

where the t, are prescribed discontinuity points on J, the M, and
N, are given matrices, and the ¢, are given veciors. Equalities
(20.1) are called interface conditions and problems (I)-(C) or (II)~(C)
with (20.1) are interface problems.

A natural development of this kind of problem is represented
by distribation differential equations. i.e. by equations x—Ax=f
with f a distribution.

References: A. Gownerul [1]; OC. Ouecm [1]; D. PramM - D.
Weiss [1]; T. J. Prexant - W. M. WayBurN [1]; D. WEeiss - D.
Prawm [1]; D. WEXLER [1], [2]; W. M. WHYBURN [5].

APPENDIX

ABOUT FIXED POINT THEOREMS

The most carrently used fixed point theorems in the theory of
ordinary d.e. refer to a mapping T of a metric space X. They
can be roughly divided into two categories, the first based on
« compactness » assumptions, the second based on «contractivity ».
Of the following, Ths. A, A’ and B belong to the first class, Ths,
C, D and E, to the second.

TH. A. - Let X be a Fréchet (= linear metric, locally convex,
complete) space.- Let () be a convex, closed subset of X. If T is
continuous and T.) is a compact subset of Q, then there exists at
least one x = Tx e L.

This is a particular case of TvcHONOV'S theorem (Math. An-
nalen 111, (1935), 767-776). When X is a BanacH (= linear, nor-
med, complete) space Th. A reduces to SCcHAUDER’s theorem (Studia
Math. 2, (1930), 171-180) and, for X = R", to the classical Brou-
WER'S theorem.

Extensions of BRoOWER’S, SCEAUDER’S and TycHONOV'S theo-
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rems to set-valued mappings were given respectively by S. Ka-
KUTANI (Duke Math. Jour., 8 (1941), 457-459), H. F. BOHNENBLUST -
S. KarLiN (Contributions to the Theory of Games Princeton 1950,
155-160) and Ky FaxN (Proc. Nat. Acad. Sci. U.S A, 38 (1952), 121.126).

Ta. A’ - Let X be a Fréchet space. Let T be completely conti-
nuous, i.e. compact (= TS is a compact subset of X for each boun-
ded subset S of X) and continuous. Then, either there are x =X Tx
for each X e [0, 1], or the set |x.ax=2ATx, A e 0, 1[} is unbounded.

This is a particular case of H. ScHAEFER’'S theorem (Math.
Annalen, 129 (1955), 415-416).

Tr., B. - Let X be a metric space with distance d. If T is com-
pletely continuous there is at least one x = Tx if (and only if) there
is a sequence {x,| in X which is bounded and such that d(Tx,, x,)— 0.
Moreover there is a subsequence |x,| such that d(x, , x) —0.

See: R. Conri, Le Matematiche, 15 (1960), 92.97; A. Harnmovicr,
Analele Stiint. Univ. Al. I. Cuza, 7 (1961), 65-76; K. Isex1, Math.
Japon., 7 (1962), 203-204.

Ta. C. - Let X be a complete metric space with distance d. Let
T be a contractive mapping (2 e. d(Tx', Tax")<< ad(x’, x”), with 0 <
<La<<1 for all &', " € X). Then T has a unique fixed point x = Tx,
and x = lim T*x,, for any a«, € X, where T' =T, T* =TT, ....

Th. C is known as BawacH’s (or BaNacH-CaccroproLI-TycHO-
Nov’s) contraction principle. Easy to prove and useful consequen-
ces of Th. C are the following Th. D and E.

Ta. D. - Let X be a complete metric space with distance d. Let
there exist a positive integer v such that T is contractive. Then
T has a unique fixed point x = Ta. If, further, T is continuous,
then x =lim T*x,, for any x,e X.

Ta. B - Let X be a Banach space, with norm | |. Let T be «
contractive mapping of the ball |x|<Zp into X. If 0 is the zero of
X and | T 0| <<o(l — o), there is a unique fixed point x = Tx and
= lim T,
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