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On the asymptotic equivalence of systems
of ordinary differential equations.

by VasiLios A. Srarkos (University of Athens)

Summary, - In this paper we deal with the asymptotic equivalence of the
linear system (A4) and the ‘ quasi-linear” system (4,) and improve
previous results on the subject of H. Weyl [6], V. A. Yakubovich {7]
and RB. Conti [3].

<

1. - Consider the systems of ordinary differential equations

4) y = A(t)y d
(4g) x = A(tix + glt, x) N dt) '

where A(t), t e[ty +oo) is an n <X n complex matrix with entries
summable functions in every finite subinterval of [f, +o0) and
g(t, x), (¢, x) € [to, +o0) < C* {C is the complex plane) is an n-di-
mensional complex vector.

Moreover, we suppose that the system (4,) is *‘quasi-linear”,
that is g satisfies the following conditions:

0
(1) [1gts, 011 ds =1 <+ o0 ()
tO
2 gt ®) — git, y)| S Ub) |z —y
for every (¢, x), (t, y) in [£,, + oo0) < O»
“+x
3) ’l(t)dt=l<—|—oo.
f()

Hence, the uniqueness of the solutions of (4y4) is valid and the
right end-point of the domain (interval) of the solutions of this
system is - co.

‘We suppose further that the system (A4) is un'formly stable
which implies that the solutions of (44) are bounded and uniformly
stable. This can be easily proved by the argument used in [1;
p. 97, lemma].

(1) By definition, |o|= 2 |x,| and |X|=2|x,|, where x is a com-
1] %)

plex vector and X a complex matrix.
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DeriNitION 1. - The systems (A) and (Ay) are called asymptoti-
cally equivalent if and only if there exists a homeomorphism
»: C* — C» such that

lim [x(t; &) — y(t; o) =0,
t— 00

where x(t; &) is the solution of (Ag) with x(t,; 3) =% and y(t; »(F)
the solution of (A) with y(t,; v(z)) = o(f).

In a paper by R. Contr [4] it was stated (Teorema I) that qua-
si-linearity of (44} plus uniform stability of (4) are sufficient to
insure asymptotic equivalence between (4) and (44), but the proof
is mot correct. While it remains an open question whether this
statement is true or not, we are going in what follows to prove
it under an additional assumption on A(¢) (Theorem 1). Our result
includes previous ones by H. WEyL [6] or [5; p. 514], V. A. Ya-
KuBovicH [7] and R. Conr1 [3].

2. —~ Case of A(f) having a Jordan canonical form. Let J(?),
t € [to, +oc) be an n < » complex matrix having the JORDAN cano-
nical form. that is having blocks J,{{), r=1. .., m down the
main diagonal and zeros elsewhere, where J,(f) is an %, < n,
matrix of the form J{{)=A\{)E, + Z, with E, the unit n, X< n,
matrix and Z, the n, < %, matrix of the form

010...00
001...00
if n,.>1,
000...01
000...00

otherwise the 1 >< 1 null matrix.
Let A(t) = J(#), t € [to, +-o0) and let Y({) = (yy(?)) be the principal
fundamental matrix of (4), i.e.

(& — gt [ .
yi(t) = = expj Ar(s)ds for ve s < i < j< vy,
fo

(4
(4)

where vy =0, v, =n, + ... + 5,

¥is{lt) = 0 for all the other indices 4, j.
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For the matrix Y(#)Y—1)=(d;(, 7)), an easy computation
leads to

PR Ul L

t
exp [Ms)ds tor vy <iZj <o
B

Uiy(t, ©) =0 for all the other indices 4, j.

Under the assumptions of this and the previous section the
following lemmas hold.
LeMma 1 - If T =const., T e [t,, +o0), then lim (¢, T)= 0,
t—+40

otherwise 4 =j and Y,u(t, T) is bounded in [t,, + o0).

Proor. - It is sufficient, by (5), to prove the lemma for the
¢

. (t — T)yrr— ' .
functions ¢, 4, ,(f, T) =————=+ exp [ Ar(s)ds. The uniform
“r—1 ” (nr — 1)!
T
stability of the system (4) means that there exists a constant ¢> 0
such that

(6) | Y(£) Y—(z)| < ¢ for every ¢, = with {, <+ <¢

and consequently

\7) 04y _ +1,v( T)<c for every te [T, + o).
From (6), it follows also that
4T
t+ T 1 i
+
Yoo (BT ) = Sttt T exp(—[htoids) <,
T

i.e. T

cdny—1

2
b, 41, (8 T) < 27, exp {)\r(s)ds = (nr — 1)! =T
T

i+ T
. \!/vr_’—}—l,v', (*2"‘ ) T) .

Hence, by (7),

c4n,—1

F—Tyr= for every te(T, + o)

04,41, T)<(m,—1)!

which proves the lemma.
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Let now I={(. j): lim 4,(#)=0{. Then, by lemma 1 (T=t),
t— 400

it follows that (i, j) € I implies 4 =j. If U(t) = (uis(#)), te&[t,, + oo)

is the » > n matrix with uiy({) =0 for (4, ) € I and wi(t) = yi (f)

for (¢, 9) ¢ I, then the following lemma holds.

oo o0

LeMMaA 2. - The integrals /U{r) g(r, xt15 8)) dv and / | UE) | () dx
to to
exist
Proor. - We have that
+ +x
j LU 9@, a(x; B dv=(.$)e[ / yi () |g(r, x(z; )] dr
i, 14 .
o to

By 1), @), (3), (4), (5) and (6), we get

t t
Yii(t) ] 97 @) g, 23 B)| dv = [ ity ) | g, 23 )| dv <
to to

t t t
¢ [ 196, a3 ) g5, 001 ds+ o 19, O] dr <o [16) {ats3 D] dr +
ty to

tO
t
+C/|9(T, 0)] dr < ce,l 4 cy =k,
t

where ¢, is a bound of x(¢;¥) in [£,, + o).

Hence
t
f Yi () g, x(r; 8)| dr < kyii (¢
t
+o0
and if / Y@ | g, alc; D)| dr = + oo, then Jim i) =0 which
by

contradicts (¢,¢)¢ L. It is obvious that the first integral exists
also when we replace the solution «(¢;£) by any function which
is bounded in [¢,, -+ o0).
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Similarly we have

+o 4o
[lvoie = = [yEe 1
7 (i,i}&l
0
and
¢ t
i) / Y dr— [ it D) 1) de < ¢ [ 1) de < cl.
fo f b
Hence
t
[ YRR ds < cly'd)
to
“+x
and if [ Yy @1 dr= + oo, then lim yu(f) =0 which also
B t——+oco

ty
contiadicts (3, 4) ¢ L.

LemMA 3. - The systems (A) and (4g) are asympiotically equi-
valent.

Proor. - By virtue of lemma 2, we define the homeomorphism
w: Cn — C* by
—+o0
8) w@) =t 4 / U(x)g(z, a(r, 2))dr.
t
The continuity of the function w can be easily derived from
+x
lw() — o@E*)] < [§— ¥ +] | U@) [Ur) |ac(rs &) — a(r; €¥) |dx,
to

lemma 2 and the (uniform) stability of the solutions of (4y).
Moreover, we have to prove that the range of w is the whole space
C» and that » is one-to-one. To this end we prove first that for
any n € C* there exists a e C* such that

-.}-oo
9 #(t5 D = ylts 1) — YO [ Ugte, 2653 9) e
t

t
+fY(t) Y '(x)g(x, a(r; E)dr.
to
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In fact, without loss of generality we can assume, by (3) and
lemma 2. that #, is such that

xc oo

+ .
/| UR)| Uz)dx + / lR)dr| =¢g<1,
t !

ty

(10) c

since a finite shifting does not affect the substance of the que-
stion by virtue of the continuous dependence of the solutions on
the initial values.

Now, by means of successive approximations

x(f) = y(t; =)

:f-oo
@l = y(t; ) — YO [ UG, m()ds
to
t
+ ( Y)Y (v)g(x, w())ds (v=0, 1, 2, ..)

t
it can be easily verified that
(11) |2y 1) — 2u(f), << @cq for every telt,, + o),
where ¢, is a bound of the solution y(f; »). Thus, (9) can be
easily derived from (11).
From (8) and (9) it follows immediately that
12) 1= u@),
i.e. that the range of w is the whole space C».

On the other hand, supposing w() = »w(*), we have by (2), 6 ,
9), (10) and (12) that

lw(t; 5y —a(t; E%) | < g sup |a(t; §)— x(t; 2¥)| for every felly, 4o0),
e[y, +c0)
ie. a(t; 5) = a(t; &%) for every te[t,, + o) and hence § =%* which

proves that » in one-to-one.
It remains to prove now that

(3) Jim - [x(d; 5 — yit; o] = 0.
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It is easy to verify that

14 xi(t;8) —yi(t; 0@) = = Fyt, 1),
7

V;’here Fi](t. T) = \Pi,(t, T) [:X}](T, E) —_ y](T’ "J(E)] +
{t!/e,(t. 7)g,(7, x(; Z)dr.
T

Now, we consider the following two cases
a. (¢, j) € I. Because of the boundedness of the solutions of the
systems (4) and (4y), there exists a constant 3 > 0 such that

(15) [2(t; &) — y(t; o) | << M for every ¢ e [t,, + o0).

Let T, Te[t,, +oc) be chosen so that

t t
’ € €
(16) ./l(r) dr <M and / lg(z, 0)} dr < mfor every te [T, 4o,
T T

where c; is a bound of the solution «(¢; %) in [{,, 4 o).
By (2), (15) and (16) we obtain

t t

| Fitt, 1] < b, DI+ e [ 1 ds + ¢ [ 196, Olds < Mty D)+ 1z
T T

which, by lemma 1, implies that

(17 lim sup | Fyt, T)| <1%.

—~-+}-co

b. (i, H¢ 1. In this case 2=j and, by virtue of (4) and (5),
one can easily verify that

¢
Fut, T) = yiu®D[Ei — i) + f Y7 (gi(m x(v; §))dr]

and by (8),
—+o0
Futt, D] = 9u®)| [9700:6, o5 Das|
t
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which, by virtue of the lemmas 1 and 2, implies that

(18) lim Fu(t, T)=0.

t 20
Now, from (14). (17) and (18), it follows

lim sup |a(t; &) — y(f; wE)| <« for every ¢e>0
£+ 420

which implies (13).

3. - General case of A(f). Let G(t), Q@) te[¢,. +o0) be n <~ n
complex matrices having entries summable functions in every
finite subinterval of [t,, 4+ o0).

DeriniTION 2. - (R. ContI [2]). We say that G(t) is tuw-similar
to Q@) if and only if
—+
[S1+ 5060 — ety at < + oo
to

for some non-degenerate n < n complex matriz Sit), te[t,, + o)
with eniries absolutely continuous functions in every finite subinter-
val of [t,, + oo) and such that S({E) and S—'(t) are bounded in
[to, + o0). More exactly we say that G(t) is te—similar to Q1) by
means of the mairix S(t)

Under the assumptions of section 1 the following theorem holds.

THEOREM 1. — Let A(l) be it—similar to a mairixz J(t) having
the Jordan canonical form. Then the systems (4) and (Agy) are
asymptotically equivalent.

Proow. - If A(f) is two-similar to a matrix J(f) by means of
the matrix S(¢), then by the substitution

(19) y = S{w
the system (4) is transformed into the system

where g¥(t, w) = — S—YB)[S() + SHIE) — ADSH)]w.

Similarly the substitution

(20) x = S(t)z
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transforms the system (4y) into the system
(Jg*) 2= J(t)z + g*(ta Z),

where g.(t, 2) = g(¢, S(t)2) — S™(B)[S®) + SH)J({#) — AB)SH)]z-

Moreover, we consider the system
) u=J(t)u

which is uniformly stable. since (4) is uniformly stable and A(f)
is fo-similar to J(¢) [2; p. 249,.

Now, it is easy to verify that we can apply lemma 3 for the
systems (J), (Jg-) and (J), (Jg,) respectively. Hence, the asymptotic
equivalence of (J), (Jgo) and of (J), (Jy) leads to the asymptotic
equivalence of the systems (Jg) and (Jg,). since the relation of
the asymptotic equivalence is transitive. Thus the assertion of the
theorem follows immediately by virtue of (19) and (20).

Let now consider the systems (4) and

(B) x = B(t)x,

where B(f), te[t,, + o<) is an n < n complex matrix with en-.
tries summable functions in every finite subinterval of [¢,, 4+ o0).

CoROLLARY. — Let A(f) be l-similar to a matrix J(t) having
the Jordan canowical form and let also A(t) be tx-similar to B(f)
by means of a matriz T(t) for which T= lim 1(f) exists and is

t— 00
non-degenerate, i.e. det T-=0. Then the systems (4) and (B) are
asymptotically equivalent.

Proor. - The substitution
x = Ttz
transforms the system (B) into the system
43) 2= Az + g, 2),
where g(t, 2) = — T\O)[TE) + TE)AE) — BET@)e.

An application of Th. 1 leads to the asymptotic equivalence of
the systems (4) and (43). On the other hand it is easy to verify
that the system (B) is asymptotically equivalent to the system
(A7) by means of the homemorphism w() = T—%.
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Hence, by the transitivity of the relation of the asymptotic
equivalence, the assertion of the corollary follows.

As we have mentioned in section 1 the well-known theorem
of H. WeyL [6] or [6; p. 5l4] and that of V. A. YakuBovIicH
[7; p. 237] fall into Th. 1 as particular cases, since the case where
A(%) is constant or reducible implies that A(f) is f{o-similar to a
matrix J(f) having the JORDAN canonical form. Also, for the same
reason, the theorems 1 and 2 of R. Cowtr [3; p. 45 and 46] fall
into the above corollary as particular cases.

4. — We shall give now a more general formulation of Th. 1
by which the above corollary is obvious.
Consider the “quasi-linear” systems (4g) and

(Br) y = By + f(t, v)

and suppose, as in section 1, that the system (4) is uniformly stable.

THEOREM 2. - Let A(f) be to-similar to a matriz J() having
the Jordan canonical form and let also A(t) be to—similar to B(Z)
by means of a matrix T({) for which T= lim T() exists and is

t—s+40c0
non-degenerate, i.e. det T3=0. Then the systems (4y) and (Bf) are
asymptotically equivalent.

Proor. ~ The theorem follows immediately from Th. 1, the
corollary and the transitivity of the relation of asymptotic equi-
valence, by comparing first the systems (4) and (4,) and then (B
and (By).
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