Bollettino
 Unione Matematica Italiana

Alexander Abian, David Deever

Representation of partially and simply ordered sets by terminating sequences.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 21 (1966), n.4, p. 371-376.

Zanichelli
http://www.bdim.eu/item?id=BUMI_1966_3_21_4_371_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

[^0]Bollettino dell'Unione Matematica Italiana, Zanichelli, 1966.

Representation of partially and simply ordered sets by terminating sequences

Alexander Abian and David Deever (Columbus, Ohio, U.S.A.)

Sunto. - Si dimostra un teorema generale sulla rappresentazione degli insiemi parzıalmente ordinatı per mezzo di sequenze costituite da 0,1 e u terminanti con 0 e ciascuna con almeno un elemento uon nullo. Questo teorema conduce a una forma più forte dei noti teos emi di rappresentazrone di Sierpinski e Popruzenko.

In this paper we prove a general Theorem for representation of partially ordered sets by means of sequences made up of 0,1 , and u, terminating in 0 's, and each with a last non-zero term. As shown below, this Teorem yields both a stronger form of SierPinski's [1] and Popruzenko's [2] representation theorems.a

Definition 1. - Let $\left(a_{i}\right)$ and $\left(b_{i}\right)$ be two sequences (of the same finite or transfinite typej made up of the numbers 0 , 1 , and the letter u. We say that $\left(a_{i}\right)$ is less than or equal to $\left(b_{i}\right)$ according to the principle of first numerical differences, and we denote this by:

$$
\begin{equation*}
\left(a_{i}\right) \underline{\underline{3}}\left(b_{i}\right) \tag{1}
\end{equation*}
$$

if $\left(a_{i}\right)$ is equal (identical) to $\left(b_{i}\right)$ or it there exists an index j such that
(i) $a_{j}=0$ and $b_{j}=1$
(ii) $a_{i}=1$ implies $b_{i}=1$ for $i<j$
(iii) $b_{i}=0$ implies $a_{i}=0$ for $i<j$

As usual, if $\left(a_{i}\right) \underline{\mathcal{Z}}\left(b_{i}\right)$ and $\left(a_{i}\right) \neq\left(b_{i}\right)$ then we write $\left(a_{i}\right)-\mathcal{Z}\left(b_{i}\right)$.
Lemma. - Let λ be an ordinal and let T_{λ} be the set of all sequences of type λ made up of 0,1 , and u. Then T, is partially ordered by the principle of first numerical differences i.e., $\left(T_{\lambda}, \underline{-3}\right)$ is a partially ordered set.

Poof. - Clearly for every element $\left(a_{i}\right)_{i<\lambda}$, of T_{2}, we have $\left(a_{i}\right)_{i<\lambda}-3\left(a_{i}\right)_{i<\lambda}$ since (i) cannot hold in this case. Thus -3 is irreflexive.

Next we show -3 is transitive. Let $\left(a_{i}\right)_{i<\lambda}-3\left(b_{i}\right)_{i<\lambda}$ and $\left(b_{i}\right)_{i<\lambda}-3$

$$
\begin{equation*}
a,=0 \quad \text { and } \quad b_{j}=1 \tag{2}
\end{equation*}
$$

$$
\begin{array}{lllll}
a_{i}=1 & \text { implies } & b_{i}=1 & \text { for } & i<j \\
b_{i}=0 & \text { implies } & a_{i}=0 & \text { for } & i<j \tag{4}
\end{array}
$$

and there exists a k such that

$$
\begin{equation*}
b_{k}=0 \quad \text { and } \quad c_{k}=1 \tag{0}
\end{equation*}
$$

$$
\begin{equation*}
b_{i}=1 \quad \text { implies } \quad c_{i}=1 \quad \text { for } \quad i<k \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
c_{i}=0 \quad \text { implies } \quad b_{i}=0 \text { for } i<k \tag{7}
\end{equation*}
$$

Clearly, in view of (2) and ($\overline{0}$) we see that $j \neq k$. Thus it remains to consider the following two cases.

Case 1. - If $j<k$ then by (2) we have

$$
\begin{equation*}
a_{i}=0 \tag{8}
\end{equation*}
$$

Also since $j<k$, and $b_{i}=1$, by (6) we have

$$
\begin{equation*}
c_{j}=1 \tag{9}
\end{equation*}
$$

Now since $j<k$, if $i<j$ then $i<k$. Thus by (3) and (6) we have

$$
\begin{equation*}
a_{1}=1 \text { implies } b_{i}=1 \text { and } c_{i}=1 \text { for } i<j \tag{10}
\end{equation*}
$$

and by (7) and (4) we have

$$
\begin{equation*}
c_{i}=0 \text { implies } b_{i}=0 \text { and } a_{i}=0 \text { for } i<j \tag{11}
\end{equation*}
$$

From (8), (9), (10), and (11) it follows that $\left(a_{i}\right)_{i<\lambda}-3\left(c_{i}\right)_{i<\lambda}$.
Case 2. - If $k<j$ then by (5) we have

$$
\begin{equation*}
c_{k}=1 \tag{12}
\end{equation*}
$$

and since $k<j$ and $b_{k}=0$ by (4) we have

$$
a_{k}=0
$$

Now since $k<j$, if $i<k$ then $i<j$. Thus by (3) and (6) we have

$$
\begin{equation*}
a_{i}=1 \quad \text { implies } \quad b_{i}=1 \quad \text { and } \quad c_{i}=1 \quad \text { for } \quad i<k \tag{14}
\end{equation*}
$$

and by (7) and (4) we have

$$
\begin{equation*}
c_{i}=0 \quad \text { implies } \quad b_{i}=0 \quad \text { and } \quad a_{i}=0 \quad \text { for } \quad i<k \tag{10̄}
\end{equation*}
$$

From (12). (13), (14), and (15) again it follows that $(a,)_{i<1}-3$ $\left.\zeta\left(c_{i}\right)_{i<}\right)$. Thus -3 is a transitive relation.

We have shown that -3 is an irreflexive and transitive relation, which implies that $\left(T_{2}, \underline{-}\right)$ is a partially ordered set, as desired.

Let us also observe that in case two sequences have no term u, the ordering -3 as introduced in (1) reduces to the usual ordering by first differences.

Theorem. - Let $(P, \leq) b e$ a partially ordered set of power \mathcal{N}_{μ}. Then (P, \leq) is isomorphic to a subset S of $T \omega_{\mu}$ ordered by the principle of first numerical differences such that for every element $\left\{s_{i}\right)_{i<\omega_{\mu}}$ of S there exists a λ with $s_{\lambda}=1$ and $s_{i}=0$ for every $i>\lambda$, and for every ordinal $\tau<\omega_{\mu}$ there exists an element $\left(t_{i}\right)_{i<\omega_{\mu}}$ of S with $t_{\tau}=1$ and $t_{i}=0$ for every $i>\tau$.

Proof. - Let $\left(p_{j}\right)_{j<\omega_{\mu}}$ be a well-ordering of P. Consider a mapping f from P into $T \omega_{\mu}$ defined as follows:

$$
f(p,)=\left(a_{i}^{j}\right) i<\omega_{\mu} \quad \text { for every element } p_{j} \text { of } P
$$

where
(16) $\quad a_{i}^{\prime}=\left\{\begin{array}{l}1 \text { if } p_{1} \leq p, \text { and } i \leq j \\ 0 \text { if } p_{1}>p_{j} \text { or } i>j \\ u \text { otherwise (i.e. if } p_{i} \text { and } p_{i} \text { are incomparable and } i \leq j \text {) }\end{array}\right.$

We shall show that f is the desired isomorphism.
From (16) il follows that for every $j<\omega_{\mu}$ we have

$$
\begin{equation*}
a_{j}^{j}=1 \quad \text { and } \quad a_{i}^{j}=0 \quad \text { for every } \quad i>j \tag{17}
\end{equation*}
$$

Takiug $j=\lambda$ on the one hand, and $j=\tau$ on the other, we see that the range S of f satisfies the conditions of the Theorem.

Next we show that f is a one-to-one mapping.
Let $f\left(p_{3}\right)=f\left(p_{k}\right)$. i.e., $\left(a_{i}^{j}\right)_{i<\omega_{\mu}}=\left(a_{i}^{k}\right)_{i<\omega_{\mu}}$. Then in view of (16)
we have

$$
\begin{array}{llll}
a_{j}^{j}=1 & \text { implies } & a_{j}^{k}=1 & \text { and } \\
p_{j} \leq p_{k} \tag{19}\\
a_{k}^{k}=1 & \text { implies } & a_{k}^{j}=1 & \text { and } \\
p_{k} \leq p_{j}
\end{array}
$$

Thus we see that $p_{J}=p_{k}$ and therefore f is one-to-one.
To prove that f preserves order in both directions we consider the following two cases.

CASE 1. - Let $p_{j}<p_{k}$, where $f\left(p_{j}\right)=\left(a_{i}^{j}\right)_{i<\omega_{\mu}}$ and $f\left(p_{k}\right)=\left(a_{i}^{k}\right)_{i<\omega_{\mu}}$. Then since $p_{j}<p_{k}$ in view of (16) we have

$$
\begin{equation*}
a_{k}^{k}=1 \quad \text { and } \quad a_{k}^{i}=0 \tag{20}
\end{equation*}
$$

If $a_{i}^{i}=1$ then $p_{1} \leq p_{j}$ and since $p_{j}<p_{k}$ we have $p_{i}<p_{k}$. Thus from (16) it follows that

$$
\begin{equation*}
a_{i}^{j}=1 \quad \text { implies } \quad a_{i}^{k}=1 \quad \text { for } \quad i<k \tag{21}
\end{equation*}
$$

On the other hand, if $a_{i}^{k}=0$ and $i<k$ then by (16) we must have $p_{i}>p_{k}$, since $i \ngtr k$, and since $p,<p_{k}$ we have $p_{i}>p_{\text {, }}$. Thus from (16) it follows that

$$
\begin{equation*}
a_{i}^{k}=0 \quad \text { implies } \quad a_{i}^{i}=0 \quad \text { for } \quad i<k \tag{22}
\end{equation*}
$$

In view of (20), (21), and (22) we see that $\left(a_{i}^{j}\right)_{i<\omega_{\mu}}-3\left(a_{i}^{k}\right)_{i<\omega_{\mu}}$ and thus $p_{j}<p_{k}$ implies that $f\left(p_{j}\right)-\mathcal{f}\left(p_{k}\right)$.

CASE 2. - Let $f\left(p_{j}\right)=\left(a_{i}^{j}\right)_{i<\omega_{\mu}}-3\left(a_{i}^{k}\right)_{i<\omega_{\mu}}=f\left(p_{k}\right)$. Then there exists an index h such that in view of (i) and $(i i)$.

$$
\begin{array}{cl}
& a_{h}^{\prime}=0 \quad \text { and } \quad a_{h}^{k}=1 \\
a_{i}^{j}=1 & \text { implies } \quad a_{i}^{k}=1 \quad \text { for } \quad i<h . \tag{24}
\end{array}
$$

From (16) and (23) it follows that

$$
\begin{equation*}
p_{h} \leq p_{k} \quad \text { and } \quad h \leq k \tag{25}
\end{equation*}
$$

If $h \leq j$ then since by (23) we have $a_{h}^{j}=0$ we see by (16) that $p_{h}>p$. But then by (25) it follows that $p_{j}<p_{k}$.

If $j<h$ then since by (16) we have $a_{j}^{i}=1$ we see by (24) that $a_{j}^{K}=1$ which implies $p_{j} \leq p_{h}$. But since $f\left(p_{j}\right) \neq f\left(p_{h}\right)$ it follows that $p_{j} \neq p_{k}$ and hence $p_{j}<p_{k}$.

Thus $f\left(p_{j}\right)-\jmath f\left(p_{k}\right)$ implies $p_{j}<p_{k}$. Hence f is an isomorphism as desired.

Definition 2. - A partially ordered set (P, \leq) is said to be quasi-isomorphic to a partially ordered set (Q, \leq^{*}) if there exists a one-to-one mapping from P onto Q such that for every two elements x and y of P we have $x \leq y$ implies $f(x) \leq * f(y)$.

It is obvious that if (P, \leq) is a simply ordered set then the above quasi-isomorphism reduces to an isomorphism.

A slight modification of the proof of the above theorem yields the following stronger version of the result of J. Popruzenko, [2].

Corollary 1. - Let (P, \leq) be a partially ordered set of power \mathcal{H}_{μ}. Then (P, \leq) is quasi-isomorphic to a set H of sequences of 0 and 1 of type ω_{μ} ordered by first differences, such that for every element $\left(h_{2}\right)_{i<}<\omega_{\mu}$ of H there exists a λ with $h_{\lambda}=1$ and $h_{i}=0$ for every i $>\lambda$, and for every $\tau<\omega_{\mu}$ there exists an element $\left(g_{i}\right)_{i<\omega_{\mu}}$ of H with $g_{\tau}=1$ and $g_{i}=0$ for every $i>\tau$.

Proof. - In the definition of the sequences $\left(a_{i}^{i}\right)_{i<\omega_{\mu}}$ given by (16) replace u by 0 , i.e.

$$
a_{i}^{j}=\left\{\begin{array}{l}
1 \text { if } p_{1} \leq p_{j} \text { and } i \leq j \tag{26}\\
0 \text { otherwise }
\end{array}\right.
$$

Then (17) through (21) remain valid. On the other hand, (22) becomes the contrapositive of (21) and hence is valid. Clearly (17) through (22) imply that f is a quasi-isomorphism, as desired.

An obvious consequence of Corollary 1 is the following.

Corollary 2. Every partial order in a set P can be extended to a simple order in the same set P preserving the original order among the elements of P.

Since for a simply ordered set (P, \leq) the quasi-isomorphism mentioned in Corollary 1 is an isomorphism, we have as an immediate consequence of Corollary 1 the following result of W. Sierpinski, [1].

Corollary 3. - Let (P, \leq) be a simply ordered set of power \mathcal{S}_{μ}. Then (P, \leq) is isomorphic to a set H of sequences of 0 and 1 of type ω_{μ} ordered by first differences such that for every element
$\left(h_{i}\right)_{i<\omega_{\mu}}$ of H there exists a i with $h_{\lambda}=1$ and $h_{2}=0$ for every $i>\lambda$, and for every $\tau<\omega_{\mu}$ there exists an element $\left(g_{i}\right)_{i<\omega_{\mu}}$ of H with $g_{\tau}=1$ and $g_{i}=0$ for every $i>\tau$.

REFERENCES

[1] W. Sierpinski, Cardinal and Ordinal Numbers, a Monografie Matematicznes, t. 34. Warszawa, 1958, p. 460.
[2] J. Popruzenko, Sur une proprieté des ensembles partiellement ordonués, a Fund. Math. », 53 (1963-6t), p. 13-19.

Pervenuta alla Segreteria dell' U. M.I.
il 6 novembre 1965

[^0]: Articolo digitalizzato nel quadro del programma
 bdim (Biblioteca Digitale Italiana di Matematica)
 SIMAI \& UMI
 http://www.bdim.eu/

