BOLLETTINO UNIONE MATEMATICA ITALIANA

ALEXANDER ABIAN, DAVID DEEVER

Representation of partially and simply ordered sets by terminating sequences.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 21 (1966), n.4, p. 371–376.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1966_3_21_4_371_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Representation of partially and simply ordered sets by terminating sequences

ALEXANDER ABIAN and DAVID DEEVER (Columbus, Ohio, U.S.A.)

Sunto. - Si dimostra un teorema generale sulla rappresentazione degli insiemi parzialmente ordinati per mezzo di sequenze costituite da 0, 1 e u terminanti con 0 e ciascuna con almeno un elemento non nullo. Questo teorema conduce a una forma più forte dei noti teoremi di rappresentazione di Sierpinski e Popruzenko.

In this paper we prove a general Theorem for representation of partially ordered sets by means of sequences made up of 0, 1, and u, terminating in 0's, and each with a last non-zero term. As shown below, this Teorem yields both a stronger form of Sierpinski's [1] and Popruzenko's [2] representation theorems.

DEFINITION 1. – Let (a_i) and (b_i) be two sequences (of the same finite or transfinite type) made up of the numbers 0, 1, and the letter u. We say that (a_i) is less than or equal to (b_i) according to the principle of first numerical differences, and we denote this by:

$$(a_i) - 3(b_i)$$

if (a_i) is equal (identical) to (b_i) or if there exists an index j such that

- (i) $a_j = 0$ and $b_j = 1$
- (ii) $a_i = 1$ implies $b_i = 1$ for i < j
- (iii) $b_i = 0$ implies $a_i = 0$ for i < j

As usual, if $(a_i) - \exists (b_i)$ and $(a_i) + b_i$ then we write $(a_i) - \exists (b_i)$.

LEMMA. – Let λ be an ordinal and let T_{λ} be the set of all sequences of type λ made up of 0, 1, and u. Then T_{λ} is partially ordered by the principle of first numerical differences i.e., $(T_{\lambda}, \underline{-3})$ is a partially ordered set.

Poof. - Clearly for every element $(a_i)_{i < \lambda}$ of T_{λ} we have $(a_i)_{i < \lambda} - | \Im(a_i)_{i < \lambda}$ since (i) cannot hold in this case. Thus $-\Im$ is irreflexive.

Next we show $\neg \exists$ is transitive. Let $(a_i)_{i < \lambda} \neg \exists (b_i)_{i < \lambda}$ and $(b_i)_{i < \lambda} \neg \exists (c_i)_{i < \lambda}$. Then by (i). (ii). and (iii) there exists a j such that

$$a_j = 0 \quad \text{and} \quad b_j = 1$$

(3)
$$a_i = 1$$
 implies $b_i = 1$ for $i < j$

(4)
$$b_i = 0$$
 implies $a_i = 0$ for $i < j$

and there exists a k such that

$$b_k = 0 \quad \text{and} \quad c_k = 1$$

(6)
$$b_i = 1$$
 implies $c_i = 1$ for $i < k$

(7)
$$c_i = 0$$
 implies $b_i = 0$ for $i < k$

Clearly, in view of (2) and (5) we see that $j \neq k$. Thus it remains to consider the following two cases.

Case 1. - If j < k then by (2) we have

$$a_i = 0$$

Also since j < k, and $b_i = 1$, by (6) we have

$$(9) c_i = 1$$

Now since j < k, if i < j then i < k. Thus by (3) and (6) we have

(10)
$$a_i = 1$$
 implies $b_i = 1$ and $c_i = 1$ for $i < j$

and by (7) and (4) we have

(11)
$$c_i = 0$$
 implies $b_i = 0$ and $a_i = 0$ for $i < j$

From (8), (9), (10), and (11) it follows that $(a_i)_{i < \lambda} - \exists (c_i)_{i < \lambda}$.

Case 2. - If k < j then by (5) we have

$$c_k = 1$$

and since k < j and $b_k = 0$ by (4) we have

$$a_{k}=0$$

Now since k < j, if i < k then i < j. Thus by (3) and (6) we have

(14)
$$a_i = 1$$
 implies $b_i = 1$ and $c_i = 1$ for $i < k$

and by (7) and (4) we have

$$(15) c_i = 0 implies b_i = 0 and a_i = 0 for i < k$$

From (12), (13), (14), and (15) again it follows that $(a_i)_{i < \lambda} - 3$ - 3 $(c_i)_{i < \lambda}$. Thus - 3 is a transitive relation.

We have shown that -3 is an irreflexive and transitive relation, which implies that $(T_{\lambda}, -3)$ is a partially ordered set, as desired.

Let us also observe that in case two sequences have no term u, the ordering -3 as introduced in (1) reduces to the usual ordering by first differences.

Theorem. – Let (P, \leq) be a partially ordered set of power \mathcal{N}_{μ} . Then (P, \leq) is isomorphic to a subset S of $T\omega_{\mu}$ ordered by the principle of first numerical differences such that for every element $(s_i)_{i<\omega_{\mu}}$ of S there exists a λ with $s_{\lambda}=1$ and $s_i=0$ for every $i>\lambda$, and for every ordinal $\tau<\omega_{\mu}$ there exists an element $(t_i)_{i<\omega_{\mu}}$ of S with $t_{\tau}=1$ and $t_i=0$ for every $i>\tau$.

PROOF. - Let $(p_j)_{j<\omega_{\mu}}$ be a well-ordering of P. Consider a mapping f from P into $T\omega_{\mu}$ defined as follows:

$$f(p_i) = (a_i^j)_{i < \omega_{i\mu}}$$
 for every element p_i of P

where

(16)
$$a_i^j = \begin{cases} 1 & \text{if } p_i \leq p, \text{ and } i \leq j \\ 0 & \text{if } p_i > p_j \text{ or } i > j \\ u & \text{otherwise (i.e. if } p_i \text{ and } p_j \text{ are incomparable and } i \leq j \end{cases}$$

We shall show that f is the desired isomorphism. From (16) il follows that for every $j < \omega_{\mu}$ we have

(17)
$$a_i^j = 1$$
 and $a_i^j = 0$ for every $i > j$.

Taking $j = \lambda$ on the one hand, and $j = \tau$ on the other, we see that the range S of f satisfies the conditions of the Theorem.

Next we show that f is a one-to-one mapping.

Let
$$f(p_i) = f(p_k)$$
 i.e., $(a_i^i)_{i < \omega_{ii}} = (a_i^k)_{i < \omega_{ii}}$. Then in view of (16)

we have

(18)
$$a_i^i = 1$$
 implies $a_i^k = 1$ and $p_i \le p_k$

(19)
$$a_k^k = 1 \quad \text{implies} \quad a_k^l = 1 \quad \text{and} \quad p_k \leq p_j.$$

Thus we see that $p_j = p_k$ and therefore f is one-to-one.

To prove that f preserves order in both directions we consider the following two cases.

Case 1. - Let $p_j < p_k$, where $f(p_j) = (a_i^j)_{i < \omega_{\mu}}$ and $f(p_k) = (a_i^k)_{i < \omega_{\mu}}$. Then since $p_j < p_k$ in view of (16) we have

$$a_k^k = 1 \quad \text{and} \quad a_k^i = 0$$

If $a_i^j = 1$ then $p_i \le p_j$ and since $p_j < p_k$ we have $p_i < p_k$. Thus from (16) it follows that

(21)
$$a_i^j = 1$$
 implies $a_i^k = 1$ for $i < k$

On the other hand, if $a_i^k = 0$ and i < k then by (16) we must have $p_i > p_k$, since $i \gg k$, and since $p_j < p_k$ we have $p_i > p_j$. Thus from (16) it follows that

(22)
$$a_i^k = 0$$
 implies $a_i^j = 0$ for $i < k$.

In view of (20), (21), and (22) we see that $(a_i^j)_{i<\omega_{\mu}} - \exists (a_i^k)_{i<\omega_{\mu}}$ and thus $p_j < p_k$ implies that $f(p_j) - \exists f(p_k)$.

CASE 2. - Let $f(p_i) = (a_i^j)_{i < \omega_{\mu}} - \exists (a_i^k)_{i < \omega_{\mu}} = f(p_k)$. Then there exists an index h such that in view of (i) and (ii).

$$a_h^l = 0 \quad \text{and} \quad a_h^k = 1$$

(24)
$$a_i^j = 1$$
 implies $a_i^k = 1$ for $i < h$.

From (16) and (23) it follows that

$$(25) p_h \leq p_k and h \leq k$$

If $h \le j$ then since by (23) we have $a_h^j = 0$ we see by (16) that $p_h > p_j$. But then by (25) it follows that $p_j < p_k$.

If j < h then since by (16) we have $a_j^i = 1$ we see by (24) that $a_j^k = 1$ which implies $p_j \le p_k$. But since $f(p_j) \ne f(p_k)$ it follows that $p_j \ne p_k$ and hence $p_j < p_k$.

Thus $f(p_i) - 3 f(p_k)$ implies $p_j < p_k$. Hence f is an isomorphism as desired.

DEFINITION 2. – A partially ordered set (P, \leq) is said to be quasi-isomorphic to a partially ordered set (Q, \leq^*) if there exists a one-to-one mapping f from P onto Q such that for every two elements x and y of P we have $x \leq y$ implies $f(x) \leq^* f(y)$.

It is obvious that if (P, \leq) is a simply ordered set then the above quasi-isomorphism reduces to an isomorphism.

A slight modification of the proof of the above theorem yields the following stronger version of the result of J. Popruzenko, [2].

COROLLARY 1. – Let (P, \leq) be a partially ordered set of power \mathcal{H}_{μ} . Then (P, \leq) is quasi-isomorphic to a set H of sequences of 0 and 1 of type ω_{μ} ordered by first differences, such that for every element $(h_i)_{i<\omega_{\mu}}$ of H there exists a λ with $h_{\lambda}=1$ and $h_i=0$ for every $i>\lambda$, and for every $t<\omega_{\mu}$ there exists an element $(g_i)_{i<\omega_{\mu}}$ of H with $g_{\tau}=1$ and $g_i=0$ for every $i>\tau$.

Proof. - In the definition of the sequences $(a_i^j)_{i < \omega_{\mu}}$ given by (16) replace u by 0, i.e.

(26)
$$a_i^j = \begin{cases} 1 & \text{if } p_i \leq p_j \text{ and } i \leq j \\ 0 & \text{otherwise} \end{cases}$$

Then (17) through (21) remain valid. On the other hand, (22) becomes the contrapositive of (21) and hence is valid. Clearly (17) through (22) imply that f is a quasi-isomorphism, as desired.

An obvious consequence of Corollary 1 is the following.

COROLLARY 2. Every partial order in a set P can be extended to a simple order in the same set P preserving the original order among the elements of P.

Since for a simply ordered set (P, \leq) the quasi-isomorphism mentioned in Corollary 1 is an isomorphism, we have as an immediate consequence of Corollary 1 the following result of W. Sierpinski, [1].

Corollary 3. – Let (P, \leq) be a simply ordered set of power \mathcal{H}_{μ} . Then (P, \leq) is isomorphic to a set H of sequences of 0 and 1 of type ω_{μ} ordered by first differences such that for every element

 $(h_i)_{i<\omega_{\mu}}$ of H there exists a λ with $h_{\lambda}=1$ and $h_i=0$ for every $i>\lambda$, and for every $\tau<\omega_{\mu}$ there exists an element $(g_i)_{i<\omega_{\mu}}$ of H with $g_{\tau}=1$ and $g_i=0$ for every $i>\tau$.

REFERENCES

- [1] W. SIERPINSKI, Cardinal and Ordinal Numbers, Monografie Matematiczne, t. 34. Warszawa, 1958, p. 460.
- J. POPRUZENKO, Sur une propriété des ensembles partiellement ordonnés,
 Fund. Math., 53 (1963-64), p. 13-19.

Pervenuta alla Segreteria dell' U.M.I. il 6 novembre 1965