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RELAZI ONE SCIENTTIFICA

ABSTRACT ALMOST-PERIODIC FUNCTIONS
AND FUNCTIONAL EQUATIONS

LUIGI AMERIO

CHAPTER I
ALMOST-PERIODIC FUNCTIONS IN BANACH SPACES

1. - Definition of almost-periodic function. Elementary
properties.

The general theory of almost-perindic functions with complex
values, created by HararLp BoeR [1] in his two classical papers
published on Acta Mathematica in 1925 and 1926, has been
greatly developed by WEyYL, D LA VaLLie-PoussiN, BOCHNER,
StepaNov, WIENER, BocoLiUBOV, LEVITAN. An important class
of these functions had already been studied, at the beginning of
the century, by BoHL and by EscLaNcoN.

Bohr's theory was then, in a particular case, extended by
Muckexagaver [2] and, subsequently, by BocHNER [3] and by
BocaNER and von NEUMANN [4] to very general abstract spaces.
The extension to BANACH spaces has, in particular, revealed itself
of great interest, in view of the fundamental importance of these
spaces in theory and applications.

To this extension will be devoted the first chapter of the pre-
sent paper. In chapter 2 we shall deal with the applications to
a p. partial, or, more generally, abstract differential equations,
linear or non linear. This means, essentially, the extension of the
classical theorems of Borr-NEUGEBAUER and of FAvARD [5] on

19



288 LUI1GI AMERIO

ordinary linear differential equations. Such extension can be made,
as will be seen, following a procedure whose nature will be quite
clear already in' the problem of the integration of a.p. functions.

Let X be a BaNacCH space; if x e X, we shall indicate by
ll|]. or by | «| x, the corresponding norm.

Let J be the interval — oo <<t << 4 oo and
(L.1) z = [(t)

a continuous function, defined on J and with values in X: an

application, in other words, ¢ — f(#), from J to X. Continuity will

obviously be intended in the siromg semse (i.e. Hm f(t + 1) = f|£)
T—>0

means that || (¢4 7) — f(¢) | — 0).

When ¢ varies on J the point & = f(£) describes, in the X space,
a set which is called the range of the function fif), indicating
it by &Ra.

A set E<J is said to be relatively dense (r.d.) if there exists
a number I > 0 (inclusion length) such that every interval a™a+1
contains at least one point of K.

We shall now say that the functivn fit) is almost-periodic (a p.)
if to every >0 there corresponds a r.d. set {v{., such that

(1.2) Sltlp 47—l < . Mreltle.

Each te|t|, is called an e¢—almost period of f(t); to the set
jtle ther-fore corresponds an inclusion length I, and it is clear that,
when & — 0, the set }t{. becomes rarified, while (in general)
lg — + oo,

The above definition was given by BoCcHENER and is an obvious
extension of the definition adopted by BoHR for his theory of a.p.
functions. It is, undoubtedly, in itself a very significant definition:
its real depth can actually be understood only «a posteriori», from
the beauty of the theory constructed on it and the importance of
its applications.

The theory of a.p. functions with values in a BANACH space
is, in the way it is treated by BocHNER [R], similar to Bohr’s
theory of numerical a.p. functions: new developements arise, as
is natural, in connection with questions on compactness and boun-
dedness. These questions (which have been recently studied espe-
cially in Italy) are of interest particularly in the integratiom of
a.p. functions and, more generally, in the integration of abstract
a.p. differential equations.
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It is obvious that a continuous periodic funétion is also a.p.

The almost-periodicity condition is however much less restric-
tive than that of periodicity: for instance, all trigonomeiric poly-
nomials

P(t) = Z,apeiyt (v, e X, M, el)
1

are a.p. functions; not only, but, as we shall see later, the class
of a.p. functions coincides with the closure, with respect to the
uniform convergence on J, of the sel of such polynomsials.

Let us now indicate the first properties of a.p. functions, which
can be easily desumed from their definition. In what follows we
shall omit the proofs, except at some fundamental or typical point.
We add that when we say that f(f) is unifurmly continuous, or
bounded, or that the sequence {f,({)! converges uniformly ete..
we always mean that this occurs on the whole interval J. :

When, for sake of clarity, it may be necessary to state in
which space fit) takes its values, we shall say, for instance, that
f(&) is X — continuous, or X — a.p., instead of continuous, or
a.p. ete.

I -1 ap. = flt) uniformly continuous (u.c).
II - f(§) a.p. = Rry relatively compact (r.c.).

This means that the closure &/, is compact. It may be noted
that, in the numerical case (or, equivalently, when X is KEucli-
dean) property II reduces to Bohr’s (f(f) a.p.=> &/, bounded). In
a general BaNacH space however, the r.c. sets are bounded sets
of a very particular nature. The fact that the range &R, is r.c.
is equivalent to the following: we¢> 0, there exists a finite number
of points f(¢,), ..., fily) such that

R < U (f(62), o

(where (x, €) denotes the open sphere with centre a2 and radius &);
equivalently, every sequence |fi{,)| contains a convergent sub-
sequence (in other words, for &,,, the principle of Bolzano-
‘Weierstrass holds).

I - f,() a.p.{n=1, 2, ..), f.()—[it) uniformly=>f(l) a.p.

The class of a.p. functions is therefore closed with respect to
the topology of uniform convergence.
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IV - f() a.p., ['(t) uniformly continuous = f'(t) a.p.
V - x=ft)X— ap., y=glx) with values in Y (Banach) and
continuous on K s, => g(f(f) Y— a.p.

In particular:

1) ap., E>0=>|f{)* ap.

2. - Bochner’s criterion.

The class of a.p. functions has been characterized by BoCENER
by means of a compactness criterion, which plays an essential
role in the theory and in applications. The starting point consists
in considering, together with a given function f(f), the set of its

translates |f(f 4 s)| and its closure jf{f +s)} with respect to uni-
form convergence.
‘We shall prove Bochner’s criterion by the following analysis.

Let G be the Banach space of continuous and bounded functions
f(t), from J to X(G = CiJ; X) N L*J; X)), wilh norm correspon-

ding to wuniform convergence: if f is the point of G which corre-
sponds to the function f(#), it will therefore be

F=1if); tedi, IFI = Sup I f(t) 1l

Let us now consider, together with f({), the set of the tran-
slates f(¢ + s), vseJ. If

F(s) = 1f(t +s); tedy,

we have defined an application, s — f(s), from J to G; further-
more, {(0)={.
We shall call transformation of Bochner the operation by

which we pass from f(f) to f(s): fis) will be called the Bochner
transform of f(f), using also the notation

fis) = B(ft).

Bearing in mind the definition of @, it is clear that the trans-
formation just defined is linear; moreover, the correspondance
between f(t) and f(s) is one-to-one, (note that f(0) = |f(t); teJ},
that is f(#) is the function corresponding to the value j(0)).

The range #R¥%s), in G, of the transform fis) has the following
important properties.
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«) Rfs) is a spherical line: more precisely
(2.1) I Fis) I =Sup 1t +8) I =Sup I £(®) 1} = 1F(0) 115

B) Rfisy) is described m such a way that the «principle of con-
servation of distances» holds: in fact

uf(s+ﬂ—f(s)||=Sn;p||f(t+s+r)—/(t+s)||=
(2.2)

= Sup || ft+ ) — ) I = | f&) — 1O 115
V) &y e <> fls) a.p.

This property, that identifies almost-periodicity with relative
compactness, is of the greatest importance.

From theorem II it is obvious that f(s) ap. = Rfs r.c

Let us now prove that &7 r.c. %7’(3) a. p.

Firstly, we shall prove that &7, r.c. %f(s) uniformly conti-
nuous. Suppose this is not true; there exist then a constant
0o>0 and two sequences {s',}, {s”’,} such that

(23) llm (su”_ slu) = 0’ " f(s”n) - f“{sl") " Z P

N ~— 00

From the property £) and the second of (2.3) it follows
{2'4) i f'(s”"_ sln) - f(O) = p-

As the range &fs is r.c. it is possible to extract from {s”,—s",.|
a subsequence (again indicated by {s”,—s’,}) such that

{2.5) lim f(s; — sp) =g
n —» 0O
and, by (2.4),
(2.6) Ilg—Fo)N=p.
On the other hand
g=19(t); teJleG

and from (2.5) we get

lim || f(sy — 8,) — g || = lim Sup || (¢ + sy — s,) — gt} | = 0.

N —r QO n—s>co t

It results then, wied,

lim £ (¢ + s — sy =g (¢)

7n ~— 00
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aund therefore, for the first of (2 3), f({) being continuous,

f(t) = g(t),
that is ||f — gl =0, against (2.6).

We now prove that f(s) is a.p. For this, it is sufficient to
show that, v¢ > 0, the set {tl. of the ¢ —almost-periods is r.d.

As the range &Rfs) is r.c., there exist, in correspondance of
the given ¢, v values £(s,), .... /{s,) such that

e Voo

1
Ris < E (7 (s ¢)-

Let us put I =2max |s,| and fix a €J arbitrarily; we con-

L]
sider now the interval (a—l) (a+-l2-) of length I. The point

2
f(a) belongs to one of the v spheres (f(s,,). e); let us suppose that
2.7) fla e (fisp), ¢
and consider the value
(2.8) T=a— S
It will be
2.9) a—;gr§a+é

and, furthermore, by the property 8) and (2.8),
(2.10)  WFs+ ) —T(s) I = Il Fog 4 7) — Flsp) Il = Il Flw) — Fisp) 1l -
From (2.7), (2.10) it follows that, vse J,
I Fls + )= Fls) Il <,

that is v is an c-almost-period for f(s). For (2.9), the set [t{ is
also r.d., a being arbitrary and ! independent of a.

The almost-periodicity of f(s) is therefore proved.
3) f(t) a.p. <> f~(8) a.p.

This property follows immediately from (2.2), as

Sup || £(¢ + ) — (5| = Sup | fls+7—7@) .

Properties 8) and y) express Bochner’s criterion:
VI - f@}) a.p. <> Rfq r.c
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In other words:

Let f(t) be continuous, from J to X. A necessary and sufficient
condition for f(t) to be a.p. is that from every sequence {s,} il may
be possible to exiract a subsequence |1, such that the sequence
{f(t + 1)} be uniformly convergent.

A very important consequence of Bochner’s criterion is that
the sum f(t)+ g(t) of two X — a.p. functions is X — a.p.; the
product ¢(t)f(}) of f(t), X —a.p., by a numerical a.p. function o(t),
s a.p.

Therefore: The set of X —a p. functions f(l) is a wvector space.
The corresponding set, constituted by the Buchmer transforms f(s),
forms a subspace (closed, by theorem 1LI) of the space G.

OBsERVATION L. — As we have already pointed out. Bochner’s
transformation sets up a correspondance between a function f(f)
and its transform f(s) = B(f(#). for which the «principle of conser-
vation of distance-holds (property §)). If we assume that f(f) itself
satisfies a condition more general than B), but essentially «f the
same nature, we obfain a sufficient condition for almost-perio-
dicily due to BocENER [6], and utilized in the study of the
homogeneous wave equation. 1t is well worth noting that such a
condition is suggested by the «principle of conservation of energy»,
which holds for the solutions of that equation.

VII. - Let us assume that f(t), from J to X, satisfies the follo-
wing conditions :
1) () is continuous and its range R, is r.c.;
2) vred

(2.11) Iltlf If¢+o)—rfHlI =0 Sltlp It +x—rn,

< being a constant > 0 independent of .
f(t) is then a.p.

Let us observe that, if | f(¢ + 1) — f(f)| is independent of ¢
(that is if the principle of «conservation of distance» holds) 2) is
sutisfied with ¢ =1. The proof of theorem VII was obtained by
BocHNER in the same way as the proof (given in property y)) that
the set ). of c~almost-periods is r.d.

OBservATION II. - Let f(t) be X —a.p. We shall say that a se-
quence | 8, | is regular (with respect to f(£)) if | f(t+8.)! is uniformly
convergent: in other words, if the sequence {f(s,)| is convergent
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Let us call S, the set of all regular sequences with respect to
f(t). Obviously S,= S7.

Given a second function g{f), Y—a.p., it is important, (as will
also appear from what follows) fo recognise when S,=8S,.

To suvlve this problem we shall make use of the {ranslation
function (defined by BoCHNER):

(2.12) vr) =Sup | it + ) — ) = | f@—70) 1 (e J).

In an analogous way, consider the function

V) = Sup llg(t+) - gt) I = | glr)—g(0) || -

‘We now construct, in the following way, a function o (),
which will be called comparison funciion of f with g: we, with
0 <= < Sup v,(r), We set

T€J

r, 0(5) = Sup ’U_,](T).
v iT)I<¢e
f
vy ,(c) is therefore the supremum of the translation function

v,(t) When t varies in the set of the s-almost-periods of f(f): each
e-almost-period of f(f) is also a v, J¢)-almost-period of g(¢). Tt
follows that w, ,(¢) is a monotonic, non decreasing function of =:
the limit

(2.13) 0 ,(04+)>0

therefore exists and the following proposition can be proved:

VIIL. - §,&8, <= v, ,0+)=0.

It follows that, in order that all sequences |s,, |, regular with
respect to fi(t), be regular with respect to g(l), it is mecessary and
sufficient that the comparison function v, ,(c) be infinilesimal with
e: it is, In other words, required that, takern ar arbitrary sequence
{T, | of e,—almost-periods of [(t), with e,—0, t, be, ¥n, a o,-almosi-
period for g(t) (S?p Il gt +7.) — gl§) | =0,) with 5,— 0.

3. - Harmonie analysis of a.p. funections.

The harmonic analysis of a.p. functions extends to these the
theory of FoUuRiER expansions of periodic functions.

In the numerical case,this analysis was made by BorRr, WEYL,
DE La VaLvuiEe PoussiN, BocENER, who constructed at first the
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FoURIER series associated to a given f(t): subsequently, it was pro-
ved (approximation theorem) that this series is, in some conve-
nient sense, summable fo the value f(f). Starting point of the
theory is the theorem of the mean.

Bocoriusov [7] has, instead, followed an apposite procedure,
proving at first directly the approximation theorem and later
deducting the theorem of the mean and the FoURIER expansion.

For a general BanacH space, the first procedure has been
generalised by BocHNER [3], BocENER and von NEumMaNN [4], Ko-
PEC [8], ZapmMaN [9], the second by Amerrio [L0].

In what follows we shall keep to this second point of view, as
the direct proof of the approximation theorem can be easily
obtained, even for BANACH spaces.

First of all, we observe that, va € X, AeJ, the function
aeirt

is periodic. From this follows the almost-periodicity of all trigo-
nometric polynomials

m
(3.1) P(t) = %, a6 (are X, 2, ed)
1

and, consequently, of every f(f) which is the limit of a uniformly
convergent sequence of trigonometric polynomials. The appro-
ximation theorem enables us to prove that, in this way, it is
actually possible to obtain all a.p. functions.

IX. - If f(t) is a.p. there exists, ve¢>0, a trigonometric po-
lynomial P¢(t) such that

(3.2) S,Utlp () —Pe@) | <e.

The theorem of the mean can be easily deduced from the appro-
ximation theorem.

X. - If f(t) s a.p. there exists the meun value
T
. 1
(3.3) AMT{f(2)) =T}LmOo YA f f(t)dt.
—T

We observe, first of all, that if

1 for «=90
(3.4) Alx) = 3
0  for ad=0,
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it results

(3.5) M (eint) = A(x).

From (3.1), (3.4), (3.5) follows that the mean value exists for
all trigonometric polynomials P(f):

(3.6) I (P(B) = 3, a0

From this relation and (3.2), (3.8) follows immediately.

Let us now observe that, if f|f) is a.p., also fit) e=i* is a.p.
¥ A e J. The function

a(r; f) = O(f(t) et

is therefore defined on J. «()\; f) takes its values in X, as does
f(t: we shall call this function the Bohr fransform of the a.p.
function f({).

It can be seen at once that a(}; f)=0 on the whole of J,
with the exclusion, at most, of a sequence |}, |.

It is, in fact, sufficient to construct. a sequence of approxima-
tion polynomials | P,(f)} such that

Sltlp Il ﬂt) - Pl(t) < I=1, 25 "')'

o~ -

If then
ot}
Pl(f) == Z,‘ (277% ei)‘lkt )
1
“"nl = U )‘Ik7
1Lk
we have, for A ¢ |,}, observing that a(A; P,) =0 v,
1
Ha(s 7)1 =llals; Py+al; f— Pyl =lald: 7 —P)Il <7
and, consequently, a(A; f)=0.

The values )\, (and obviously X, e |w,!) for which a(},; f)0
are called the characteristic exponents of f(f). If we put

a’()‘u; f) =aQ,,
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we can associate to f({) the FOURIER series
® :

(37) f(t) ~ 211 @y, eitat.
1

The a, are called the Fourier coefficients of f(t).

It can be seen that it is possible to choose the approximating
polynomials P,(t) in such a way that the characteristic exponents
A, belong to the sequence {A,|; hence

n
(3.8) Pit) = B, anet.
1

Moreover one proves the fundamental uniqueness theorem :
XI. - f(t) and g(t) X—a.p., a(d; f)=al}; g)=>f(t) = g(¢).

The correspondance between almost-periodic functions and their
Bohr transforms is therefore one-to-one. A property of the tran-
sform a(}; f) is given by the following proposition.

XIT - a{}; f)=0=>1lim a(}; f) =0, that is the Bohr transform

A2
is continuous at all poinis in which it vanishes.

Furthermore,
lim a(}; f}=0.

X — 00

OBSERVATION 1. - It results

(3.9) lim @, =0

n— Q0

that is the sequence of Fourier coefficients of an «.p. funclion is
infinitesimal as n diverges.

It
(3.10) Sl:p Hfe =M
we also have, by (3.7),

(3.11) ha.ll=1al,; Il <M.
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If X is a Hilbert space, property (3.9) can be made much more
precise. It can in fact be deduced without difficulty (from the appro-
ximation theorem) that Parseval’s equality holds:

(3.12) OR (|| £(#) [I1) = °z° I a, |t

OBsErvAaTION II. - To BOCHNER we owe the construction of
a notable approximation polynomial, suggested by Fejer’s theorem
on the CesAro-summability of the FoURIER series of periodic
functions.

Let, first of all, L =(8;, B, ...) be a base for the sequence

{ A | of characteristic exponents of the fanction f(f); this means
n

that the real numbers B, are linearly independent (i.e. =,c,8, =0,
1

¢, integers => ¢, = 0) and that each ), is a linear combination
with rational coefficients of a finite number of the B,. It is clear
that a base always exists: if the A, are linearly independent, we
ean take L = |}, |; if not, L can be obtained by eliminating those
%, which are linear combinations of the preceding ones.

If the base L is infinite, Bochner’s polynomial o,(f) is defined
by the formula

. —(m!) e (ml)R [V
(8.13) o, (t)= m_f v (1—(—”#’2>

Va L 5 2nba t
(1= by o B3 1) B0,
while, if the base is fimite (L = (B, ..., 8,)), it is, for m > g,

—(m1)? ... (m!) v
314 o) = B (1 — l——m‘,)l) .
Vay rens Yy .

(1 — (L:t‘;)l_,)a(: ‘;:f"‘ ; f) (gk %Blﬁ)t .

It can be proved (and the proof is easily deduced from theo-
rem IX) that

(8.15) lim o,(f) = f(?)

uniformly.
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We observe that in (3.13), (3.14)

a(%',,vi&'f):izo

m!’

only if 2, %:)\j, characteristic exponent.
1 .
Relations (3.13) can therefore be written in the form
Nm
(3.16) o (f) = 2, ¥,.0 €50t
1

where the convergence factors v,, depend only from m and the
exponents X, (but not from lhe coefficients a,).

OBSERVATION IIL - In observation II of § 2 we found that
the facts that S, < S, and that the comparison function w,(s) was
infinitesimal, as ¢ —0, were connected.

The harmonic analysis of a.p. functions expresses the condi-
tion S,=8, by means of a relation between the characteristic
exponents {},} of f{{) and those, {u,}, of g(f).

XIIL. - S, 8, if, and only if, each exponent ., is a linear
combination with integer coefficients of a finite number of exponents

Xy, that is
9a

(3.17) @, = By Copta (c,; integers).
1

Moreover the almost-periods and the characteristic exponents
of an a.p. funetion are explicitly connected by the following pro-
positions.

XIV. - Let |),} be the sequence of characteristic exponents. To
every fixed arbitrary e=> 0, there correspond a positive integer
N; and a number 3. > 0 such thal every solution t of the system
of inequalities

(318) I eil”'r —1 | S SE (”z 17 seey NE)
is an =-almost-period of f|(t).

(It may be noted that, by a theorem of Kronecker, system (3.18)
is compatible for every &, > 0).
For (3.8) it is, in fact,

ME+)—=FfOIIFE+ ) — Pt + 1)l + 1| Pl +7)— Pft) | +

9 ", )
+ | Bty —f(#) |} =7 tEdanll et —1].
1
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2
Chosen ! in such a way that is , let us impose on t to sa-

| ™

tisfy the system of inequalities
€ n[ —1
|eﬂkr—1ls§(§k I aun u) =8 (k=1 .., m)

It will then be | f(t+1)— f(})||<¢ wteJ, which proves
our thesis.

XV. - Let {}A,} be the sequence of characteristic exponents. Then
every e—almost-period, <, satisfies the system of imequalities

(3.19) jet—1 | <cela,l %
In fact
| anleiry® — 1) || = | OR((f(E + ) — fid)e—2,7) || <.

4. - Weakly almost-periodic functions.

Given the Banacm space X, we shall call X* its dual space
{constituted by the linear functionals continuous on X). If xe X,
x*e X*, we shall indicate by < x*, £ > the complex value that,
through the functional ¥, corresponds to x, and by | «*| the
norm of x*.

We shall say that f(l). with values in X, is weakly almost pe-
riodic (w.a p.) if, va* e X*, the numerical function

<z, () >
is a.p. [11].
As may be seen, the definition given here has, with respect
to that of an a.p. function, the same relation as the definition of

weakly continuous function has with respect to that of conti-
nuous function.

It is clear (as | <a* > | <|a*|x]|) that f() a.p.= f@)
w.a.p. In order to indicate that {x,} is a sequence converging
weakly to x (i.e. if -~ 2*, x, > — <x* x>, va*e X*) we shall
make use of the following notations

A r lim* &, =
wﬂ x, O [
7 — 00

« is called the weak limil (which, if it exists, is also unique)
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of the sequence }{z,|. Let us remember that, in an arbitrary
BaNacH space, a sequence |x,! can be scalarly convergent

@.e. lim < a* x, > exists and 18 finite v x*e X*) without neces-
7n > 00

sarily being weakly convergent, that is without there being an «=
which is its weak limit. If this circumstance is not present
(i. e. if scalar convergence implies weak convergence) the space
X is said to be semicomplete (veflexive, and, in particular, HILBER?
spaces are semicomplete).

Let us now indicate some properties of w.a.p. functions.

XVI - f() w.a.p.=> Ry, bounded and separable.

Where necessary, we can therefore assume that X is separable.

XVII - f.(t) w.a.p. (n =1, 2, ..), f.(0) % f(®) uniformly = (@)
w. a. p. (f,(8) = f(f) uniformly means that, v x*e X*, <<x* f,(t)>
— < x* fit) > wuniformly).

XVIIL - f(@#) w.a.p., f(t + 8.) 5f(t) vteJ = that the conver-
gence is uniform.

XIX -~ Let X be semicomplete ard f(l) weakly continuous. Then
f@ w.a.p. <=> v|s,| thereexsisls {1,1<\|s, | such that | f(t+ 1)}
is uniformly weakly convergent.

This proposition extends Bochner’s criterion to w.a.p. functions

(with, however, a restrictive hypothesis on the nature of the
space X).

As we have already observed, f(?) a.p.= f(}) w.a.p. It is
interesting to note that the property that has to be added to
weak almost-periodicity to obtain almost-periodicity is one of
compactness (by theorem XVI, a w a.p. function is bounded).

The following theorem can, in fact, be proved.
XX - f(t) w.a.p. and Ry, r.c. <> f({t) a.p.

OBSERVATION. — Let us assume that X is a separable Hilbert
space and let jz,} be a complete orthonormal sequence. Then, if
f(t) takes its values in X, it results, vt e J,

@.1) ) = B 0.(t) 2.

where ¢, () = (f(), #,) is the scalar product of f(f) by z,.
By (4.1) we have

*2) OIS AEXOT
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Let us now prove the following propositions.

[e 0]
XXI - f(t) w.a.p. <= () a.p., I, | 9ult) P< M2 < + oo,

oo

XXII - f(t) a.p. <<=>¢.(t) a.p., 3, |¢.() |? uniformly convergent.

1
The necessity of the condition expressed by XXI is evident.
For its sufficiency, observe that, chosen ye X arbitrarily, it
results

% %
y = lZ,,"luzn (."n = (y’ Zu)’ z‘u | MNn I2= " ?I " 2,'
1

Consider the scalar product (f(f), ¥); to prove our thesis it is
sufficient to show that it is a.p. Now we have

(4.3) (Fit), y) = ?nv,.(tﬁan

and the series on the right hand side (constituted by a.p. fud-
ctions) converges uniformly, since it is, by Schwarz’s inequality,

9 - q 9 9
| 2amaould) | <130 |0, BIV2L 23, | ) P2 S MY 2, | o, [P P2
P » P P

To prove that the condition expressed by XXII is necessary,
we observe that, f({) being a.p., the range &R, is r.c. This im-
plies that, e >0, there exist a finite number of points f(Z), ... fitw)
such that

1...v
Rrn = l’f (f(24); ).

Let us now fix an index m such that
[o0]
() 1| =120 | @ults) P12 < k=1, .. v)
m

Chosen arbitrarily {eJ, we have, for a certain £, [| fO—fit)ll<e,
and it results

[, 1ol 8 = LD £ult) N+ 1 £l — Falt) | <
< Fult) Il + 1 AD — FlE) [} < 2e.

As { is arbitrary, the thesis is proved.
It is obvious that the coudition is sufficient because the uni-



ABSTRAOT ALMOST-PERIODIC FUNCTIONS AND FUNCTIONAL EQUATIONS 303

@
form convergence of the series X, | ¢.(f)|® is equivalent to the
1

uniform convergence of the series (of a.p. functions) on the right
hand side of (4.1).

It may be noted that, by (4.2), if the series of a.p. functions
®
(4.4) 2. | 2a(B) [*
1

converges, the norm || f(t)|| is a.p.

We may now ask if the converse is true, that is if, X being
« HILBERT space, f(t) w.a.p, [|[f®)| a.p. = f@#) a.p. (on this
subject it may be noted that, in a HILBERT space, the following
proposition holds: f(f) weakly continuous, || f(f)|| continuous => f(t)
continuous).

The answer to this question is however negative, as may be
shown by examples. It is necessary to extend the hypothesis
of almost-periodicity of the norm to a whole family of functions;
precisely to the family associated to f(f) by Bochner's criterion.

Let f(f) be w.a.p. and S; indicate the family of sequences
18,1 regulur with respect to f(¢): in other words, such that

(4.5) Lm* f(t + s,) = £,(8)

uniformly.
We obtain in this way a family ®,=f,(f)} of w.a.p. functions
and the following theorem caun be proved

XXIII - f(t) w.a.p., ||f{6)]}a.p. ¥ & 0,=> (}) a.p.

5. - Integration of a.p. functions.

If f(?) is an a.p. function with values in a BANACH space X,
we will write, in what follows,

t
6.1 Fly= [ () dn.

The problem of the integration of a.p. functions in BanNacm
spaces is of notable interest also because it serves, so to say, as a
amodel for classifying BanacH spaces in relation to the theory of
abstract a. p. equations.

If X is Euclidean, then Bohr’'s theorem holds: F(f) bounded
= F(i) a.p.

20
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For the general case (X arbitrary BANACH space), the almost—

periodicity of F(t) has been proved by Bochner [3] under the hypo-
thesis that Rrq) is r.c.

This condition is obviously much more restrictive than that
of boundedness; it can not however be substituted in the general
case by latter, as can be shown on examples (AMERIO [12]). Never-
theless AMERIO [12] has proved that Bohr’s enunciation remains
unaltered if the space X is uniformly convex (it holds therefore in
HILBERT spaces, in I? and L?, with 1 <p < + o).

Let us prove the following theorems.

XXIV - (Bockner) — X arbitrary, (@) a. p., Rrwy r.c.=>
= F() a. p. ‘

XXV - (Amerio) — X wuniformly convex, f(t) a. p., F(t) boun-
ded = F() a. p.
a) Proof of theorem XXIV. As &gy is r.c., F(t) is bounded :

(3.2) Sup || F () || = M < + co.

Furthermore, v z*e X*,
¢

| <@t F(t)> | = | <w*,/ Foydn> | =
0

t
= |/<x*, f@)>dn | <|a*|| M.

o

As <a¥ f(f)> is a.p., from Bohr’s theorem it follows that
< a* F@)> is a.p.; F(¥) is therefore w.a.p.

Ry has been supposed r.c.; our thesis follows then from
theorem XX.

b) Proof of theorem XXV. We have already proved in a}
(utilizing only the boundedness of F(#)) that F(f) is w.a.p. It is
therefore sufficient, making use of the properties of uniformly
convex spaces, to prove that fp) is r. c.

We first of all remember that a space X is called a uniformly
convex (or CLARKSON) space if in the interval 0 < ¢ <2 there
exists a function w(s), with 0 < w(s) <1, such that

53 Nzl 1yl<tand Nz —y)=o>|TEY | <10,
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A HiusERT space is uniformly convex. From the parallelogram
theorem it follows, in fact,

==

z 1
> =5 (lzlE+ ly P

e

and comsequently, if ||z <1, [lyI<1, [l[x—y| >0,

2 o?

<i— 3.

x4y
2

It can be shown that the ¥ and L* (1 <p <-4 oo) spaces are
uniformly convex; in addition, that uniformly convex spaces are
also reflexive.

We now observe that from (5.3) it follows, for any x and v,

z+y
2

(64) Jz—yl>emaxifzl, Iyl Hs

S —w@)max {|lz|, [yt

Let us assume that the range &r) is not r.c. There exist
then a constant p>> 0 and a sequence |s, | such that

(6.5) I F(s;) — Fls) |l =p (7= k).
‘We can suppose that {s,}| is regular with respect to f({) and
F(t), that is :
lim £t + s,) = £i(t)
n-— 00
{6 6)
lim* F(t 4 s,) = F(t)

n — Q0

uniformly. The last relation follows from Bochner’s criterion
(theorem XIX), noting that the space X is semicomplete (being
reflexive).

It is also ,
Pt +s)=Flo)) + | 11+ 87)dn

and, consequently, for j 3k, '
It +85)— FG+ ) 1> || F(sy) — F(sp || —

t
—1 | (tr+8)— £ + sp)an .
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If we fix teJ, we will have, by (5.5) and the first of (5.6),
||F(t+s,-)—F(t+s,‘)||2% for j>k>mn,.
Therefore, by (5.2),
| PG+ sj)— F+s) 1> 2 max { | F¢+ ), |FE+s)1l

2M
and, by (5.4),

'l F@+ si) +F@+sp)
2

S(l——w (ZM)) max | || F(t+si) ||,

e+ s 1< (1—o(55)) 22

From the second of (5.6) it then follows

1roi< (1—o(g)) ¥

and, consequently,
5.7) Sup | F D <(1—w(2M))M

Relation (5.7) is absurd; from the second of (5.6) follows in fact,
the weak convergence being uniform,

lim* F(t — s,) = F ()

n-— 00

and therefore
| F§) | < min lim || F¢ —s.) || < (1 _ ,,,( P ))M
7”7 — 00

which confradicts (5.2).

OBSERVATION. — The problem if Bohr’s theorem holds or not
in the case of X reflexive is still open.

It must be noted however that there exist non reflexive spaces
in which Bohr’s theorem holds; such is, for instance, the space
' [18]. More generally, let us consider the space X —=1?{X,},
with 1 <p <+ oo; | X,| is a sequence of BanacH spaces and
x € X means

. [ee]
x=\|x,}, with z,eX,, ||z| =13, ] =, | 1*? < + oo.
1
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Let f() = {f,(t)| be a.p. with values in X. It is then
¢ t
ry= [ rtan= ; / f,(n>d-4§ =|F®)|.
)] 0

and the following theorem can be proved [14].
XXVI - If, v X., the property
f.(¢) a.p., F.(t) bounded = F (1) a.p.
holds, then the same property holds for X:
ft) a.p., F(t) bounded = F(I) a.p.

In the proof of this theorem an extension to real a.p. functions
of Dini’s classical theorem on monotonic sequences of continuous
functions is used.

Precisely, let {¢,(){ be a bounded, monotonic sequence of real
a.p. functions, with

(®.8) O <D< . <o)< .. <M<+ oo.
There exists therefore, vt eJ, the finite limit
5.9) @ (1) = lim ¢,(t).
7 ~— Q0

‘While it is not possible to say that, if &(f) is a.p., convergence
is uniform, Dini’s theorem can however be extended in the same
order of ideas as theorem XXIII. Let S be the set of sequences
s =1}s,| regular with respect to all o,(f); wse S, it is therefore

(5.10) lim o,(t + 8)) = @e(t) n=1,2 .)
k —+c0

uniformly, where o,,(f) is, like ¢,(%), a.p.

From Bochner’s criterion and applying Cantor’s diagonal
process, it follows immediately that every sequence r=|r,}| con-
tains a subsequence se S.

‘We observe that from (5.8), (5.10) it follows that
) <o)< . <o () < . <M
and consequently

lim ?cn(t) = '-D,(t), q’o(t) == ¢(t)°
® —» Q0

We can prove the following proposition.
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XXVII - If &(f) 4s a.p. vse 8, the sequence ¢,(f) converges
uniformly.

This theorem (proved by AwmERIO [15]) has been generalized
by BocuNER [16] to almost-automorphic functions. For another
proof see DoLoHER [17].

CrAPTER II

FUNCTIONAL ALMOST-PERIODIC EQUATIONS

1. - Almost-periodic¢c solutions of the wave equation.

«) In the present § we shall deal with the mixed problem,
according to HapaMARD, for the wave equation (or equation of the
vibrating membrane)

a?y l..m 0,
(1.1) i :,Ek (a,-k (x) 5;‘{:) —a@)y + f@, 2,
and consider, more precisely, the first mixed problem.
Let Q@ be an open, bounded and connected set of the EucuI-
DEAN space &, 9Q the boundary of Q, x=\{x, ..., z,| an arbi-
trary point of R™.

The problem considered consists in finding a solution y—y\(f,x)
satisfying the dnitial conditions

(1.2) Y0, ) =y, @), Y0, x) =y.(x) (xe Q)
and the boundary condition
(1.3) Yy, %) lsgga =0 . (ted).

It corresponds therefore to the study of the motion of a vibra-
ting membrane, with fixed edge. The functions considered in (1.1)
are assumed to be real.

It is classical, in the theory of hyperbolic equations, to look
for so-called weak or generalized solutions. As we shall see, these
solutions are associated to the wvarialional theory of the vibrating
membrane, and, whenever they satisfy convenient regularity con-
ditions, are solutions of (1.1).

The variational form of equation (1.1) can be obtained apply-
ing to it Green’s formula (and bearing in mind the boundary
condition (1.3)).
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First of all, it is well to define the functional spaces in
which the problem is correctly posed. As we shall see, they
will be HILBERT spaces. These spaces play, as is well known, a
very special role in the mathernatical description of physical
problems. This is not surprising if one observes that such phe-
nomena are essentially bound to the concept of energy, hence to
that of scalar product: now HILBERT spaces are defined precisely
as those BANACH spaces in which the scalar product is defined,
with the same formal properties which this functional has in
ordinary EUCLIDEAN spaces.

‘We assume that the coefficients a,,(x), a(xr) are measurable and
bounded functions on Q and that

1. M m
{1,4) ajk(x) = ar(x), _Z‘ak (@) ame = v | Ltz (v>0), a(x) >0.
1 1

The second of (1.4) is valid for all real values of »,, ..., 1,,.
Let us consider the following HILBERT spaces.

1) The space L’ of real functions y —=|y(x); x € Q} which are
square integrable in Q, with the usual definition of scalar pro-
duoct (and, consequently, of norm):

{1.5) (¥ #)re= / Y@)2@)dQ, Ny o= (y, y)1s -

Q

2) The space H§ of the functions y ={y(x); xe Q| which are
square integrable in Q together with their first partial deriva-
tives. These derivatives must be intended in Sobolev’s generalized
sense, or in that of the theory of distributions (in other words:

g(x)= azl means that g(x)e L? and is such that
Zy;
' d9() N
yo) T2 a0 =— [ g(@)s a0,
. 0%, R
Q Q

¥9(x) continuous on Q together with all its partial derivatives
and with compact support on Q). Therefore the vanishing on 50
must be infended in the sense of the variational theory of elliptic
equations (as will be pointed out later).

The scalar product and the norm in H{ can be defined in the
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following way:

18 ame= (5 oo L2 2D 4 ate)yla)eto)an,
Q

J
Iyl e = y) iy -

It is worth while recalling that the space H,!' can be obtained
as the closure in the norm defined above, of the space of func-
tions continuous on Q together with their first derivatives and
with compact support on- Q.

As is well known, H'c L?; the embedding of H' in I? is
moreover not only continuous (|ly||le<<vellyll ap ¥ye H,', with
p positive constant, independent of y) but even compact (or com-
pletely continuous): this means that every sequence |y, | bounded
in Hy' contains a subsequence |z, which converges in L2

3) The space E = H,' < L? Cartesian product of H,' by L%
Bach element YeE is therefore constituted by a couple |y,, yii,
with y,e H,!, y,€ L* and
(1'7) (Y1 Z)E: (?/o, zo)Ho' + (?/u zl)L” ]
I Yl z= {190 "2+ [l gl La}e.

We shall call E the ernergy space and the metric defined by
the second of (1.7) the energy metric.

Let us assume that the known term f(f, x) and the unknown
function y(¢, x) satisfy the following conditions.

1) Put f(f)={f(¢, x); = e Q{, f(¢) takes its values in L2, for al-
most all {e J and has a summable norm in every bounded inter-
val A; in other words

f I £ 22 at =fdt gff'(t, x)dQ ‘./2< + oo.
HenceA : ?

(1.8) f(t) € L'ioo (J; L?).

2) Pat y(f) =y, x); xe Q}, y(t) takes its values in H,' and is
continuous on J; in other words

(1.9) Hm {ly(t+)—y(t) | a0 =

— lim g [1 12: o () oyt + 7, x) —y(¢, x) dylt+ T, x)—ylt, x) +

T—0 ox; ox,

+ a@yt+ 1, ) —y(, 2)Hde=0.
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We shall, further, assume that y(t) is L°-differentiable and

that ¢fs derivative y'(f) =§ M:——;x); er%(in the sirong sense, i.e.

Yyl +—y@)

T

lim

T—>0

—y'®

:0)
Lt

is conlinuous on J.
Hence

y(tre C(J; HyY, Yy e CJ; LY.
We may note that, as y(f, «) represents the displacement at
the time ¢ of the point x of the membrane, the quantities
1 1,
5 ly® Fees 5 IlYO 1L
measure the potential energy and the kinefic energy respectively,
at the given time, of the membrane.
’ . By(t, x)
I YY) =|y0), ¥ (l.e. Y, @)=y, o) L2 ) the fun-

etion Y(f) will be continuous, with values in E; furthermore the
quantity

1 . 1 . Lo e
(1.10) 5 1 YO IE=5ly®ms +5 11y |

measures the folal energy, at the time ¢, of the membrane. The
denomination, given to E, of energy space is therefore justified.

Let us now recall that, by Hamilton’s principle, the functions
Y(8), teJ, which describe the possible motions of the membrane are

those for which, in whalever way a bounded interval A is takem,
the integral

1 1 .
15 19@ s —5 1 90 Fms + @, g | at
A

(Hamillonian action) is stationary with respect to all the variations
i) (of the same functional class as y(f)) and with support X C A.

By imposing that this variation must vanish, we obtain the
variational wave equation

(1.11) [ Hy'®), Vit — (@), I)eg + F@), W)zt dt=0
J

that must be verified v I(t) with compact support.
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If y(?) is a solution of (1.11) such that the corresponding y(t, x)
satisfies further regularity conditions and if 8Q is sufficiently
smooth, it can be proved, by a well known procedure, that (1.1)
and (1.3) are satisfied. The solutions of the variational equation
are called, for this reason, weak or gemeralized solutions of the
differential wave equation.

Let us now consider, for (1.11), the initial value problem. It we
take y,€ H,', y.€ L® arbitrarily, we want to find a solution y(¢),
te J, which satisfies the initial conditions

(1.12) yO =y, vy0) =y,,

corresponding to (L.2).

It can be proved that such a solution exists and is unigue [18].
It can be obtained by the method of elementary solutions.

Let us consider the sequence ju,} of eigensolutions of the
equaftion (that must be satisfied v v e H,')

(1.13) (#, v)E = XU, V).
(1.13) admits a sequence |}, | of eigenvalues such that

(1.14) 0<h<X<..<\ <., lim\=+oo,

n — QO

to which the eigenfunctions u, correspond, which satisfy the
orthogonality conditions

u" u"i N
(1.15) ()\—"' , —)\—")Hol = (%,, ) ’M,M)Ln =9

wm "

The sequence }u,| is also complete both in L® and in H.
If we put

y0 =300 3 (o=(y0, 32, ),
(1.16)

oo (,)'n t (0’,, t

1 ” /

{which is correct, as y(f) and #'(¢) take their values in H' and
L? respectively) and

(1.17) 1) = Sat)m. (0.t = (1), wu),
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we find that o, (f) satisfies the equation

wn(t) + Ao (E) = X,0.(f).
Consequently
: t

(1.18) 0,(f) = %, cos At + B, sin 2t 4 /cy,.('r,) sin A, (¢ — n)dn,
o

where the constants «, and P, are determined by the initial con-
ditions (1.12) and, precisely,

Un
Ay == (yn ’ S\—)Ho‘ ’ ﬁn - (yl’ ’Mm)L? .

Let us now consider the function Yif) = |y(f), ¥'(f){, which we
shall again call solution of (1.11); it is clear that the range
&y, is, in E, a continuous line.

It Z(¢)=12(t), ()} is a second solution, corresponding to the
known term g(), we can prove the following fundamental relation

d
(1.20) ai (YW, Z8)e=(f(t), 2B+ (9(t), Y (E)ze,
from which, setting Z({)= Y({), follows
dl 2
(1.21) a2 1Y@z =), y' ()

and. integrating between {, and ¢,,
1 1 ¢
(1.22) o Il YU ' — 5 || Y(t) | '5= [ (F(t), y(B)radt.
A
The right hand term represents the work in the time interval

t,7t, of the force f(t)= Ifit, x); xeQ; this work equals the va-
riation of the energy of the membrane.

Let, in particular, f(f) = 0 and consider the homogeneous wave
equation. I¥ O(t)={u(f), w'({)} is a solution, it follows from (1.21)

{1.23) [| Uit)|lg = const.

The ranges are therefore spherical lines, with their centers in
the origin: the solutions of the homogeneous wave equation satisfy
the principle of comservation of energy.

We now go back to the general case and consider an arbi-
trary f(t).

Let us assume that (1.11) admits one solution Y (f) whieh is
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E-bounded (i.e. -’sup || Yy(#) || <4 o0).
eJ

From (1.23) it follows that all the solutions Y(f) are bounded.
The following minimax theorem [19] (which is interesting also
from the point of view of mathematical physics) then holds.

I-1f

w(Y)=Sup || Y#) ||z, »=1Inf w(Y),
t 1Y) |

then there exists ome, and only one, solution Y(t) such that
w( ?) = l:"

that is, such that the supremum of the energy has the smallest
possible value. )

As an application, it can easily be seen that, if f(f) is periodic,
with period T, the minimal solution f(t) is also periodic, with
period T.

B) — The almost-periodicity of the solutions U(#) of the homo-
genous wave equation has been proved by various Authors under
more and more general hypotheses: MUCKENHAUPT [2], BOCHNER
|6], BoceENER and voN NrEUMANN [20], SoBorev [21], LADYZEN-
sKaJa [22].

Very significant is Bochner’s deduction of the almosi-perio-
dicity of Uit), under the hypothesis that Ry, is r.c., from the
energy conservalion principle. In fact U(f 4 t) — U(f) being a
solution, vt e J, of the homogeneous equation), it results

NG+ —UBHI=1U(—TO).

The «principle of conservation of distances» is then satisfied
and our thesis follows from theorem VII.

Subsequently, SoBoLEV succeeded in eliminating the compac-
tness hypothesis and assumed only that the boundary 3Q has
continuous curvatures: finally, LADYZENSKAJA has abolished also
this last hypothesis. Therefore all the solutions U(t) are a.p.

Observe in fact that (by (1.16) and (1.18) with f(#)= 0)
[o2] [T
(1.24) U(t) = { B, (xr cos At + B, 8in A,) o
1 n

3‘.}0,. (— @, 8in At + B, COB Ant) Uy

1
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and the series of a.p. functions on the right hand side of (1.24)
converge uniformly. It is, in fact, for 1 <p <gq,

q n
|| ¥u (%0 cO8 Ayt 4 B, sin A d) ;‘\l‘_ Pag +
p n

q 9
+ “ Eu( - &y sin )‘nt + pn cos )‘n) Uy ”21.',2 = xn (0(,,2 + .Bne’
4 p

‘where
oo o 2
Zn (o + B) =) U(0) || & < + oo

y) Let us now consider the non-homogeneous wave equalion,
assuming that fit) is a.p. as a function with values in L* In this
case it is possible that no bounded solutions exisf, as the so-called
«resonance phenomenon » may take place; however, as already
observed in «), if a bounded solution exists, all solutions are
bounded.

Regarding the almost-periodicity of Y(f), Zarpman [23] has
proved that if the range of Yf) is r.c., then Y(t) is a.p. Subse-
quently AMERIO [24] has eliminated the compactness hypothesis,
substituting it with a boundedness hypothesis, which is strictly
necessary and has an evident physical interpretation.

The following theorem therefore holds.
IL - f(t) a.p., Y(t) bounded = Y(t) a.p.
The proof was obtained by AmErRIO by two different methods

{those, substantially, of theorems XXVI and XXYV).

Observe, first of all, that if Sup || Y(#) || =M << 4 oo, the funec-

¢

tions w,(f) defined by (1.18) are a.p. together with their first de-
rivatives w',(f). By the first procedure [24] we prove the uniform
convergence of the series defining Y(#):
w'alt)
T Uy y

that is the uniform convergence of the series of a.p. non-negative
functions

[o0] WUy, (o2
Y(t) = g 2, w,(t) —, 3,
1 Au 1

®© u):f t
Bl +250) = vens,

"
making use of theorem XXVII.

The second method [25] counsists in recognizing at first (and this
is immediate) that Yi(i) is wa.p. (i.e. (Y|}), G)g is a.p. ¥ Ge E).
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Subsequently, one proves, as in theorem XXV, that the range
Kyqy 18 r.c.

Contributions and generalizations to the problem treated in
[24] and [25] have subsequently been given by BocENER [26],
Zaipman [27], ProUSE [28]. For C-almost-periodicity of the solu-
tions, see VacHI [29]. VacHa1 [30] has also generalized theorem II
to the weak solutions (relative to the problem (1.3)) of the equation

7y 2 %y
(20)  Yat) F 4 p0y=10 5 - (anw 7L} + 16 o)

a(t), B(t), Y(f) being real periodic functioms, of period T, y(£)>0
and f(t)=\|f(, x); xeQ} L*—a.p.
In particular: the E-bounded eigemsolutions of (1.25) are a.p.
It may be noted that, although (1.25) is an equation with coeffi-
cients depending on ¢ of a very particular type, it is actually
the variation equation of an interesting equation. "
Let

(1.26) 2t + glz, 2)=0

be a non-linear second order equation, with g(z, 2) continuous
function together with its derivatives g,, g, for — oo <z,
2’ << 4 oco. Assume that (1.26) has a periodic solution 2z —2z,(f)
with period 7. This function is also a solution independent of «
of the non-linear partial differential equation

0z 1..m a 3 2z
1.27 2= ( —)
(1.27) atZ + ( ot j,zk am, %1 (@) ox
The variation equation corresponding to (1.27) is then (if y(f, x)

is the variation given to z(?))
I , _al/_l e _a— ég
T+ gt Sty + ortet) #ut) = B - (ante) ).

‘We obtain therefore a particular case of (1.25): by (1.3), we
consider variations which vanish, ¥, on Q.

Lastly, we recall that Zaipmanx [31] has studied the elliptic
equation with coefficients independent of time and has proved
the almost-periodicity of L*-bounded solulions, even when Q —R™.

OBSERVATION. - Theorem II extends to the wave equalion the
classical theorem of Bohr-Neugebauer on linear ordinary differen-
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tial equations, with constant coefficients and a.p. known term.
This theorem, in fact, states that every bounded imtegral of the
equaltion
Yyt + ay ") + . oay = £(E)

with a,, ..., a, constanis, f(f) a.p., is a.p.

2. — A. p. solutions of linear functional a. p. equations.

a) In theorem II the BoHR - NEUGEBAUER theorem was
generalized to the wave equation. We shall now deal with the
extension of the important results obtained by Favarp [32] on
ordinary linear differential systems, with a. p. coefficents and
known term.

Let us consider such a system, in vector form

(2.1) x' (t)y=A@)x )+ ()
(x (), (D) vectors of the complex Euclidean space &", 4 (f) [m, m]
matrix, f(¢) and A(f) a. p functions).

Indicate with S4 the set of sequences s ={s,| which are re-
gular with respect to A ({); therefore, s e S4,

lim A4 s,)=A4,(f)

n — OO

uniformly, and A4, () is, like A1) = A4,(}), an a. p. matrix.
Favard’s theory considers the family of homogeneous equations

2.2) u' (t) = A, (t)u(l)

and assumes that, ¥ s € Sa, the bounded eigensolutions of (2.2) sati-
sfy the condition

(23) I}lf o (¢) | > 0.

. Favard then proves that. if equation (2.1) has a bounded solu-
tion x,(t), it has also one, x (f), which is a. p.

More precisely, &(?) s that solution, which exisls and is unique,
for which the functional

w(x) = Sltlp () Il

takes its smallest value when «(f) varies in the class of the
bounded solutions of (2.1).

It is clear from what precedes that, if (2.2) admits, ¥ se S, as
its only bounded solulion, the solution which is identically szero,
then a bounded solution z(f) of (2.1) (it it exists) is necessarily a. p.
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This is Favard’s first theorem, which gives a very interesting
connection between the uniqueness of a bounded solution and its
almost - periodicity.

We can see that, in the case of systems with a. p. coefficents,
we do not prove the almost-periodicity of all the bounded solu-
tions: it can, in fact, be seen on examples that the bounded eigen-
solutions of the homogeneous equation w'(f) = A(¢)uit) are mnot me-
cessarily a. p. It has however been possible to prove the almosi-
periodicity of the minimal solution #(t), if condition (2.3) holds.

f) Let V and H be two Hilbert spaces; we assume Vc H,
dense in H and with a continuous embedding (|| v a<kivll v, k
embedding constant that can be assumed = 1).

Set
24) Qfx: l)=[i(90'(’l): U())a— (A()x (1), L(n)) v+ (B (n) 2’ (n), Ln) v} dn,
J

we consider the linear second order functional abstract equation [33]

(2.5) Q@; )= [ (F )y Um)) oz .
J

In (2.4) A (1) and B () are bounded linear operators ¥» € J, from
V to V and from H to V respectively; therefore

A el(V, V)=8, Bnel(H V)=8

€ and @ are two Banach spaces and we shall assume that A(s)
and B{n) are continuous functions in their respective uniform
topologies, that is as functions with values in @ and & (precisely:
| 4]lq = Sup||4z|jv, | B |g = Sup | By|v).

lelly=1 lyhg=1

In (2.4), (2.5) «(f) is the unknown function, l(1) the test fun-
ction, fin) the known term. We shall assume that they belong to
the following functional spaces:

(1), 1(n) € L'10c(J; V)
(2.6)
x' (1), U'(n), f(n) € L*10c(J; H).

I(n) has, in addition, compact support and (2.5) must be true for
all test functions 7(n).
The derivatives ' (1), I' (n) are intended in the sense of distri-

bufions (z. e. [(Jc(n), u' (M) dqg=— [(x (), w(n) )z dn & u (%) from J to H

whith compact support and 1ndef1n1tely differentiable).



ABSTRACT ALMOST-PERIODIC FUNCTIONS AND FUNCTIONAL EQUATIONS 319

It may be noted that in this way we do not impose that =x (n)
and x' (1) be continuous; the reason for this is that in the pre-
sent theory of the inifial value problem for (2.5) (particulary in
the hyperbolical case) the spaces (2.6) are cousidered.

Equation (2,6) (or a more general one, that however can be
treated in the same way) corresponds to the weak formulation of
many classical problems on partial differential equations. This,
for example, holds for the second order hyperbolic equation with
coefficents depending on # (in addition to the spacial variables
Eisebm)-

Favard’s results have been generalized to {2,5) by AMERIO [34]
in the way we shall see in the present §.

Let us observe that, the functions not being continuous, we
connot speak of almost- periodicity in the sense of BoHR - BOCHNER:
it is however possible fo introduce in the folloving way almost -
periodicity in the sense of STepaNoOV. )

Indicating with A the interval ——%_<_'n§$, counsider the Hilbert

space L*(A; H) of the functions g(n) with values in H, almost
everywere on A, and with square summable norm on A: ge L*A;
H) means therefore that g =g (1); n e A} and

190 22w m=1 [1 g (o) | Frdn
‘A
It is then possible to associate to f{r) a function fa(f) from J
to L*(A; H), defined by
fat) = Ifit +2); n e A}

Therefore
I Falt) 2o (a; 0 =] /'n Ft 4 ) || 2 dnj e
A

and, consequently
(2.7) lim Il fatt + 7) — falt) || 228, ) = 0,
T —

which shows that fi({) is continuous.

In what follows, we shall, for simplicity’s sake, write f(#)
instead of fa(f), adding the indication of the space in which f{#)
is to be considered; we shall therefore write f(fj=1f ({ +4); n e A}
and, by (2.7), f(¢) is L*(A; H)— continuous. In other words:

f(n) € L*oe(J; H)=>{(¢) L*(A; H)— continuous.

21
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Analogously, z(?) and I(f) are L®(A; V)— continuous, while
x' (§) = ' (t+n); n € Al and U'(f) are L*(A; H)— continouous.
Regarding the operation of differentiation, it must be mnoted
that «'(f) defines the L*(A; H)— derivative of x (f); in other words.
lim H’MLx'(t)
T

T—0

=0.
L2 (A; H)

If E= V< H, we shall indicate with W the space of fun-
ctions G =1g(n); 1 € Al with g(n) e L*(A; V), g'(n) € L*(A; H). It
follows that the functions X(n) = {(n), z'(n)}, X({)=1X(t+7); ne Al
take their values in E and W respectively. We have also

I X @) |lz=1Hhzm@) v+ 12 @]z
100 1w = 1l X+ ) pdns =1 Ui+ 0l 5+ 127 ¢+ ) dn e,
A a

and X (#) is W-continuous.
We shall say that the function f(n) is a. p. according to Stepanov

(H— a. p. 8% if to every « > 0 it is possible to associale a relati-
vely dense set |t|. such that

sltlpzfn Fit + = n) — 7 (E+ ) [Frdn] < .
A

As BocHNER [3] observed, this definition can be reduced to the
classical one of a.p. function (in the sense of BOHR - BOCHNER).
The condition given is, in fact, equivalent fo the following

Sltlp WG+ ) — @) llzeas m <

The notations

fa) H—a. p. 8%, f() L*(A; Hy—a. p.
are therefore equivalent.

We shall say that f(n) is H— w.a.p.S* if the corresponding
(@) is L*(A; H) w.a.p., that is if the scalar product

(F(8), gz m = [ (71t + ), 9 ()a
is a. p. vge L*(A; H). a
Analogously, the conditions
x(n)V—a. p. §* and o' (1) H— a. p. S? (i- e. X(n) E—a. p. §%)
are equivalent to the condition

X)) W—a. p.



ABSTRACT ALMOST-PERIODIC FUNCTIONS AND FUNCITONAT EQUATIONS 321

By the definitien, X () E— w.a.p. S§* means thath X (#) is
W — w. a.p.. that is, v+ G € W, the scalar product

r

(X (2), G)W=)(X(t+-q), G (n))Edn =
I -

+ [( @t )y g(0)v 4 @ (E+7), g (0))ar) dn
A

is an a. p. function.

‘We shall again call X (¢), L ($)=1l{t+4); 2 € Al (With L (n)=
={l(m), Vi), f(t), solution, test function and known term of
equation (2.5).

y) Let Z({) ={Z(t +1);n€A] be a W —bounded function
{i. e. Slitlp I Z(#)||lw <+ o0).

We shall put
(28) (2, T)=Sltlp NZE+)—Z@H)|lw (vreld)

(2.9) w(Z)=Sup | Z(f) |lw.

Let Az be the set of W — bounded functions X () such that
(2.10) (X, 1< ¢(Z, 1) vred.

Furthermore, let Az g, r be the set of the solutions of (2.5) e
Az and Ag g the set of eingensolutions U () of the homogeneous
equation

Qu; 1)=0

which are differences between functions e Az ¢, ¢ .

It is clear that the sets Az, Az q,r, Az ¢ (to which must be
added the identically null solution) are convex; 4f, in addition, @
W — bounded solution X,(I)exists, the set Ax, g, ts not empty.

The following minimax theorem can now be proved.

I - Let us assume that:

1) There exists a W — bounded Z () such that Az q,r s not
empty ;

2) v U)e Az, q, it results

(2.11) Int | U () ||w > 0.

Then, if .
p = Inf p(X),
Az,0,f
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there exists in Az, g r one, and only one, solution X(t) such that
wX) = .

It can be observed, comparing this theorem with the mini-
max theorem regarding the wave equation and with the one of
FavaARD for ordinary systems, that the class of solutious Az g r
is now more restrictéd, owing to condition (2.10). The reason for
this will appear in theorem IITI. On the other hand, the rather
restrictive condition (2.11) (which will be called “Favard’s condition,,)
is here broadened because we impose that it be satisfied only
by the U(t) € Az, ¢, and not by all the W — bounded eigensolutions.

Lastly, we observe that condition (2.11) implies that, in Ax, q,r,
the uniqueness theorem for the imitial value problem wmust hold,
that is

X (t), X,(t)e Ax, @, Xi(0)=X,(0)=> X,(t)= X, (f).
In fact, if X, (¢,)3= X, (4,), then X, () — X, ({)= U(t) e Ax,, ¢ and
from (2.11) follows || U (0) || > 0, which is absurd.

3) In what follows, we shall assume that the operators A (n),
B(n) are & — a. p. and B — a. p. respectively and that f(f) is
L*(A; H) — w. a.p. ’

If s ={s,| is a regular sequence with respect to 4 (v), B(n),
f(n) simultaneausly and if S is the family of such sequences, it
results, uniformly,

lim A (s +5.) = 4, ()

7 —+ 00

(2.12) lin B(n+s,) = B; (1)

n —» Q0

Lim*f(¢ 4 8,) = £ (¢)
7n —» O

and A (n), B.) al.'e a. p., while £, (f) is w.a.p.
Let. us now considér, ¥ se S, the equation

2.13) Q.3 )= [t (), 100 e in,
A

where

Q@ D= [iE (), ¥ — (4, ez, Loy +
J
+ (B, () 2’ (n), L{n) )V’d"l .

It can be shown that, if (2.5), considered in an interval a'— + oo
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—
(i.e. if I(n) =0 for » < @) admiis in the interval a + % — 400 a

W — bounded solulion X (t), then there éxists also a W — bounded
solution X,(t) (Sup || X, (%) |'w < 4 oo).
t

It is then easy to prove that each equation (2.12) has one W—bo-
unded solution X, (t); more precisely

o (X N<o0(X; 1), w(X)<wu(X)

The sel Ax,, @, t; is therefore not empty, vse S.
The following theorem of W — weak almost — periodicity then
holds.

II - Let us assume that:

1) Equation (2.5) has one W — bounded solution X,(t);

2} The operators A (n), B(n) and the known term f(t) are re-
speclively & — a. p.. $ —a. p. L*(A; H)—w. a. p.;

3) vse S and U(l)e Ax,, ¢, it resulls

(2.14) Int || T(t)||w> 0.

Then the minimal solution X(t) (in the set AX,, Q.f) is W—w.a.p,
Furthermore, v s €8,
lim* X (¢ + s,) = X, (¢)
#f -— 00

uniformly and X, (t) is a w. a. p. solution of (2.13), minimal in the
set Ax,, Qs fs-

The proof (for which the uniqueness of the minimal solution is
essential) can be obfained by extending a procedure based on Boca-
NER’S criterion, given by Favarp for ordinary systems.

e) Let us assume that equation (2.5) has a W — bounded and
W — uniformly continuous soluiion X,(i). In this case, also the

minimal solution X (1) is W - uniformly continuous.
. By (2.1), we have, in fact,

(X 9<¢X; 1) wreld,
and, therefore, X, () being nuniformly continuous,

lim ¢ (X; 7)< lim ¢ (X,37) 5= 0.
Hm ¢ E

T e—s 0 T

The following W - almost - periodicity theorem can mow be
proved.
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‘TII - Let us assume that:

1) Equation (2.5) has a W — bounded and W — uniformly
continuous solution X, (t);

2) The operators A (n), B(n) and the known lerm f({) are
respectively & — a. p., B — a.p., L¥A; H) w.a.p.; A(n) salisfies, in
addition, the ellipticity condilion

RA@z, oy 2viziv (>0
3) vse S and v U(l) € Ax,, q,, it results

Inff U@)|lw> 0;
t

4) The embedding of V in H is compact.

Then the minimal solution, Xit), is W — a. p.

The theorem is proved by showing that the range of
X () is r. c., using a compactness theorem which holds for the
solutions of (2.5).

It may be observed that, for the problem of the vibrating
membrane, treated in § 1, conditions 2) and 4) are obviously
verified and so is condition 3) (of FavarD) because, by the ener-
gy conservation principle, || U(#)|'w = const.

The problem of proving theorem III eliminating the hypotesis
that X, () is W — uniformly continouous (and assuming even-
tually that f(f) is L*(A; H) — a. p. and not only L*(A; H) w.a.p.)
is still open. See, on this subject, a typical example, examined
by Prouse |35].

Finally, it is evident that theorems II and III extend also to
equation (2.5) the first theorem of Favard.

OBsgrRvATION I - It is posssible fto effect the harmonic ana-
lysis of the minimal solution X(t) (and consequently of the X, () ).
If, for simplicity’s sake, we assume f(f{) L*(A; V) — a. p., every
sequence s e S is regular also for X({). From theorem XIII of

CeAPIER I it follows that every characteristic exponent of X (¢) s
a linear combination, with integer coefficients, of a limite number
of characteristic exponents of A (n), B(n), f(¢).

OBSERVATION II —~ Theorems !, II and IIT hold also for more
general equations [36], assuming the space V to be wuniformly
convex and H semicomplete. In this case, the proof of Theorem
III can be obtained by assuming that a continuous dependance
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theorem from the operator and the known term holds; such a
theorem however has been proved only in particular cases.
ZaomaN [387] has shown that this is true for the wave equution;
movre precisely, for the Cauchy problem under the assumption
that the initial values (1.2) are given on the whole of R" (i.e Q =
= R™) and a(x) > p> 0. In this case the E — bounded eigensolu-
tions are not, in general, a. p. Such is, however, the minimal solu-

tion X (t) of f(f) is L* — a. p.

OBSERVATION III - Theorem III concerns the hypperbolic case
of equation (2.5), with variable operators. Problems related to the
parubolic and elliptic cases have been examined respectively by
Prousk [38] and by Rrccr and Vacar [39)].

3. - A. p. solutions of the Navier - Stokes equation.

«) Iiet @ be an open, bounded and connected set of the
plane § = |%,, %,{ with boundary 2Q. The ‘‘classical,, problem we
shall examine consists in determining, in the interval J, the vec-
tors x(n, §) = jax (, §), @, (n, )i and the scalars p = p (v, %) sati-
sfying the NAVIER - STOKES system

a;: + %iwi%%i_l"’A x = — %4—1‘.(71, £)
(3.1) '
R EeQ;j=1,2)
and the boundary conditions
3.2) x (1, Hlzeda=0 (med;j=1,2)

In (3.1), =, are the components of the fluid velocity, p the pres-
sure, u > 0 the viscosity coefficient, A the LAPLACE operator
end f,(n, £) are the given components of the force of mass. All
functions considered are real.

To this classical problem can be associated, as is well known,
a weak problem, and it is to this problem that we shall refer.

Let 9T be the manifold of indefinitely differentiable vectors,
with null divergence (i. e. satisfing the second of (3.1)) and com-
pact support in . We shall indicate by N and N' the closures
of ® in L* and H,' respectively.
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As N and N! are subspaces respectively of L2, and H,!, it will
be

(, vy = (®, 0 =fu(£)vt£) do
(4]

3.3)
3 U9V
(4, I = (w, o)z =_/ 3, 2t a0,
Furthermore, we shall put
1,2 2v;
(3.4) b(u, v, w)=| 2 u; 7w, aQ.

i,j o9&

The weak form which can be deducted for the NAVIER - STo-
KES equation is then the following

(3.5) [IM(W(VI), h(n)ag — (@ (@), B'(n))ez + b (n), @ (a), h(n))] dn=

- [ (F (), 1))z din
In equation (3.5)

) =1z e Qlh@)=1h(5); EeQl, fa)=1f(n%);Eel
and

W =1 20 e
o

x (n) is the unknown function, h(n) the test function, f(n) the
known term. (3.5) must hold for all & (v) with compact support on J.

The functions considered must belong to the following fun-
ctional spaces:

x (1) € L%10e(J; NY 0 Lige (J; M)
h(me CJ; NY), b’ (n) € Loc (J; N)
f(n e L1 (J; LY.

It has been proved by Propr [40] that the solutions z(n), mo-
dified eventually on a set of measure zero, are L*— conltinuous:
consequently x (n) € L*1oc(J; N)n C(J; N).

The theory of the NAVIER - STOKES equation in an interval
o« ™8 can be made assuming in (3.5) the interval «™p in place
of J as interval of integration; k(1) is then assumed with com-
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pact support on « — B. The initial value problem x(x)= x, has
then one and only. one solution v x,e€ N; this has been proved,
with different techniques, by Hopr [41], LaADYzENsSKAJA [42],
LioNns and Propr [43], Proor [40]. The case of f(f) periodic
(in two or more dimensions) has been considered by ProbI [40],
Yupovic [44], PRoUSE [45].~

B) The study of the solutions in an unbounded interval and
the proof of the existence of an a. p. solution has been made by
Prouse [47] who has proved, among others, the following theorems.

I - Let x(n) be the solution, im =,7" 4 oo, of the Nawvier - Stokes
equation, satisfying the initial condition x(n,) = x,. Then

8.6) Sup | f(n)|p=K<+oo = Suplz()|r=M<+oo,

n="Mo n=no

where M depends only from K, | x, |2, ©

[

Q.

II - Let
Sup || f(1) jrr =K < o0.
n

There exists then at least one L ~bounded solution (n): precisely,

Sup || 2(1) l|lzz = K < oo,
n

where M depends only from K, p, Q.

If, in addilion, K s sufficiently small (K < K,, depending only
from u, Q) the bounded solution % (n) is unique.

‘We introduce now, as in § 2, the functions

z(t)=1x(t+n);nedl, f{H=17E+n);neal,

A being the interval — %S n S%
The following propositions then hold.

IIT - Sup || f() |l < Ko, B LYNA; L) — w. a.p. => %(n) L' — w. u. p.
kil
and z(t) L*(A; L) — a. p.
As we can see, the almost periodicity of the bounded solution
follows from its uniqueness; we are in the same order of ideas

as FAvArD’s first theorem (generalised by AMERIO [47] to wnon
linear ordinary systems).

We now give the final result.



328 LuUIel AMERIO

IV - f() L*(A; LY — a. p., Sup I f(a)|le: = K, < K, (K, depending
only from y., Q== (q)L’—-a p., 2@)L*(A; HY) — a. p.
Prousw’s theory holds if  is a two — demensional set be-
cause the following inequality of LADYZENSKAJTA
el < V2| iz || @ |my
is used, which is true omly for two — dimensional sets.

Y) A study of the NAVIER - STORES equation in more than
two dimensions, in view of proving that “sufficiently small,, so-
lutions are a. p., has been made by Foiras [48]. This Author has
proved the following theorem.

V - Let f(n) be L*— a. p. If there exists, in J, a solution z(»)
such that, for a certain p, with 3 < p < + oo, it is

Sup {| # (1) [lzP < K
n

(where K depends only from p and Q), then (1) is L* — a. p.

4 - A. p. solutions of the wave equation with non - linear
disspative term.

a) Liet Q@ be an open, bounded and connected set € R™, with
m <5, satisfying the cone property.
We consider, for £ e Q, the wave equation with dissipative term

otx

&y 3

+ﬁ(a_,‘) lim%(aik(z)%)—a(g)x—l—f(n,E) (ned),

ik
where the functions a,;(¢), a (%) satisfy the conditions given in § 1.
We shall assume that the boundary condition
4.2) xz(n,%)]teda =0 (nelJ)
holds.
We shall, furthermore, assume that 6({) is a coutinuous in-

creasing function of L e J, with p{0) =0. In (4.1), the term ﬂ(gic)

0
represents therefore a passive resistance, opposite to the velocity
Zm, f(n, ) is the force of mass.
n

Setting, as usual,

xM)=1x(,8); ei; f=If(,?t;tey,
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and

B o) = 16(25 ) s ke g

we shall say that x (1) is a weak solution of (4.1), satisfying the
boundary conditions (4.2) if it satisfies the equation

3) [:(w"(n),h(anm+(xm h(n))ag + B (), Bzt dn =
/(f(o), hin) gz dn.

J

In (4.3) we assume that the unknown function x(a), the test
function h(n) and the known term f(n) satisfy the conditions:

1) @(n), « ()€ Lie (7; HyY), (1) € Lice (J; L;
2) h(n) € Lioc (J; H,%) and has compact support;
8) f(x), t' (n) € Lioe (J; L?).

Furthermore, we shall assume that B({) has, on J, a continuous
derivative, verifying the conditions

(4.4) By(L41Ele=) < B ) < ko (L 4-[Efr— 1),
with
(4.5) o<k <k, 1< p\l—l— 4 —5 (m < 5).

Let us observe that {4.4) is salisfied if we take
(4.6) BRQ)=wl+vL[L] (r>0,v>0),

that is if We consider a passive resistance of “viscous,, type for
small velocities and of “hydraulic,, type for large velocities: it is
therefore a physically well acceptable law. '

Cauchy’s problem for (4.3) as been studied, for arbitrary o
and m, by LioNs and Srrauss [49] who have proved the follo-
wing existence and uniqueness theorem. If f (1), f’ (1) € Lioc (Jo; L*),
with J, = 0" 4 oo, there exists in J, one and only one solution
x (1) such that

z(0)=1=x,, ' (0) =z,

v, e H n HY, x, € H.
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The asymptotic behaviour of x(n) as 1 — -+ co and theexistence
of bounded or a. p. solutions has been studied by Prouse [60]:
hypoteses m <5 and the second of (4.5) have been introduced by
PROUSE in order that, if @ = Q > A, the embedding of H!(¢) in
LP+1(Q) be continuous; it would be interesting to see if these
conditions, whose phisical meaning is mot clear, can be eliminated.
We may add that, in the case of periodic f(n), which was
treated by ProusEe [51] under the same assumptions, these were sub-
sequently eliminated by Probp1 [52].

Prousk has proved, among others, the following theorems (we
have again called solution the function X (n) = |x (), ' (n)}).

I-1If
max lim || f(¢), z» a1 < + oo
t— 400

then all solutions are, among themselves, E — asymplotic, when
N ~— + oo. In other words, if X,(n), X, (n) are any two solutions

Lm || X, (1) — X, (1) ||z = lim } || 2 (n) — 2, (1) ||Eg +
n =— + 0 n —+ +®© :

+ Il 2, (1) — @y’ ) {|Za 312 =0

II - Let f(¢), [ (t) be L*(A; L’) — bounded. There exists then one,

and only one, E — bounded solution X {n).
By theorem I we have then, ¥ solution X (»),

lim || X (1) — X () |z = 0.

o — 4 00

III - If f(¢) is L*(A; L) —w. a. p. and if f (f) is L*(A: L*) —
bounded, then X(t) is L*(A; E)— w. a. p.

IV - If f(t) is L*(A; LY —a.p. and [ () is LYA; L*) — bounded,
then X (1) is E— a. p.

As a conclusion of PROUSE’s analysis, it can be said that 4f
f(n) is a. p. according to Stepanov (L* — a. p. 8*<=>L*(A; L*)—

a. p.) and if Sup !{ll it 4+ )|z dn 2 < 4+ oo, there exists one,
: t . .
a

and only one, solution X (n) which is a. p. as a function taking
its values in lhe eneygy space, that mo other solutions with boun-
ded energy exist and that, when =+ —~ + oo, all solutions X{)

are asymptotic, in the energy space, to the solution X (x).
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