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R E L A Z I O N E S C I E N T I F I C A 

ABSTRACT ALMOST-PERIODIC FUNCTIONS 
AND FUNCTIONAL EQUATIONS 

L U I G I AMERIO 

CHAPTER I 

ALMOST-PERIODIC FUNCTIONS IN BANACH SPACES 

1. - Définit ion of a lmos t -per iod ic funut ion. E l e m e n t a r y 
propert ies . 

The gênerai theory of almost-perindic functions wi th c o m p l e i 
values, created by H A R A L D B O H R [l] in his two classical papers 
publislied on Acta Mathematica in 1925 and 1926, has been 
greatly developed by W E ? L , D E LA. V A L L É E - P O U S S I N , BOCHNER, 

STEPANOF, W I E N E R , BOGOLTUBOV, L E V I T A N . A n important class 

of thèse functions had already been studied, at the beg inning of 
the century, by B O H L and by ESCLANGON. 

Bohr* s theory w a s then, in a particular case, extended by 
MCTCKENHAUPT [2] and, subsequently, by BOCHNER [3] and by 

BOCHNER and von NETTMANN [4] to very gênerai abstract spaces. 
The extension to B A N A C H spaces has, iu particular, revealed itself 
of great interest, in v iew of the fundamental importance of thèse 
spaces in theory and applications. 

To this extension wi l l be devoted the first chapter of the pré
sent paper. In chapter 2 we shall deal wi th the applications to 
a p. partial, or, more generally, abstract differential équations, 
linear or non linear. This means, essentially, the extension of the 
classical theorems of B O H R - N E U G E B A U E R and of F A Y A R D [5] o n 
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ordinary l inear differential équations. Such extension can be madeT 

as w i l l be seen, fo l lowing a procédure whose nature wiJl be quite* 
clear already in the problem of the intégration of a.p. functions. 

Let X be a B A N A C H space^ if or e X, w e shall indicate b y 
|| as ||. or by || x \\ x, the corresponding norm. 

Let J be the interval — oo < t < + oo and 

(1.1) X = f(t) 

a continuons function, defined on J and wi th values in X: an 
application, in other words, t - * f(t), from J to X. Continuity wi l l 
obviously be intended in the strong sensé {i. e. Jim f(t + T) = f[t) 

means that || f[t + T) - f(t) || — 0). T~* 

W h e n t varies on J the point x = f(t) describes, in the X space, 
a set w h i c h is called the range of the function f\t), indicat ing 
it by gifu). 

A set E^J is said to be relatively dense (r. d.) if there exista 
a number l>0 (inclusion length) such that every interval a^a+l 
contains at least one point of E. 

We shall now say that the function f\t) is almost-periodic (ap.) 
if to every £ > 0 there corresponds a r.d. set | T J 6 , such that 

(1-2) Sup | i / ( t + T ) - / " • ( * ) | | ^ i , V T e | x | £ . 

Each T G | T | E is called an t-almost period of f(t); to the sei 
|T je ther^fore corresponds an inclusion length lt and it is clear that, 
w h e n e —* 0, the set | T |6 becomes rarified, whi le (in gênerai) 
h ~+ + oo. 

The above définition was g iven by BOCHNER and is an obvious 
extension of the définition adopted by B O H R for his theory of a.p. 
functions. I t is, undoubtedly, in its^lf a very significant définition: 
its real depth can actually be understood only «a posteriori», from 
the beauty of the theory constructed on it and the importance of 
its applications. 

The theory of a.p. functions wi th values in a B A N A C H space 
is, in the w a y it is treated by BOCHNER [3], similar to Bohr's 
theory of numerical a.p. functions: n e w developements arise, as 
is natural, in connection wi th questions on compactness and boun-
deduess. Thèse questions (which hâve been recently studied espe-
cial ly in Italy) are of interest particularly in the intégration of 
a.p. functions and, more generally, in the intégration of abstract 
a.p. differential équations. 
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I t is obvious that a continuous periodic function is also a.p. 
The almost-periodicity condition is however much less restric

tive than that of periodicity: for instance, ail trigonométrie poly-
nomials 

P(t) = £kaKe%t (akeX, \keJ) 
i 

are a.p. functions; not only, but, as we shall see later, the class 
of a.p. functions coincides with the closure, wtth respect to the 
uniform convergence on J, of the set of such polynomials. 

Let us now indicate the first properties of a.p. functions, which 
can be easily desumed from their définition. In what follows we 
shall omit the proofs, except at some fundamental or typical point. 
We add that when we say that f(t) is uniformly continuous, or 
bounded, or that the séquence \fn(t\\ converges uniformly etc.. 
we always mean thàt this occurs on the whole interval J. 

When, for sake of clarity, it may be necessary to state in 
which space f\t) takes its values, we shall say, for instance, that 
f(t) is X — continuous, or X — a.p., instead of continuous, or 
a.p. etc. 

I - f(t) a.p. =̂ > fit) uniformly continuons (u.c). 

I I - f(t) a.p. = ^ 3lM relatively compact (r.c). 

This mean s that the closure 3lfit) is compact. I t may be noted 
that, in the numerical case (or, equivalentîy, when X is Eucli-
dean) property I I reduces to Bohr's [f(t) a.p.^3lfit) bounded). In 
a gênerai BANACH space however, the r.c. sets are bounded sets 
of a very particular nature. The fact that the range 31 m is r.c. 
is équivalent to the following: V&>0, there exists a finite number 
of points /"(ÊJ, ..., f{tv) such that 

«m, c U ifitA £) 
/ C = l 

(where (x, e) dénotes the open sphère with centre x and radius s); 
equivalentîy, every séquence \f[tn)\ contains a convergent sub-
sequence (in other words, for 9Lfit), the principle of Bolzano-
Weierstrass holds). 

I I I - fn(t) a.p.{n=l, 2, ...), fn(*) —A') uniformly^> f{t) a.p. 

The class of a.p. functions is therefore closed with respect to 
the topology of uniform convergence. 
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IV - f(t) a.p., f(t) uniformly continuous =^> f'(t) a.p. 

Y - x — f(t)X — a.p., y = g[x) with values in Y (Banach) and 
continuous on |ft nt) =^ g(f(t)) Y— a.p. 

In particular: 

/(*) a.p., k>0^>\\f(t)\\> a.p. 

2. - Rochner 's c r i te r ion . 

The class of a.p. functions has been characterized by BOCHNER 

by means of a compactness criterion, which plays an essential 
rôle in the theory and in applications. The starting point consists 
in considering, together with a given function f(t). the set of its 

translates |/(£ + &')! and its closure i / ( £ + s ) | with respect to uni
form convergence. 

We shall prove Bochner's criterion by the followiug analysis. 

Let G be the Banach space of continuous and bounded functions 
f(t), from J to X(G = C\J; X) 0 Lœ\J; X)), with norm correspon-
ding to uniform convergence: if f is the point of G which corre
sponds to the function /"(£), it will therefore be 

f=\f(t); teJ\} | | / | | = S u p | | « t ) | | . 
t 

Let us now consider, together with f(t), the set of the tran
slates f(t + s), vseJ. If 

}(s)=\f(t + s); teJ\, 

we hâve defined an application, s —*• f(s)% from J to G; further-
more, /(0) = /. 

We shall call transformation of Bochner the opération by 
which we pass from f(t) to f(s): f[s) will be called the Bochner 
transform of f(t), nsing also the notation 

/W = »(/(*)). 

Bearing in mind the définition of Gr, it is clear that the trans
formation just defined is linear ; moreover, the correspondance 
between f(t) and f(s) is one-to-one, (note that f(0)=\f(t); teJ\, 
that is f(t) is the function corresponding to the value /(0)). 

The range efcfis), in G, of the transform f(s) has the following 
important properties. 
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a) cR/̂ g) is a spherical Une: more precisely 

(2.1) || f{8) Il = S u p || f[t + s) || = Sup || /(*) || = || 7(0) || ; 
t t 

P) 3lf(S) is described in such a n>ay that the «principle of con
servation of distances» holds: in fact 

H /t* + )̂ - m H = sup y f(t + s + T)- f{t + s) ii = 

(2.2) 

= Sup || f(t + T) - f(t) || = || fit) - 7(0) Il ; 

Y) 31 f(S ) r.c. <^=^> f(s) a.p. 

This property, that identifies almost-periodicity with relative 
compactness, is of the greatest importance. 

From theorem I I it is obvious that fis) a.p. =̂ > ëRf<s) r .c . 
Let us now prove that 31 fa) r. c. =^7( s ) a- P-

Firstly, we shall prove that 3tfi3) r.c. =̂ > f(s) uniformly conti
nuous. Suppose this is not true; there exist then a constant 
o > 0 and two séquences js '„ | , | s"„ | such that 

(2.3) lim (sn" - s'n) = 0, || f(s\) - f(s'u) || > p. 

From the property fi) and the second of (2.3) it follows 

(2.4) n /V„— «'„) —A0)l l> p. 

As the range 3tf\3) is r.c. it is possible to extract from \s"n — s'»| 
a subsequence (agam indicated by |s"„— s'n\) such that 

(2.5) lim f[8Ï -s'H) = g 

and, by (2.4), 

(2.6) || £ - / " 0 ) 1 1 2 ; P. 

Ou the other hand 

g = \g(t); teJ\eG 
and from (2.5) we get 

lim || J(sï - s'„) - g || = lim Sup || ;(* + s'„ - s'n) - g\(t) || = 0. 

It results then, vteJ, 

lim f (*+ * « - * ; , ) =)g(t) 
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a n d therefore , for the first of (2 3), f(t) b e i n g cont inuous , 

f(t) = 9(th 

t h a t is || 7— g\\ = 0, aga ins t (2.6). 

W e n o w prove tha t f{s) is a .p . F o r this , i t is sufficient to 
s h o w tha t , v s > 0 , the set | T |E of the e — a lmos t -per iods is r.d. 

A s t he r a n g e 3if{S) is r . c , t he re exist, in cor respondance of 

t he g i v e n e, v va lues f(s,), .... t(sv) such tha t 

««.)«= uV>*). «)• 
fc 

L e t us pu t ï = 2 m a x | sh | and fix aeJ a r b i t r a r i l y ; we con-

s ide r n o w the i n t e r v a l fa — =) ( a + o) °* l eng th l. The point 

f(a) be longs to one of the v sphères (f(sh), s); let us suppose tha t 

(2.7) f(a) e (f(s^), s) 

a n d cons ide r t he va lue 

(2.8) T = a — 8S. 

I t w i l l be 

(2.9) a- J<Tx<a + ^ 

and , f u r t h e r m o r e , by the p roper ty 8) and (2.8), 

(2.10) || f(s + T) - J(s) || = || f\ + T)~ f[sk) || = || f(a) - fou || . 

F r o m (2.7), (2.10) it follows that , VseJ, 

Il f(s + T ) . - f[8) || < e, 

t ha t is T is a n s -a lmos t -per iod for f(s). F o r (2.9), the set j T |e is 
also r .d . , a b e i n g a r b i t r a r y and l i u d e p e u d e n t of a. 

The a lmos t -pe r iod ic i ty of f(s) is therefore proved. 

S) f(t) a.p.<^^> f(s)a.p. 

This p r o p e r t y follows immedia te ly from (2.2), as 

S u p || f(t + T) - /(*) || = Sup || f[8 + T) _ f(8) || . 
t s 

Properfcies S) and y) express Bochner's criterion: 

V I - f(t) a.p. <#==#> 31 fa r.c. 
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I n o ther w o r d s : 

Let f(t) be continuons, front J to X. A necessary and sufficient 
condition for f(t) to be a.p. is that from every séquence \s„\ it may 
be possible to extract a sabseqnence | ln j such that the séquence 
\ f(t + h) I be uniformly convergent. 

A very i m p o r t a n t conséquence of Bochner ' s c r i t e r ion is t h a t 
the sum f(t) + g(t) of two X—a.p. functions is X—a.p.; the 
product vit) fit) of fit), X — a.p., by a numerical a.p. function &(£), 
is a. p. 

Therefore : The set of X — a p. functions f(t) is a vector space. 
The correspondis g set, constituted by the Buchner transforma / (s) , 
forms a snbspace iclosed, by theorem I I I ) of the space G. 

O B S E R V A T I O N I . - As w e h â v e a l r eady pointed out , B o c h n e r ' s 
t ransformat ion sets up a co r respondance be tween a func t ion f{t) 
a n d i ts t ransform f(s) = cB(/"(0)- for w h i c h the «principle of conser
vation of distance»holds (p roper ty fi)). If we assume t h a t fit) itself 
satisfies a condi t ion more gêne ra i t han p), bu t e s sen t i a l ly < f the 
«ame na tu re , we obta in a sufficient condit ion for a lmos t -pe r io -
d ic i ty due to B O C H N E R [6], a n d ut i l ized in t he s t u d y of t he 
homogeneous w a v e équat ion . I t is we l l wor th n o t i n g t h a t such a 
-condition is suggested by the «principle of conserva t ion of ene rgy» , 
w h i c h holds for t he solut ions of t ha t équa t ion . 

V I I . - Let us assume that fit), from J to X, satisfies the folio-
nving conditions. 

1) f(t) is continuous and its range &nt) is r. c. ; 

2) V T G J 

<2.11) Inf || f(t + T) - f(t) || > <r Sup || f(t + 1 ) - f(t) || , 
t t 

•a being a constant > 0 independent of T. 

fit) is then a.p. 

L e t us observe tha t , if || fit + T) — fit) || is i n d e p e n d e n t of t 
<that is if the p r i n c i p l e of «conserva t ion of d is tance» holds) 2) is 
satisfied with a = 1. The proof of theorem V I I w a s ob ta ined by 
B O C H N E R in the same w a y as t he proof (given in p r o p e r t y y)) t ha t 
t h e set j T [e of e -a lmost -per iods is r . d . 

O B S E R V A T I O N I I . - Let fit) be X — a.p. W e shal l say t h a t a sé

quence \sn\ is regular (wi th respect to fit)) if j ftf+s») î is uniformly 

convergent: in o ther words , */' the séquence \ f(sn) \ is convergent 
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Let us call Sf the set of ail regular séquences with respect to 
f(t). Obviously Sf=Sj. 

Given a second function g{t), Y—a.p., it is important, (as wili 
also appear from what follows) to recognise when SfE:Sg. 

To suive this problem we shall make use of the translation 
function (defined by BOCHNER): 

(2.12) Vf(v) = Sup || f(t + T) - f(t) || = || / (T) -7 (0 ) || (x e J ) . 

I n an analogous way, consider the function 

vff{T) = Sup || g(t + T) - g(t) || = || g(T)-g(0) \\ . 

We now construct, in the following way, a function o>ftg(t)r 

which will be called comparison function of / with g: ve , with 
0 <T s < Sup vr(-z), we set 

T€J 

°A*(e) = S U P fff(
T)-

w/\*(e) *s therefore the supremum of the translation function 
vg(v) when T varies in the set of the s-almost-periods of f(t): each 
s-almost-period of f(t) is also a wfl 9(s)-almost-period of g(t). I t 
follows that Mftg{e) is a monotonie, non decreasing function of s: 
the limit 

(2.13) »r„(0 + ) > 0 

therefore exists and the following proposition can be proved : 

VI I I . - SfS&g < # # > oV,,(0 + ) = o. 

I t follows that, in order that ail séquences \ sn j , regular with 
respect to fit), be regular with respect to g[t), it is necessary and 
sufficient that the comparison function w/-lff(e) be infinitésimal with 
s : it is, in other words, required that, taken an arbitrary séquence 
|T„ | of &n-almost-periods of f(t), with e„—*0, TH be, v » , a <*n-almost-
period for g[t) (Sup || g(t + T J — g(t) || = <r„) with *„-* 0. 

t 

3. - Harmonie analysis of a.p. functions. 

The harmonie analysis of a.p. functions extends to thèse the 
theory of F O U R Ï E R expansions of periodic functions. 

In the numerical case, this analysis was made by BOHR, WEYL., 

D E L A VALT/ÉE POUSSIN, BOCHNER, who constructed at first the 
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F O U R I E R séries associated to a g iven f{t): subsequen t ly , i t w a s pro-
ved (approximat ion theorem) tha t th i s sér ies is, i n some conve-
n ien t sensé, s u m m a b l e to the va lue f(t). S t a r t i n g poin t of t he 
theory is the theorem of the mean. 

BOGOLIUBOV [7] has , ins tead, followed an apposi te p rocédure , 
p rov ing at f irst d i rect ly the approximation theorem and l a t e r 
deduc t iug the theorem of the mean and the F O U R I E R expans ion . 

Fo r a g ê n e r a i B A N A C H space, the first p rocédure ha s b e e n 
genera l i sed by B O C H N E R [3], B O C H N E R and von N E I T M A N N [4], Ko-

P E C [8], Z A I D M A N [9], the second by A M E R I O [10]. 

In w h a t follows w e shal l keep to th is second po in t of v i e w , as 
the di rect proof of the approx ima t ion theo rem can be easi ly 
obtained, even for B A N A C H spaces. 

F i r s t of ail, w e observe that , v a e X, X e J , t he funct ion 

ae' ut 

is periodic. F r o m this follows the a lmos t -pe r iod ic i ty of ail t r igo
nomét r ie po lynomia ls 

(3.1) P(t)= 2Efta4e«V ( a 4 e i \eJ) 

and, consequent ly , of eve ry f(t) w h i c h is the l imi t of a u n i f o r m l y 
convergen t séquence of t r igonomét r ie po lynomia l s . The appro
x imat ion theorem enables us to p rove tha t , in th i s w a y , i t is 
ac tual ly possible to obta in ail a .p . funct ions. 

IX. - If f(t) is a.p. there exists, v s > 0 , a trigonométrie po-
lynomial Pe(t) such that 

(3.2) Sup | | / ( * ) - P e ( * ) | | < s . 

The theorem of the mean can be easi ly deduced from the appro
x imat ion theorem. 

X. - If f(t) is a.p. there exists the mean value 

T 

(3.3) m,{f(t)) = ^ A J f(t)dt. 
-T 

W e observe, first of ail , tha t if 

. 1 for a = 0 
(3.4) A|«) = 

' -0 for a 4= 0, 
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it results 

(3.5) 0TC(e'«') = A(a). 

From (3.1), (3.4), (3.5) follows that the mean value exists for 
ail trigonométrie polynomials P(t): 

m 
(3.6) 9Z(P(t)) = Zkak\(\h). 

1 

From this relation aud (3.2), (3.3) follows immediately. 
Let us now observe that, if f[t) is a.p., also f(t) e~iu is a.p. 

V A e J. The function 

O(A; f)=<m,(f(t)e-»t) 

is therefore defined on J. a(X; f) takes its values in X, as does 
f(t): we shall call this function the Bohr transform of the a.p. 
function f(t). 

I t can be seen at once that a(X; f) = Q on the whole of J, 
with the exclusion, at most, of a séquence |Xn | . 

I t is, in fact, sufficient to construct a séquence of approxima
tion polynomials |P f(£)| such that 

S u P | | / W - P , ( * ) | | < y . ( 1 = 1 , 2, ...). 
t l 

If then 

Pl(t)=^halh#hé, 

l!S,l = U \ k , 
h k 

we hâve, for X̂ f |[j.„j, observing that a(X; Pt) = 0 vl, 

l|a(X; mi = ||o(X; Pt) + a(l; f- P,) || = || a(X; / ~ P , ) | | < y 

and, consequently, a(X; f) = 0. 

The values Xn (and obviously XBelîxfc|) for which a(kn; f)=^0 
are called the characteristic exponents of f(t). If we put 
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we can associate to f(t) the FOURIER séries 

(3.7) /W ~ 2» *««**»'• 

The an are called the Fourier coefficients of f(t). 

It can be seen that it is possible to choose the avproximating 
polynomials Pt[t) in such a way that the characteristic exponents 
Xu belong to the séquence \ Xn | ; hence 

(3.8) P i ( * ) = s i a„e«V. 

Moreover one proves the fundamental uniqueness theorem : 

XI. - /(*) and g(t) X-a.p., a(X; f)^a[\; g)^>f(t) s g(t). 

The correspondance between almost-periodic functions and their 
Bohr transforms is therefore one-to-one. A property of the tran
sform a(X; /) is given by the following proposition. 

XII - a(X'; f) = 0 =#> lim a(l; f) = 0, that is the Bohr transform 

is continuous at ail points in which it vanishes. 

Furthermore, 

lim afk\ f) = Q. 
X — o o 

OBSERVATION I. - I t results 

(3.9) lim o„ = 0 
«—»-00 

that is the séquence of Fourier coefficients of an a.p. function is 
infinitésimal as n diverges. 

If 

(3.10) Sup || f(t) || = M 
t 

we also hâve, by (3.7), 

(3.11) | |a f l | | = ||a(X„; f)\\<M. 
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If X is a Hilbert space, property (3.9) can be made much more 
précise. It can in fact be deduced without difficulty (from the appro
ximation theorem) that ParstvaVs equality holds : 

(3.12) 9 ï l ( | j / (*) | |* )=2 B | | a ; 

OBSERVATION I I . - To BOCHNER we owe the construction of 
a notable approximation polynomial, suggested by Fejer 's theorem 
on the CESARO-summability of the FOURIER séries of periodic 
functions. 

Let, first of ail, L = ($l} p2, ...) be a base for the séquence 
| X„ ( of characteristic exponents of the function f(t); this means 

n 
that the real numbers (3„ are linearly independent (i. e. ^kck% = 0, 

i 

ck integers =#> ck = 0) and that each X„ is a linear combination 
with rational coefficients of a finite number of the pA. I t is clear 
that a base always exists: if the Xw are linearly independent, we 
can take L—\"kn\; if not, L can be obtained by eliminating those 
X„ which are linear combinations of the preceding ones. 

If the base L is infinité, Bochner' s polynomial <*m(t) is defined 
by the formula 

( 3-1 3 ) ^ = . , . ^ . , ( ^ ^ ) -

while, if the base is finite (1, = (8), ..., B,)), it is, for m > q, 

- (m!)» . . .(ml) / I v. I\ 
(3.14) cjt) = S (l - p J ) ... 

v,,...,v î V (ml)*) 

(i ^"l\n(y v*p*. AÀK^)' 
- l 1 - ( i i n j s r l ? * ^ ! - ' / ) 6 U ' • 

I t can be proved (and the proof is easily deduced from theo
rem IX) that 

(3-15> lim cm(t) = fit) 
• O O 

uniformly. 
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We observe that in (3.13), (3.14) 

•&$")+• 
m vABt only if 2ft —- = X/. characteristic exponent. 
i m\ 

Relations (3.13) can therefore be written in the for m 

i 

where the convergence factors ymk dépend only from m and the 
exponents XA (but not from the coefficients aJt). 

OBSERVATION I I I . - In observation I I of § 2 we found that 
the facts that Sf<^_Sg and that the comparison function <*>/•» *(6) was 
infinitésimal, as e —0, were connected. 

The harmonie analysis of a.p. functions expresses the condi
tion Src Sg by means of a relation between the characteristic 
exponents | ln | of f[t) and those, |(A„|, of g(t). 

XIII . - SfESç if, and only if, each exponent [xn is a linear 
combination with integer coefficients of a finite number of exponents 
X/f, that is 

(3.17) (*„ = Sft cnkkh (cnk integers). 
i 

Moreover the almost-periods and the characteristic exponents 
of an a.p. function are explicitly connected by the following pro
positions. 

XIV. - Let | X„ | be the séquence of characteristic exponents. To 
every fixed arbitrary e > 0, there correspond a positive integer 
N£ and a number 8e > 0 such that every solution T of the System 
of inequalities 

(3.18) |ettBT - 1 | < 8 e (n=l, ..., NE) 

is an n-almost-period of f[t). 

(It may be noted that, by a theorem of Kronecker, system (3.18) 
is compatible for every Se j> 0). 

For (3.8) it is, in fact, 

Il f(t + T) - A*) H < H W + T) - P,(* + T) y + || Pt(t + T) _ Pt(t) || + 

+ Il P,[t) - f(t) || <j + 2£* y alh II | e ^ _ i , . 
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2 e 
Chosen l in such a way that - < - , let us impose on T to sa-

tisfy the System of iuequalities 

| &? — 1 I < *- (À II alh || j = h (k= 1, ..., nù. 

I t will then be || f(t + T) — /•(£) || < s vteJ, which proves 
our thesis. 

XV. - Let | X„ | be the séquence of characteristic exponents. Then 
every t-almost-period, T, satin fies the System of ineqnalities 

(3.19) | e * V - l I < « l | a f l | | - > . 

In fact 

Il a„(e*V - 1) Il = Il WlHfit + *) — / lO)e - 'V) Il < s. 

4. - Weakly almost-periodic functions. 

Given the BANACH space X, we shall call X* its dual space 
(constituted by the linnar functionals continuous on X). If xeX, 
»*e I * , we shall indicate by <" as*, x > the coraplex value that, 
through the functional x*, corresponds to x, and by || x* || the 
norm of x*. 

We shall say that f(t). with values in X, is weakly almost pe
riodic iw.ap.) if, va* e Z*, the numerical function 

<x% fit)> 

is a.p. [11]. 

As may be seen, the définition given hère has, with respect 
to that of an a.p. function, the same relation as the définition of 
weakly continuous function has with respect to that of conti
nuous function. 

I t is clear (as I < x*, x > | < || a* || x || ) that fit) a.p. =#> fit) 
w.a.p. In order to indicate that \xn\ is a séquence converging 
weakly to x (i.e. if - x* , xn > —- < as*, as>, vx*eX*) we shall 
make use of the following notations 

xn — x, or lim* xn = x. 
M —»-00 

x is called the weak limit (which, if it exists, is also unique) 
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of the séquence \xn\. Let us remember that, in an arbitrary 
BANACH space, a séquence | xn | can be scalarly convergent 
(i. e. lim < as*, xn > exists and is finite v x * e X*) without neces-

» — • 0 0 

sarily being weakly convergent, that is without there being an x 
which is its weak limit. If this circumstance is not présent 
(i. e. if scalar convergence implies weak convergence) the space 
X is said to be semicomplete (reflexive, and, in particular, H I L B E R T 

spaces are semicomplete). 
Let us now indicate some properties of w. a. p. functions. 

XVI. - f(t) w.a.p.=^> oRA/) bounded and separable. 

Where necessary, we can therefore assume that X is separable. 

XVII - fit) w.a.p. in = 1, 2, ...), fit) -^ fit) uniformly =#• fit) 
w.a.p. if„(t)-^f(t) uniformly means that, v x * e X * , < # * , /»(*)> 
— < as*, fit) > uniformly). 

XVIII - fit) w.a.p., f(t + s„) -*»fs(t) Vte J =#> that the conver
gence is uniform. 

XIX - Let X be semicomplete at»d fit) weakly continuous. Then 
fit) w.a.p. <#==#> V I s„ i there exsists \ln\S\sn\ such that | f(t + l„) f 
is uniformly weakly convergent. 

This proposition extends Bochner's criterion to w.a.p. functions 
(with, however, a restrictive hypothesis on the nature of the 
space X). 

As we hâve already observed, fit) a. p. = ^ fit) w . a . p . I t is 
interesting to note that the property that has to be added to 
weak almost-periodicity to obtain almost-periodicity is one of 
compactness (by theorem XVI, a w a. p. function is bounded). 

The following theorem can, in fact, be proved. 

XX - fit) w.a.p. and cRA0 r.c. < > fit) a.p. 

OBSERVATION. - Let us assume that X is a separable Hilbert 
space and let \zn\ be a complète orthonormal séquence. Then, if 
f{t) takes its values in X, it results, vteJ, 

oo 

z 
1 

where <p„(0 = (/(0> ^ J is the scalar product of f(t) by zn 

By (4.1) we hâve 
oo 

<*.«> Il W = s» !?.,(*) I8-

(4.1) f(t) = S„ <p„(03n 
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Let us now prove the following propositions. 

X X I - f(t) w.a.p. <#=^> *„(*) a.p.,\ | %(t)f<M*< + oo. 

oo 

X X I I - /(t) a.p. <#=#• yn(t) a.p., X|<pn(£)|2 uniformly convergent. 
i 

The necessity of the condition expressed by XXI is évident. 
For its sufficiency, observe that, chosen yeX arbitrarily, it 

results 

y = \wn (in = (2/, «J, 2„ I i- | 2 = Il y II *J. 
1 1 

Consider the scalar product (f(t), y); to prove our thesis it is 
sufficient to show that it is a. p. Now we hâve 

(4.3) (f(t), y) = lnoH(t)^n 
i 

and the séries on the right hand side (constituted by a.p. fun
ctions) converges uniformly, since it is, by Schwarz's inequality, 

I %M(t) I < i l i v u H ^ i L I t -WH^SMi f : , | IU|*M/«. 
P P P P 

To prove that the condition expressed by XXII is necessary, 
we observe that, f[t) being a.p. , the range Slnt) is r.c. This im
plies that, V£^>0, there exist a finite number of points f(tt),... /*(£v) 
such that 

a A „c ÏÏV(U, e). 
k 

Let us now fix an index m such that 

oo 

Il f,Âh) Il = I S . I *„(**) I2 11/2 < • l* = 1, - v) 
m 

Chosen arbitrarily te J, we hâve, for a certain t3, \\ f(t)— A*>)II<ÊJ 

and it results 

I £, | <pn(ï) |
2JV2 = || fj) || < || / ^ , ) || + || fj) - fjfr) || < 

•m 

<iir»('*)ii + iiA*)-r«/)ii<a«-

As i is arbitrary, the thesis is proved. 

I t is obvious that the condition is sufficient because the uni-
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oo 
form convergence of the séries S„ ! yn(t) |2 is équivalent to the 

i 
uniform convergence of the séries (of a.p. functions) on the right 
hand side of (4.1). 

I t may be noted that, by (4.2), if the séries of a.p. functions 

'(4.4) S„ | ?„(*) |« 
i 

-converges, the norm || f(t) \\ is a. p. 

We may now ask if the converse is true, that is if, X being 
<i HILBERT space, f(t) w.a.p , \\f(t)\\ a.p. =#> fit) a.p. (on this 
subject it may be noted that, in a HILBERT space, the following 
proposition holds: fit) weakly continuous, || f(0 II continuons =#> fit) 
continuous). 

The answer to this question is however négative, as may be 
•shown by examples. I t is necessary to extend the hypothesis 
•of almost-periodicity of the norm to a whole family of functions; 
precisely to the family associated to f(t) by Bochner's criterion. 

Let f(t) be w.a.p. and Sf indicate the family of séquences 
•\sk\ regular with respect to fit): in other words, such that 

<4.5) Um*fit + sn) = fit) 
n —»oo 

uniformly. 
We obtain in this way a family <Pf=\fs(t)\ of w.a.p. functions 

-and the following theorem eau be proved 

XXI I I - fit) w.a.p., \\fs(t)\\a.p. v / s e * r # > / ( 0 a.p. 

5. - In tégra t ion of a. p. functions. 

If fit) is an a.p. function with values in a BANACH space X, 
we will write, in what follows, 

<5.1) F(t)= J f(tidlï-
0 

The problem of the intégration of a.p. functions in BANACH 

spaces is of notable, interest also because it serves, so to say, as a 
•%nodel for classifying BANACH spaces in relation to the theory of 
abstract a. p. équations. 

If X is Euclidean, then Bohr3s theorem holds: Fit) bounded 
=#• F(t) a.p. 

20 
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For the gênerai case (X arbitrary B A N A C H space), the almost-
periodicity of F(t) has been proved by Bochner [3] under the hypo-
thesis that c&F(t) is r.c. 

This condition is obviously much more restrictive than that 
of boundedness; it can not however be substituted in the gênerai 
case by latter, as can be shown on examples (AMERIO [12]). Never-
theless A M E R I O [12] has proved that Bohr's enunciation remains 
unaltered if the space X is uniformly convex (it holds therefore in 
H I L B E R T spaces, in P and Lp, w i th 1 <_p < + oo). 

Let us prove the fol lowing theorems. 

X X I V - iBochner) — X arbitrary, fit) a. p., 9Ls\t) r. c. =^ 
=#> Fit) a. p. 

X X Y - iAmerio) — X uniformly convex, f(t) a. p., F(t) boun
ded =#• Fit) a. p. 

a) Proof of theorem X X I Y . A s &F{t) is r. c , F(t) is bounded : 

(5.2) Sup || F(t) || = M< + oo. 

Furthermore, v #* e X*, 

t 

| < x*,F(t) > | = | < *• j fitfdn > | = 
0 

t 

| / < as*, firt) > &* | < H x* H M. 

o 

A s < a s * / ( £ ) > is a .p. , from Bohr* s theorem it follows that 
< x * , F(t)> is a .p.; Fit) is therefore w . a . p . 

ORF{«) has been supposed r. c. ; our thesis follows then from 
theorem X X . 

b) Proof of theorem X X Y . W e hâve already proved in a} 
(uti l iz ing only the boundedness of F(t)) that F(t) is w . a . p . It i& 
therefore sufficient, making use of the properties of uniformly 
convex spaces, to prove that e&F(t) is r. c. 

W e first of ail remember that a space X is called a uniformly 
convex (or CLARKSON) space if in the interval 0 < <7 < 2 there 
exists a function w(<r), wi th 0 < u > ( < r ) < l , such that 

(5-3) 11*11, \\y\\<land | | « - j , | ] > f f ^ | | î ± l < 1 — w(o-). 
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A HILBERT space is uniformly convex. From the parallelogram 
theorem it follows, in fact, 

x —y 
+ 

x + y 
2 

2 = 4 ( l l * l l 2 + Il y II2) 

and consequently, if || x [| < 1, || y || < 1, || x — y || > o-, 

x + y 
2 < i - Ï -

I t can be shown that the lv and Lv ( l < j p < + oo) spaces are 
uniformly convex; in addition, that uniformly convex spaces are 
also reflexive. 

We now observe that from (5.3) it follows, for any x and y, 

(5.4) | | » - y | | > < F m a x | | | « 1 | , || y || | * + y 

< ( t - ^ ) ) m a x IH^I I , || 2/1| | . 

Let us assume that the range &F(t) is not r. c. There exist 
then a constant p > 0 and a séquence | sn | such that 

(5.5) || F[8,)-Fl8k) || > P U±k). 
We can suppose that \sn\ is regular with respect to f(t) and 

F[t), that is 

<5 6) 

lim f(t + sn) = / # ) 
M — * - 0 0 

lim* ^(£ + 5,,) = ^ ) 

uniformly. The last relation follows from Bochner*s criterion 
(theorem XIX), noting that the space X is semicomplete (being 
reflexive). 

I t is also 
t 

F(t + Sj) = F(s,) + f firi + Sj)dyi 
0 

and, consequently, for j =|= fc, 

Il F(t + SJ) - F(t + s,) H > H F(SJ) - F(st) H -

- I I ) (ffo + « i ) - r t i + 8 t))*i||. 
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If we fix te J, we will hâve, by (5.5) and the first of (5.6), 

WFit + srf-Fit + sJU^ 9- for j>k>nt. 

Therefore, by (5.2), 

Il Fit + Sj) - Fit + s,) || > g~ niax | || Fit + «,) \\ , \\ Fit + sk) \\ \ 

and, by (5.4), 

Il«•(» + »,)Il I < ( I - » ( . 5 B ) ) ^ -

From the second of (5.6) it then follows 

ll«0|i<(l — ( à ) ) ^ 
and, consequently, 

(5.7) Sup || F,{t) || < ( l - <- (â^) ) M. 

Belation (5.7) is absurd ; from the second of (5.6) follows in fact, 
the weak convergence being uniform, 

lim* F£t- s„) = F(t) 
n—*-oo 

and therefore 

|| F(t) || < min^lim^ || F,(t - s„) || < ( l - co {^jM, 

which contradicts (5.2). 

OBSERVATION. - The problem if Bohr's theorem holds or not 
in the case of X reflexive is still open. 

It must be noted however that there exist non reflexive spaces 
in which Bohr's theorem holds; such is, for instance, the space 
l1 [13]. More generally, let us consider the space X — lv \ Xn \, 
with l < 2 > < + ° ° ; |X„ | is a séquence of BANACH spaces and 
x e X means 

oo 

* = | a ; B | , with x„eX„, || x || = | S„ || xn \p \*IP < + oo. 
1 
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Let fit) = | fit) | be a. p. with values in X It is then 
t t 

Fit) = f fin)d* = | JfJti&n J = | FH(t) \. 
0 0 

and the following theorem can be proved [14]. 

XXYI - If, v Xn, the property 

fn(t) a.p., Fnit) bounded =#> Fn(t) a.p. 

holds, then the same property holds for X: 

fit) a.p., Fit) bounded =#> F(t) a.p. 

In the proof of this theorem an extension to real a. p. functions 
of Dini's classical theorem on monotonie séquences of continuons 
functions is used. 

Precisely, let | ©M(£) | be a bounded, monotonie séquence of real 
a.p. functions, with 

(5.8) T l0) < cp2(0 < ... < ? n(0 < ... < M < + oo. 

There exists therefore, v t e J, the finite limit 

(5.9) <J>(0 = lim<pn(*)-
« — * 0 0 

While it is not possible to say that, if 4>(Q is a.p., convergence 
is uniform, Dini's theorem can however be extended in the same 
order of ideas as theorem XXIII . Let S be the set of séquences 
s = | s n | regular with respect to ail ©„(£); VseS, it is therefore 

(5.10) lim %it + sh) = cpsn(i) (n = 1, 2, ...) 
fc — * 0 0 

uniformly, where <ps„(Ê) is, like ©„(£), a.p. 

From Bochner's criterion and applying Cantor's diagonal 
process, it follows immediately that every séquence r = \rn\ con-
tains a subsequence se S. 

We observe that from (5.8), (5.10) it follows that 

? . i 0 < ?..(«) < •» < ¥«.(*) < ». < M 

and consequently 

lim »sn(t) = nth *o(« = *(<)• 
«—•-00 

We can prove the following proposition. 
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X X Y I I - If <i>s(t) is a.p. vseS, the séquence yn(t) converges 

This theorem (proved by AMERIO [15]) has been generalized 
by BOCHNER [16] to almost-automorphic functions. For another 
proof see DOLCHER [17]. 

CHAPTER I I 

FUNCTIONAL ALMOST-PERIODIC EQUATIONS 

1. - Almost-periodic solutions of the wave équation. 

a) In the présent §, we shall deal with the mixed problem, 
according to HADAHARD, for the wave équation {or équation of the 
vibrating membrane) 

9¾ i... m t fini v 

(1.1) r | = S loikix) -^-) - a ( a ) y + fit, x), 

and consider, more precisely, the first mixed problem. 
Let O be an open, bounded and connected set of the EUCDI-

DEAN" space cR"*, dO. the boundary of H, x=\xt, ..., xm j an arbi
trary point of Rm. 

The problem considered consists in finding a solution y = y(t,x) 
satisfying the initial conditions 

(1.2) î/(0, x) = y,ix), 2/,(0, x) = yx (a-) (xeQ) 

and the boundary condition 

(1.3) »(*, *)|»ean = 0 (tel). 

I t corresponds therefore to the study of the motion of a vibra
ting membrane, with flxed edge. The functions considered in (1.1) 
are assumed to be real. 

I t is classical, in the theory of hyperbolic équations, to look 
for so-called weak or generalized solutions. As we shall see, thèse 
solutions are associated to the variational theory of the vibrating 
membrane, and, whenever they satisfy convenient regularity con
ditions, are solutions of (1.1). 

The variational form of équation (1.1) can be obtained apply-
ing to it Green's formula (and bearing in mind the boundary 
condition (1.3)). 
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F i r s t of ail, i t is we l l to define the funct ional spaces in 
w h i c h the p rob lem is correct ly posed. A s w e sha l l see, t hey 
wi l l be H I L B E R T spaces. Thèse spaces p lay , as is we l l k n o w n , a 
v e r y spécia l rôle in the ma themat i ca l descr ip t ion of phys i ca l 
problems. This is not su rp r i s ing if one observes t ha t such phe-
n o m e n a a re essent ia l ly bouud to the concept of energy, h e n c e to 
t h a t of scalar product: n o w H I L B E R T spaces are def ined prec ise ly 
a s those B A N A C H spaces in which the sca lar p roduc t is def ined, 
w i t h the same formai properties wh ich this funct ional ha s i n 
o r d i n a r y E U C L I D E A N spaces. 

W e assume tha t the coefficients aJk(x), a(x) a re m e a s u r a b l e a n d 
bounded funct ions on O and tha t 

i ... m m 
{1,4) ajk(x)=akjix), S a,-fc(a;)vu > v I 2 , Y ] / I 1 / 2 ( V > < > ) , a(x)>0. 

y, k i 

The second of (1.4) is val id for ai l r ea l va ines of v^, ..., •/]„,. 

Le t us cons ider the fol lowing H I L B E R T spaces. 

1) The space L~ of rea l functions y=\y(x); x e O | w h i c h a r e 
s q u a r e in t eg rab le in O, w i t h the usua l déf ini t ion of sca la r pro
d u c t (and, consequent ly , of n o r m ) : 

<1.5) (y, B)V = I yix)six)dfl, || y || L » = (y, y)ï*. 

2) The space Hi of the funct ions y = \y{x); a s e O ) w h i c h a r e 
s q u a r e i n t eg rab l e in Q toge ther w i t h the i r first pa r t i a l der iva-
t ives . Thèse de r iva t ives must be in t ended in Sobolev's generalized 
sensé, or in that of the theory of distributions (in o the r w o r d s : 

du 
g (x) = -^- means tha t g(x)eL% and is s u c h tha t 

dxk 

fy(x)dj^da = - j g(x)9(x)da, 

V f (x) con t inuous on O toge ther w i t h ail its pa r t i a l d e r i v a t i v e s 
a n d w i t h compact suppor t on Q). Therefore the v a n i s h i n g on dQ 
mus t be i n t ended in the sensé of the va r i a t i ona l t h e o r y of e l l ip t ic 
équa t ions (as w i l l be pointed out later) . 

The sca lar p roduc t and the n o r m in H\ can be def ined in t he 



310 LuIGI AMERIO 

following way : 

(1.6) (y, M)W = [(X"±m ajk(x) ^ ^ + a[x)y(x)z^\dfi, 
./ \ j,k dXj dxk ) 

Il y II w = (y* y) % . 
It is worth whi l e recall ing that the space HQ1 can be obtainecf 

as the closure in the norm defined above, of the space of func
t ions continuous on O together w i t h their first derivatives and 
w i t h compact support on O. 

A s is we l l k n o w n , H^czL2; the embedding of HQ
l in L2 is-

moreover not only continuous ( || y || u < p || y || i v vyeH0
l, w i th 

p posit ive constant, independent of #) but even compaci (or corn-
pletely continuons)*, this m pan s that. every séquence \yn\ bounded 
in H0

l contains a subsequence \ zn \ w h i c h converges in L2. 

3) The space E = H0
l x i 2 , Cartesian product of H^ by L*. 

Each élément YeE is therefore constituted by a couple |# 0 , t /d , 
w i t h 2/0 e iZo1, ^ e L2 and 

(1.7) (Y, Z ) £ = (y0, 0O)W + (2/t, 0^2 , 

Il Y | U = l | h j o l | 2 W + llVill^l1/.. 

"We shall call JS the energy space and the metric defined bjr 
the second of (1.7) the energy metric. 

Let us assume that the known term f(t, x) and the unknowni 
function y(t, x) satisfy the following conditions. 

1) Pu t f(t)= \f(t, x); x e O | , f(t) takes its values in L\ for al-
most ail t e J and has a summable norm in every bounded inter
val A; in other words 

] Il f(t) \\iAdt = fdt[ f V(tl x)dQ T ' < + oo. 
à A SI 

Hence 

(1-8) f(t)eLhoc(J; L*). 

2) Put y(t)= \y(t, x); xefl\, y(t) takes its values in H0
l and i» 

continuous on J; in other words 

(1.9) lim 1 1 ^ + - 0 - ^ ) 1 1 ^ , , = 

= lim i ('"s'a te) 8 M* + T> «) -»(*> m)) Hy[t + ?,x)-y{t,x) 
T — o ( . / j,k ' ' dx, dxk ^ 

+ a{x)[y(t + T, x) — y(t, x) )s) dSï = 0. 
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We shall, further, assume that yit) is L2~differentiable and 

that its derivative y'it) =\^—~—-; xefi [in the strong sensé, i.e. 

lim 
T—*-0 

is continuons on J. 
Hence 

y(t + *)-y(t)_yXt) 
U » ) 

yit)eCiJ; H0% y'it)edJ; U). 

We may note that, as yit, x) represents the displacement at 
the time t of the point x of the membrane, the quantities 

\ \\y{t)\\2H^ \ lh/(OI«V 

measure the potential energy and the kinetic energy respectively, 
at the given time, of the membrane. 

If Y(t) = \yit), y'(t)\ (i.e. Y(t, x)=^yit, x), ~ ^ 1), the fun

ction Yit) will be continuous, with values in E\ furthermore the 

quantity 

(1.10) l || Y(t) \\%= \ || y(t)\\*Hj + \ || y>(t) | |^2 

measures the total energy, at the time t, of the membrane. The 
dénomination, given to E, of energy space is therefore justified. 

Let us now recall that, by Hamilton's principle, the functions 
y(t), teJ, which describe the possible motions of the membrane are 
those for which, in whatever way a bounded interval \ is taken, 
the intégral 

/i \ Il yit) ||*L8 - ^ || y(t) 11¾ + (fit), yit))L* | dt 

(Hamiltonian action) is stationary with respect to ail the variations 
l(t) {of the same functional class as y(t)) and with support X ç A . 

By imposing that this variation must vanish, we obtain the 
variational wave équation 

(1.11) f\ iy'it), V(t))L* - iyil), ï(0)Ho, + (f{t)), lit))& \dt = 0 
J 

that must be verified v l(t) with compact support. 
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If yit) is a solution of (1.11) such that the corresponding yit, x) 
satisfies further regularity conditions and if dti, is sufficiently 
smooth, it can be proved, by a well known procédure, that (1.1) 
and (1.3) are satisfied. The solutions of the variational équation 
are called, for this reason. weak or generali&ed solutions of the 
differential wave équation. 

Let us now consider, for (1.11), the initial value problem. Il we 
take y^e i 2 / , yte L* arbitrarily, we want to find a solution y(t), 
teJ, which satisfies the initial conditions 

(1.12) 2/(0) = 2/0) 2^(0)=2/., 

corresponding to (1.2). 

It can be proved that such a solution exists and is unique [18J. 
I t can be obtained by the method of eleraentary solutions. 
Let us consider the séquence |i*„| of eigensolutions of the 

équation (that must be satisfied vve H^) 

(1.13) (u, v)Ho^ = ^(u, v)&. 

(1.13) admits a séquence | \ t | of eigenvalues such that 

(1.14) 0 < X4 < X2 < ... < ln < ..., lim X„ = + oo, 
M — • O O 

to which the eigenfunctions un correspond, which satisfy the 
orthogonality conditions 

(1.15) ( £ , Js) = ( ^ , « ^ = 8 

The séquence | u„ | is also complète both in L- and in Ht
l. 

If we put 

(1.16) 

y(t) = 1 . «.(*) ^ (».(*) = [y (t), J ) w ) , 

(which is correct, as y(t) and y'(t) take their values in H0
l and 

L* respectively) and 

(1.17) f(t) = 2n<?n(t) un (»n(t) = (f(t)} un)u), 
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w e find tha t o>n(t) satisfies the équa t ion 

wï(«) + >U,W = XI1?ll(f). 
Consequent ly 

t 

(1.18) ««(f) = an cos XB* + pn sin lnt + / <pn(7j) sin ln(t — v])dï), 

ô 

w h e r e the cons tan t s a» and |5n a re de t e rmined by the in i t i a l con
di t ions (1.12) and, precisely , 

a * ~ (2/0 » 5^)H o l » P., = (2/i. ™n)v • 

Le t us n o w cons ider the funct ion Y[t) = | ?/(£), t/'(*)li ^ h i c h w e 
shal l aga in call solution of (1.11); it is c lear t ha t the r a n g e 
cR-Yu) is, in JB, a con t inuous l ine . 

If Z(t)=\s(t), &'(t)\ is a second solut ion, co r r e spond ing to t he 
k n o w n term g(t), w e can prove the fol lowing fundamental relation 

(1.20) ^(Y[t)9 Z(t))B=(fit), z\t))u + ig(t), y'(l))v, 

from which, se t t ing Z(t)=Y(t), follows 

(1.21) ~ \ \\Y[t)\fe = {f[t), y'(t))L* 

and. i n t e g r a t i n g b e t w e e n tL and t2, 

(1.22) J y Y(« ||^ - g H Y(« \*E = I (/(*), y 'WW*. 
ii 

The r igh t h a n d t e rm représen ta the w o r k in the t ime i n t e r v a l 
tx*t2 of the force f(t) = \f(t, x); xeCl\; this work eqnals the va
riation of the energy of the membrane. 

Let , in pa r t i cu l a r , f(t) = 0 and consider the homogeneous wave 
équation. If U(t) = \u(t), n'(t)\ is a solution, i t folloAVs from (1.21) 

(1.23) H Z7( t ) | ! s=cons t . 

The r anges a r e therefore spherical Unes, w i t h t h e i r c en t e r s in 
the o r i g i n : the solutions of the homogeneous wave équation satisfy 
the principle of conservation of energy. 

W e n o w go back to the gêne ra i case and cons ider an arbi
t r a r y f(t). 

Let us assume tha t (1.11) admi t s one solution Y0(t) w h i c h is 
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J5-bounded (i.e. • sup M Yb(t) | | * < + o o ) . 
teJ 

From (1.23) it follows that ail the solutions Y(t) are bounded. 
The following minimax theorem [19] (which is interesting also» 

from the point of view of mathematical physics) then holds. 

i- if 
f*(Y) = Sup \\Y(t)\\E, (x = Inf f.(Y), 

t | Y(<) | 

then there exists one, and only one, solution Y(t) such that 

!*(?) = il, 

that is, such that the supremum of the energy has the smallest 
possible value. 

As an application, it can easily be seen that, if f(t) is periodic, 

with period T, the minimal solution Y(t) is also periodic, with 
period T. 

p) - The almost-periodicity of the solutions U(t) of the homo~ 
genous wave équation has been proved by various Authors under 
more and more gênerai hypothèses: MTJCKENHAUPT [2], BOCHNER 

[6], BOCHNER and VON NEUMANN [20], SOBOLEV [21], LADYZEN-

RKAJA [ 2 2 ] . 

Very significant is Bochner's déduction of the almost-perio
dicity of U\t), under the hypothesis that Sfrum *« r.c, from the 
energy conservation principle. In fact U(t + T) — U(t) being a 
solution, V T E J , of the homogeneous équation), it results 

||Z7(* + T)- f f (*) | | = | | l7 (T)- !7(0) | | . 

The «principle of conservation of distances» is then satisfied 
and our thesis follows from theorem VIT. 

Subsequently, SOBOLEV succeeded in eliminating the compac-
tness hypothesis and assumed only that the boundary dO has 
continuous curvatures: fin al] y, LADYZENSKAJA has abolished also 
this last hypothesis. Therefore ail the solutions U(t) are a.p. 

Observe in fact that (by (1.16) and (1.18) with f(t) = 0) 

!

0 O njÊ 

2„(a„cosX„* + fSBsinX„)-^, 
1 A n 

OO 

Sn ( - «n sin \nt + p„ cos lnt)un 
1 
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and the séries of a.p. functions on the right hand side of (1.24) 
converge uniformly. It is, in fact, for 1 <p < q, 

Q U 
|| ^« (an cos \J + P« sin \Ht) r-5 ||2Hol + 

p A„ 

+ || 2»( - ot„ sin Kt + p™ cos A„) i*n | j 2
£ 8 = S„ (art

2 + 6W
2) 

P p 
-where 

2 w (a i + p i ) = | | Z7(0) | | â < + oo. 
1 

y) Lei us now consider the non-homogeneous wave équation, 
nssuming that f[t) is a.p. as a function with values in Xr. I n this 
-case it is possible that no bounded solutions exlst, as the so-cai led 
«résonance phenomenon » may take place; however, as already 
observed in a), if a bounded solution exists, ail solutions are 
bounded. 

Eegarding the almost-periodicity of Y(t), Z A I D M A N [23] has 
proved that if the range of Yit) is r.c, then Y(t) is a.p. Subse-
quent ly AMERIO [24] has elirninated the compactness hypothesis , 
substituting it w i t h a boundedness hypothesis, w h i c h is strictly 
necessary and has an évident physical interprétation. 

The fol lowing theorem therefore holds. 

II . - f(t) a.p., Y(t) bounded =#> Y(t) a.p. 

The proof w a s obtained by A M E R I O by two différent methods 
(those, substantially, of theorems X X Y I and XXY) . 

Observe, first of ail, that if Sup || Y(t) \\ = M< + <x>, the func-
t 

tions oin(t) defined by (1.18) are a.p. together w i th their first de
rivatives o>'n(t). B y the first procédure [24] w e prove the uniform 
convergence of the séries defining Y(t): 

Y(t) = j Ln lùn(t) — , SM — Un \ , 
( 1 A » 1 A n ) 

that is the uniform convergence of the séries of a. p. non-negat ive 
functions 

f»(<4(*) + ^ ) = | | Y ( * ) | | | , 

making use of theorem X X V I I . 

The second method [25] consists in recognizing at first (and this 
is immédiate) that Y(t) is w a.p. (i.e. (Y(t), G)E is a.p. wGeE). 
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Subsequently, one proves, as in theorem X X V , that the range 
cRy(0 is r.c 

Contributions and generalizations to the problem treated in 
[24] and [25] hâve subsequently been given by B O C H N E R [26], 
ZAIDMAN [27], PROTJSE [28]. For C-almost-periodicity of the solu

tions, see Y A G H I [29]. Y A G H I [30] has also generalized theorem I I 
to the weak solutions (relative to the problem (1.3)) of the équation 

<L25) ?+•<*>ft +w)y=m"fk ±(a„w J ) + m . ) , 
aW? ?(*)» Y(̂ ) being real periodic functions, of period T, y(t)>0 
and f(t)=\f(t, x); xeQ\ L* — a.p. 

I n particular: the E-bounded eigensolutions of (1.25) are a.p. 

It may be noted that, although (1.25) is an équation w i t h coeffi
cients depending on t of a very particular type, it is actually 
the variation équation of an interest ing équation. 

Let 

(1.26) *"(t) + gi*, »') = 0 

be a non- l inear second order équation, wi th g(z, z') continuous 
function together w i th its derivatives gz, g%>, for — oo<z, 
z' < + oo. Assume that (1.26) has a periodic solution z = z0(t) 
w i t h period T. This function is also a solution independent of x 
of the non- l inear partial differential équation 

9?s / dz\ x ••• m d i dz\ 

The variation équation corresponding to (i.27) is then (if y(t, x) 
is the variation g iven to z0(t)) 

g + gJ*M, 'M* + 9*M, 'M) * = fk ± («*<*> S) • 

W e obtain therefore a particular case of (1.25): by (1.3), w e 
consider variations w h i c h vanish, v t, on dO. 

Lastly, w e recall that ZAIDMAN [31] has studied the elliptic 
équation with coefficients independent of time and has proved 
the almost-periodicity of L^-bonnded solutions, even when Q=Rut. 

OBSERVATION. - Theorem I I extends to the wave équation the 
classical theorem of Bohr-Neugebauer on linear ordinary differen-
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tial équations, with constant coefficients and a.p. known term. 
This theorem, in fact, states that every bounded intégral of the 

yw(t) + (*&"-»& + ... any = f(t) 

with ax, ..., an constants, f(t) a.p., is a.p. 

2. - A. p. solutions of l inear functional a. p. équat ions . 

a) In theorem I I the BOHR • NEUGEBÀUER theorem was 
generalized to the wave équation. We shall now deal with the 
extension of the important results obtained by FAVARD [32] on 
ordinary linear differential Systems, with a. p. coefficents and 
known term. 

Let us consider such a system, in vector form 

(2.1) x'(t) = A(t)x(t) + f(t) 

(x(t), f(t\ vectors of the complex Euclidean space &"1, A (t) [m, m] 
matrix, f(t) and A (t) a. p functions). 

Indicate with SA the set of sequeuces s = |s„| which are re
gular with respect to A (t); therefore, VSGSA, 

lim A(t + sn) = As(t) 
n —• oo 

uniformly, and As (t) is, like A\t) = A0(t), an a. p. matrix. 
Favard's theory considers the family of homogeneous équations 

(2.2) u'(t) = As(t)u(t) 

and assumes that, v s e SA, the bounded eigensolutions of (2.2) sati-
sfy the condition 

(2 3) Inf \\u(t) H > 0 . 

a Favard then proves that, if équation (2.1) has a bounded solu
tion x0 (t), it has also one, x (t), which is a. p. 

More precisely, x\t) is that solution, which exists and is unique, 
for which the functional 

p.(as) = Sup H ae(«) || 
t 

takes its smallest value when x(t) varies in the class of the 
bounded solutions of (2.1). 

I t is clear from what précèdes that, if (2.2) admits, V s e S, as 
its only bounded solution, the solution which is identically zéro, 
then a bounded solution x(t) of (2.1) (if it exists) is necessarily a. p. 
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This is Favard3s first theorem, which gives a very interesting 
connection between the uniqueness of a bounded solution and its 
almost -periodicity. 

We can see that, in the case of Systems with a. p. coefficents, 
we do not prove the almost-periodicity of ail the bounded solu
t ions: it can, in fact, be seen on examples that the bounded eigen-
solutions of the homogeneous équation u'(t) = A(t)uit) are not ne-
eessarily a. p. I t has however been possible to prove the almost-
periodicity of the minimal solution x(t), if condition (2.3) holds. 

|3) Let V and B be two Hilbert spaces; we assume V<zff% 

dense in H and with a continuons embedding ( \\ v || H<fc || v || v, k 
embedding constant that can be assumed = 1). 

Set 

(2.4) Q(a?; *) = f K*'W, ï'W)ff—(^W*^), « W) v + (JS(̂ l)*# W, I(*Ï)KI d^ 
J 

we consider the linear second order functional abstract équation [33] 

(2.5) Q(x; l) = f(ffr), l('<\))Hdv. 

J 

In (2.4) A (v]) and B (vj) are bounded linear operators Vi e J, from 
V to V and from H to V respectively ; therefore 

i l fo)eC(V, 7) = « , B f o ) e E ( f f , V ) = » . 

<9L and éB are two Banach spaces and we shall assume that A(rt) 
and B (*/]) are continuous functions in their respective uniform 
topologies, that is as functions with values in <SL and SB (precisely: 
il A |!fl = Sup | | i l* \\v, Il jB.la = Sup || By\\v). 

il*Hv = l 1IÎ/IIH = 1 

I n (2.4}, (2.5) x(t) is the unknown function, l(y\) the test fun
ction, f[y\) the known term. We shall assume that they belong to 
the following functional spaces : 

asfo), l{n) e Lhoc(J; V) 
(2.6) 

» ' ( i ) . H i ) . fW 6 Lhoc(J; H). 

l(-/\) has, in addition, compact support and (2.5) must be true for 
ail test functions l (•/)). 

The derivatives x' (*/)), V (y\) are intended in the sensé of distri

butions (i. e. /(*(*)), u'(y\))u d'4 = — Hoc'fa), ufa) )Hdf\ v ufr) from J to R 
j j 

whith compact support and indefinitely differentiable). 



ABSTRACT ALMOST-PERIODIC FUNCTIONS AND FUNCTIONAL ÉQUATIONS 319 

I t may be noted tha t in th is w a y we do not impose t h a t x fa) 
and x'(-fi) be con t inuous ; the reason for th is is tha t in t he p ré 
sent theory of the in i t ia l va lue problem for (2.5) ( p a r t i c u l a r y in 
the hyperbol ical case ) ' t he spaces (2.6) a re cons idered . 

Equa t ion (2,5) (or a more gêne ra i one, t ha t h o w e v e r can be 
t rea ted in the same way) corresponds to the w e a k fo rmula t ion of 
m a n y classical p rob lems on pa r t i a l d i f ferent ia l équa t ions . This , 
for example , holds for the second order hyperbol ic é q u a t i o n wTith 
coefficents d e p e n d i n g on /j (in addi t ion to the spacia l v a r i a b l e s 

*U ï • 'î ' m ) ' 

F a v a r d ' s r e su l t s h â v e been genera l ized to (2,5) b y A M E R I O [34] 
in the w a y w e sha l l see in the p résen t §. 

Le t us observe that , the functions not be ing con t i nuous , w e 
counot speak of a lmost - per iodici ty in the sensé of B O H R - B O C H N E R : 
i t is h o w e v e r possible to iu t roduce in the fol loving w a y a lmos t • 
per iodici ty in the sensé of S T E P A N O V . 

I n d i c a t i n g w i t h A the i n t e r v a l — ô ^ ' i - ^ r » cons ider t he H i l b e r t 

space i * (A ; H) of the functions g fa) w i t h va lues i n H, a lmos t 
e v e r y w e r e on A, a n d w i t h squa re summab le n o r m on \:geL'(^; 
H) meaus therefore t ha t g= (g fa); f\ e A| a n d 

\g\\mà;H) = \f\\ g (il) Il Hd'f\\^. 

I t is then possible to associate to /fa) a funct ion f&(t) f rom J 
to L*(A; H), def ined by 

frW=iA*+ v]); rte\\. 

Therefore 

l lfcWIU*(A;H)=| / | | /(< + i ] ) | |H*l | 1 / 2 

and, consequen t ly 

(2.7) l im || fat + T) - fà(t) lix^A,H, = 0, 
T —*• 0 

which shows t h a t f\(t) is cont inuous . 
I n w h a t fol lows, w e shal l , for s impl ic i ty ' s sake , Wri te f(t) 

ins tead of f&[t), a d d i n g the indica t ion of the space i n w h i c h f[t) 
is to be cons idered ; we shal l therefore w r i t e f[t)= \f(t + "q); *i e A j 
and, by (2.7), f (t) is Zr (A; H) — continuons. I n o the r w o r d s : 

ffa) e L2ioc(J; H)^t(t)L*(ï; tf) — con t inuous . 

21 
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Analogous ly , x(t) and l (t) are i 2 (A; V) — continuous, w h i l e 
xf (t) = \x'(t + ~i); vje A| and V (t) are L'2(&; B) — continouous. 

Regarding the opération of differentiation, it must be noted 
that x'(t) defines the L2(&; B) — derivative of x (t); in other words 

l im 
T — 0 

*V + *)-*[t)_x.lt) = 0 . 
i 2 (A; H) 

If E= VxB, w e shall indicate with W the space of fun
ctions G= Iflrfa); v] e A| w i t h g fa) e-L*(A; ^ ) , 0'fa) e L% (A; if). I t 
fo l lows that the functions Zfa) = \x('f\),x'[y\)\, X{t)= \X(t + 'f\); •/) e A t 
take their va lues in E and W respectively. W e hâve also 

\\X(rt)\\E=\\\xiï)\\2V+\\x'(-<l)\\H\*l% 

I I J X X « > i i ^ i ^ ^ |/|| jac:c*-l-•»!>llirf-^if--/* — I^<||«sC*-+-- i>i lV-l- | |« * ' 1* -I-•»!>l|£r)«Z-«i!*/«,. 
A A 

and X(t) is W-cont inuous . 
We shall say that the function /fa) is a.p. according to Stepanov 

{H — a. p. S'2) if to every e > 0 it is possible to associate a relati-
vély dense set j*rjE such that 

SUP | j " | | fit + T + I,) - f(t + "/]) ||£rdl| */»< «. 

A 

A s B O C H N E R [3] observed, this définition can be reduced to the 
classical one of a. p. function (in the sensé of B O H R - BOCHNER). 
The condition g iven is, in fact, équivalent to the fol lowing 

Sup \\f{t + T)-f[t) ||^(A; HJ < E , 

The notations 

/fa) H-a. p. S*, fit) L8(A; B) — a. p. 

are therefore équivalent. 
We shall say that /fa) is B — w. a.p. S* if the corresponding 

f(t) is Z/*(A; B) w.a.p., that is if the scalar product 

lf(t), g)m*i B) =JlfV + *»)> 0fo))H*) 

is a. p. V g 6 L2 (A ; B). A 

Analogous ly , the conditions 

œfa) V — a. p. S2 and a;'fa) fi— a. p. S2 (i. e. X(y\) E — a. p. S2) 

are équivalent to the condition 
X(t) W—a. p. 



ABSTRACT ALMOST-PERIODIC FUNCTIONS AND FUNCTIONAL EQUMIONS 321 

B y the défini t ion, X(y\) E — w. a. p . S* m e a n s t h a t h X(t) i s 
W— w. a. p., tha t is, v G e W, the sca lar p roduc t 

(X(t), G)w = f{X[t + *l), G(rl))Edyi = 

A 

+ f[ [x (t + *]), g fa) )y + (x' (t + i) , g' fa) )H) du 

À 

is an a. p . function. 
W e shal l a g a i n call X(t), L (t) = \Ut + -/)) ; •/) e A| (w i th L fa) = 

= |Zfa)> J'OiH)» /*(*)» solution, test function and known term of 
équa t ion (2.5). 

y) L e t Z(£) = |Z(£ + 7)); v) e Aj be a W — b o u n d e d func t ion 
( i . e . Sup || Z(t)\\w< + oo). 

t 
W e shal l p u t 

(2.8) cp (Z, T) = Sup || Z (t + T) - Z (t) || VIT (V T 6 J ) 

(2.9) MZ) = S u p | | Z ( * ) | | i v . 

L e t Az be the set of W — b o u n d e d funct ions X(t) such t h a t 

(2.10) cp(Z, T ) < < p ( Z , T) v t e j . 

F u r t h e r m o r e , let AzfQff be the set of the solut ions of (2.5) e 
\z and \z, Q the set of e ingenso lu t ions U(t) of the h o m o g e n e o u s 
équa t ion 

Q(u; l) = 0 

w h i c h are différences be tween funct ions e kz^q^ • 
I t is c lear t h a t the sets Az, Az,Q,f, &z,Q (to w h i c h mus t b e 

added the iden t ica l ly nu l l solution) are convex; if, in addi t ion , a 
W—bounded solution X0(t) exists, the set \x0i Q,f) *s n°t empty. 

The fo l lowing minimax theorem can n o w be proved . 

I - Juet %ts assume that: 

1) There exists a W— bounded Z(t) such that i\z,Q,f is not 

empty ; 
2) v U(t)e A Z } Q , it results 

(2.11) Inf || Z 7 ( t ) | | u r > 0 . 
t 

Then, if 
? = In f rtZ), 
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there exists in \z7 q, f one, and only one, solution X(t) such that 

u( l ) = fi. 

I t can be observed, comparing this theorem with the mini-
max theorem regarding the wave équation and with the one of 
FAVARD for ordinary Systems, that the class of solutious ^z.Q.f 
is now more restrictécl, owing to condition (2.10). The reason l'or 
this will appear in theorem I I I . On the other hand, the rather 
restrictive condition (2.11) (which will be called "Favard's condition,,) 
is hère broadened because we impose that it be satisfied only 
by the U(t) e AZ,Q, and not by ail the W— bounded eigensolutions. 

Lastly, we observe that condition (2.11) implies that, in A ^ Q J , 
the uniqueness theorem for the imitial value problem must hold, 
that is 

Xi (t), X, (t) e AXoi Qj f, X, (0) = X% (0) =#> X, (t) ^ X% (t). 

In fact, .if XL (t0) 4= X% (t0), then X, (t) - X, (t) =U(t)e AXo, Q and 
from (2.11) follows || Z7(0) | |>0, which is absurd. 

o) In what follows, we shall assume that the operators A fa), 
B fa) are & — a. p. and SB — a. p. respectively and that f(t) is 
Zr(A; B) - w.a.p. 

If s = \sn\ is a regular séquence with respect to A fa), jBfa), 
/fa) simultaneausly and if S is the family of such séquences, it 
results, uniformly, 

lim 4 fa + s„) = 4 , fa) 
n —»- oo 

(2.12) lin £(•/) +s,,) = £,(-/>) 

lim* f(t + sn) = f,(t) 
n —- oo 

and Afa), Bs(y\) are a. p., while fs (t) is w. a. p. 
Let. us now consider, v s e S, the équation 

(2.13) Qs(x\l) = j(fM)> lM)ndri, 
Â 

where 

Qs(x, l)=f\(x'W, l,(yi)H-(As(y\)x(rl), Zfa))v + 

j 

+ (J3,fa)tt'fa), Zfa))vidï). 

I t can be shown that, if (2.5), considered in an interval a] + ° ° 
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1 '— (i. e. if l(y\) = 0 for TJ < a) admits in the interval a -\ * + oo a 

W—bounded solution X(t), then there exists also a W — bounded 
solution X0(t) (Sup || X0(t) \\w < + oo). 

t 

I t is then easy to prove tha t each équation (2.12) has one W—bo
unded solution Xs (t); more precisely 

<P(iï * ) < ? ( X 0 ; T) , *(X5)<y.(Xs). 

The set Ax0} QSt fs is therefore no t empty , v s e S. 
The following theorem of W — iveak almost-periodicity then 

holds. 

I I - Let us assttme that : 
1) Equation (2.5) has one W—bounded solution X0(t); 
2) The operators A fa), Ufa) and the known term f(t) are re-

spectively &~ a. p., SB — a. p. JO* (A ; B) — w. a. p. ; 
3) v s e S and U(t) e A^0) QS it results 

(2.14) In f || l7(*)| |nC>0. 
t 

Then the minimal solution X(t) (in the set A.x0tQ,f) is W—w.a.p* 
Furthermore, v s e[S, 

\im*X(t + sn) = Xs(t) 
n —•- oo 

uniformly and Xs(t) is a w.a.p. solution of (2.13), minimal in the 
set Ax0,QSifs. 

The proof (for w h i c h the uniqueness of the m i n i m a l solut ion is 
essential) can be obta ined by e x t e n d i n g a procédure based on B O C H -
N E R ' S cr i ter ion, g iven by F A V A R D for o r d i n a r y Systems. 

e) Let us assume that équation (2.5) has a W — bounded and 
W—uniformly continuous solution X0(t). I n this case, also the 
minimal solution X(t) is W-uniformly continuons. 

By (2.1), w e h â v e , in fact, 

<P(X; T)<cp(Z 0 ; T) vreJ, 

and, therefore, X0 (t) be ing un i formly cont inuous , 

l im cp [X; * r ) < l i m c p ( Z o r T ) ^ 0 . 
T —* 0 T —* 0 

The fol lowing W - almost - periodicity theorem can n o w be 
proved. 
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I I I - Let us assume that: 

1) Equation (2.5) has a W —bounded and W—uniformly 
continuons solution X0(t); 

2) The operators .4 fa), JSfa) and the known term f(t) are 
respectively £1 — a. p., SB — a.p., L'7(& ; B) w.a.p.; A(r\) satisfies, in 
addition, the ellipticity condition 

R(A(-f\)x, x)v>v ||0j|ïr ( v > 0 ) ; 

3) v s e S and v U(t) e Ax0t QS, it results 

Inf || U(t)\\w>0; 
t 

4) The embedding of Y in B is compact. 

Then the minimal solution, X{t), is W — a. p. 
The theorem is proved by showing that the range of 

X(t) is r. c , using a compacfcness theorem which holds for the 
solutions of (2.5). 

I t may be observed that, for the problem of the vibrating 
membrane, treated in § 1, conditions 2) and 4) are obviously 
verified and so is condition 3) (of FAVARD) because, by the ener
gy conservation principle, || U(t)\\w= const. 

The problem of proving theorem I I I eliminating the hypotesis 
that X0[t) is W — uniformly continouous (and assuming even-
tually that f(t) is i 2 (A ; B) — a. p. and not only L*(A; B) w.a.p.) 
is still open. See, on this subject, a typical example, examined 
by PROUSE [35]. 

Finally, it is évident that theorem s I I and I I I extend also to 
équation (2.5) the first theorem of Favard. 

OBSERVATION I - It is posssible to effect the harmonie ana
lysis of the minimal solution X(t) (and consequently of the Xs (t) ). 
If, for simplicity's sake, we assume f(t)L*(b\ V) — a. p., every 
séquence s e S is regular also for X(t). From theorem XI I I of 
CHAPTER I it follows that every characteristic exponent of X (t) is 
a linear combination, with integer coefficients, of a finite number 
of characteristic exponents of A fa), B fa), f(t). 

OBSERVATION I I - Theorems i, I I and I I I hold also for more 
gênerai équations [36], assuming the space V to be uniformly 
convex and B semicomplete- In this case, the proof of Theorem 
I I I can be obtained by assuming that a continuous dépendance 
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theorem from the operator and the k n o w n t e rm holds ; s u c h a 
theorem however has been proved only in p a r t i c u l a r cases . 
ZA.IDMAN [37] has shown tha t th is is t rue for t he wave équation ; 
more precisely, for the Cauchy problem u n d e r t he a s s u m p t i o n 
t ha t the ini t ia l va lues (1.2) are g iven on the whole of B'n (i. e fi = 
= R,n) and a (x) > p > 0 . I n th is case the E — bounded eigensolu-
tions are not, in gênerai, a. p. Such is, however, the minimal solu
tion X(t) if f(t) is U - a. p. 

OBSERVATION; I I I - Theorem I I I concerns the h y p p e r b o l i c case 
of équat ion (2.5), w i t h va r i ab l e opera tors . P r o b l e m s r e l a t ed to t h e 
parubolic and elliptic cases h â v e been examined r e s p e c t i v e l y by 
P R O U S E [38] and by R I C C I and Y A G H I [39]. 

3. - A. p. s o l u t i o n s of t he Navier - S t o k e s équat ion . 

a) L e t O be an open, bouuded and connected set of t h e 
p lane ç = |£l5 \t\ w i t h b o u n d a r y dfi. The "c l a s s i ca l , , p r o b l e m w e 
sha l l examine consists iu d e t e r m i n i n g , in the i n t e r v a l J, t h e vec-
tors a; fa, \) = la^ fa, l), # 2 fa , 5)1 and the soalars p=p('i, £) sa t i -
sfying the N A V I E R - S T O K E S System 

dX% %y dX{ dp . f , r, 

- + ^ - - 1 ^ ^ = - - + ^ , 1 ) 
(3.1) 

a n d the b o u n d a r y condi t ions 

(3.2) x t f a , ? ) k e a n = 0 faeJ; j = 1, 2) 

I n (3.1), xt a re the components of the fluid veloci ty, p t he p re s 
su re , (A > 0 the viscosi ty coefficient, A the LA.PL.ACE ope ra to r 
e n d f fa, %) a re t he g iven components of the force of m a s s . A i l 
funcfcions considered a re rea l . 

To this classical p rob lem can be associated, as is we l l k n o w n , 
a weak problem, a n d it is to th is p rob lem tha t w e sha l l r e fe r . 

L e t &l be the manifold of indef in i te ly d i f ferent iable vec tors , 
w i t h nu l l d ive rgence (i. e. sa t isf ing the second of (3.1)) and com
pact support in il. W e shal l ind ica te by N and N1 t h e c losures 
of £)£ in L2 and H0

l respec t ive ly . 
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As N and N1 are subspaces respectively of L2, and BJ, it will 
be 

(u, V)N = (u, v)L2 = / u (g) t? (g) dQ 
a 

(3.3) 

(u, v)Ni = (u, «)Ho, = / i ( - Ç - | ^ d n . 
n 

Furthermore, we shall put 

(3.4) b{utv,w)= Cî uj d-?j w, dri. 

The weak form which can be deducted for the NAVIER - STO

KES équation is then the following 

(3.5) ^\u (x fa), fcfa))w —(xfa), fc'fa))^+o(xfa), ccfa), fefa))| drï = 

= /Vfa), *fo)Wi 
j 

In équation (3.5) 

* ( l ) = t afa, Ç); Ç e O |, fcfa) = | fcfa, 5) ; g e n |, /fa) = j /"fa, 5); ? e Q| 

and 

h'(-rï) = \dh{'n>l); çfl ni. 

a; fa) is the unknown function, h fa) the fesi function, f(r\) the 
fcwowM term. (3.5) must hold for ail ft fa) with compact support on J . 

The functions considered must belong to the following fun
ctional spaces: 

x('<i)eLhoc(J; APJniSotJ ; A) 

M i l e C(J; N'), V W e W o o l J i iV) 

^fa)ei«ioc(J"; L?). 

I t bas been proved by PRODI [40] that the solutions a: fa), wo-
dified eventually on a set of measure zéro, are L1 — cowtanwo'ws: 
consequently se fa) e I/s 100(/5 ^1) n C(J; N). 

The theory of the NAVIER • STOKES équation in an interval 
a M S can be made assuming in (3.5) the interval a M p in place 
of J as interval of intégration; h(f\) is then assumed with com-
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pact suppor t on a p. The initial value problem X(OL)=X0 has 
then one and only one solution v x0 e N; t h i s has been proved , 
with différent techniques, by H O P F [41], L A D V Z E N S K A J A [42] , 
L I O N S and P R O D I [43], P R O D I [40]. The case of f[t) periodic 

(in two or more dimensions) has been considered by P R O D I [40], 
YUDOVIC [44], PROTJSE [45]. * 

P) The study of the solutions in an unbounded interval and 
the proof of the existence of an a. p. solution has been made by 
P R O U S E [47] who has proved, among others, the fol lowing theorems. 

I - Let x fa) be the solution, in t\J~~ + oo , of the Navier - Stokes 
équation, satisfying the initial condition x fa0) = x0. Then 

(3.6) Sup ||/-(/))11^ = 2 ^ + 00 =#• Sup || 05(1))1^ = » < + <», 

where M dépends only from K, \\ xQ Ww, j / . , Ci. 

I I - Let 

Sup || f fa)'il/= K<co. 

There exists then at least one L*-bounded solution âfa) : precisely, 

S u P | | * f a ) | | £ 2 = X - < 0 0 , 
'(1 

where M dépends only from K, (/., O. 
If, in addition, K is sufficiently small (K<.K0, depending only 

from a, Q) the bounded solution âfa) is unique. 
W e introduce now, as in § 2, the functions 

x(t)= i a ( * + 7 ] ) ; ^ e A | , f (t) = \ f(t +-«); ?, e A 1, 

A being the interval — - < -/j < - . 
2 2 

The following propositions then hold. 

I I I - Sup || /fa) ||tf" < K0, /(*)L9(A ; L*) — w. a. p. # > âfa) U — w. a. p. 
•n 

and x (t) L- (A; L'2) — a. p. 
As w e can see, the almost periodicity of the bounded solution 

follows from its uniqueness; w e are in the same order of ideas 
as F A V A R D ' s first theorem (generalised by A M E R I O [47] to non 
linear ordinary Systems). 

We now g ive the final resuit . 
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I V - fit) L' (A ; L') — a. p., S u p || /-fa) \\& = K, < K0 (K, depending 
-n 

only from y., Q) =#• x fa) L% — a. p., x (t) L1 (A ; H0
l) — a. p. 

P R O U S E ' S t heo ry holds if O is a two — demens iona l set be-

cause t he fo l lowing i n e q u a l i t y of L A D Y Z E N S K A J A 

\\X\U<\2\\X\\V\\X\\HQI 

is used, w h i c h is t r u e on ly for two — dimens iona l sets. 

y) A s tudy of t he N A V I E R • S T O K E S équat ion in more than 
two d imens ions , i n v i e w of p r o v i n g tha t "sufficiently sma l l , , so
lu t ions a r e a. p . , h a s been made by F O I A S [48]. This A u t h o r ha s 
p roved the fo l lowing theorem. 

V - Let /fa) be L'2 — a. p. If there exists, in J, a solution âfa) 
such that, for a certain p, with 3 <p <. + oo , it is 

S u p | | * f a ) | | r P < X 
m 

(where K dépends only from p and Cl), then à; fa) is L2 — a. p. 

4 - A. p . s o l u t i o n s of t h e w a v e é q u a t i o n w i t h n o n - l i n e a r 
d i s s p a t i v e t e r m . 

a) L e t û, be an open, bounded and connected set e R'n, w i t h 
M I < Ç 5 , sa t i s fy ing the cône p rope r ty . 

W e consider , for le H, the wave équation with dissipative term 

w h e r e t he funct ions a,k (ç), a(\) satisfy t he condi t ions g iven in § 1. 
W e sha l l a s sume t h a t the b o u n d a r y condit ion 

(4.2) a f a , 5 ) | e e 3 n = 0 fa e J) 

holds . 

W e shal l , fu r the rmore , assume tha t b (Ç) is a continuons in-

creasing function ofteJ, w i t h P(0) = 0. I n (4.1), the t e r m (3 [ — ) 

r e p r e s e n t s there fore a passive résistance, opposite to the veloci ty 

— 5 ffaj £) is the force of mass. 

Se t t ing , as usual , 

*fo)=l*fa, É); U n | ; ffa)=|ffa, E); u n i , 
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and 

P(*'M) = i p ( - - ^ ) ; uo. 

w e shal l say t h a t a; fa) is a w e a k solution of (4.1), sa t i s fy ing t h e 
b o u n d a r y condi t ions (4.2) if it satisfies the équa t ion 

(4.3) f | (x" fa) , M- i ) ) t f+ (xfa), M-i))ffo' +(P(* ' fo)), M*] ) te ld i ) = 

= / ( f f a h fcfa))j?di-
j 

I n (4.3) w e assume tha t the unknown function a; fa), the test 
function M7)) and the known term ffa) satisfy the condi t ions : 

1) x fa), x1 fa) G L™c (J; H0i), x" fa) 6 L™c (J; L2) ; 

2) h(-f\) e i ioc (</; Jï0
4) and has compact suppor t ; 

3) / fa) , / ' f a )e I , ?oc(J ; i 1 ) -

F u r t h e r m o r e , w e shal l assume tha t B(Ç) has , on J , a con t inuous 
der iva t ive , ve r i fy ing the condi t ions 

(4.4) fc,(l + | C | p - ' ) < P ' ( C ) < * t ( l + | Ç | p - i ) , 

w i t h 

(4.5) o < /ct < fc2, 1 < p < 1 + —^—• (m < 5 ) . 

m — 1 

Le t us observe tha t (4.4) is satisfied if we take 

(4.6) p(Ç) = ^ + v q q ( H L > O , v > 0 ) , 

tha t is if w e cons ider a pass ive rés i s tance of "viscous, , t ype for 
smal l velocit ies a n d of "hydrau l ic , , type for l a rge ve loc i t ies : i t is 
therefore a phys ica l ly we l l acceptable l aw. 

Cauchy ' s problem for (4.3) as been s tudied, for a r b i t r a r y p 
and m, by L I O N S and S T R A U S S [49] who h â v e proved the follo
w i n g exis tence a n d un iqueness theorem. If ffa), f fa) e Li0C(J0', L1), 
with J0 = 0 •"• + oo, there exists in J0 one and only one 
xfa) such that 

x(0) = xo, x'(0) = xi, 

Vx0eHlnH*, xteBl 
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The asymptotic behaviour of as fa) as 0 - - + 0 0 and the existence 
of bounded or a. p. solutions has been studied by PROUSE [50] : 
hypoteses m <. 5 and the second of (4.5) hâve been introduced by 
P R O U S E in order that, if Q = O x A, the embedding of B1 (y) in 
7ip_l~ (Q) be continuous; it would be interesting to see if thèse 
conditions, whose phisical meaning is not clear, can be eliminated. 
.We may add that, in the case of periodic ffa), which was 
treated by P R O U S E [51] under the same assumptions, thèse were sub
sequently eliminated by PRODI [52]. 

P R O U S E has proved, among others, the following theorems (we 
hâve again called solution the function X(r\)= )x(r\), as'fajj). 

I - If 
max lim || f(t),, &{*•&) < + 00 
t —* +00 

then ail solutions are. among themselves, E—asymptotic, when 
'i —* + 00 . In other words, if X4 fa), Xjfa) are any two solutions 

lim H X, fa) - X, fa) | \E = lim | || x{ fa) — xt fa) | | ^ + 
*f] —*• •+ OO 7] — - -+- OO 

+ \\xi'{ri)-xt'y\)\\hlll2=0. 

I I - Let f(t), f'(t) be L'2(à; L?) — bounded. There exists then one, 

and only one, E—bounded solution X['i). 
By theorem I we hâve then, v solution X fa), 

lim H JE fa)-X fa) ||B = 0. 
71 — * - ^ 00 

I I I - If f(t) is i ? ( A ; L?) — w. a. p. and if f (t) is L*(A: L*) — 
bounded, then X[t) is L2(A; E)— w. a. p. 

IV - If f(t) is L?(A; L*)—a.p. and f (t) is L!(A; L') - bounded, 
then Xfa) is E — a. p. 

As a conclusion of PROUSE ' s analysis, it can be said that if 
f(y\) is a. p. according to Stepanov (L2 — a. p. S*<#==#• I/2(A; L1) — 

a. p.) and if Sup \ l \\ f (t + n) \\h M j 1 / 2 < + 00, there exists one, 
à 

and only one, solution Xfa) which is a. p. as a function taking 
its values in the energy space, that no other solutions with boun
ded energy exist and that, when rt -* + oo, ail solutions Xfa) 
are asymptotic, in the energy space, to the solution X fa). 
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