BOLLETTINO UNIONE MATEMATICA ITALIANA

GIULIO CESARE BAROZZI

Sui polinomi propriamente quasi-ellittici in due variabili.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. **20** (1965), n.2, p. 185–190.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1965_3_20_2_185_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Sui polinomi propriamente quasi-ellittici in due variabili.

GIULIO CESARE BAROZZI (Bologna) (*)

Sunto. - Sia $P(D_1, D_2)$ un operatore quasi-ellittico in due variabili; sia $P_0(\xi_1, \xi_2)$ la parte principale del polinomio $P(\xi_1, \xi_2)$ associato. Considerate le equazioni $P_0(\lambda, \xi_2) = 0$ e $P_0(\xi_1, \mu) = 0$, si studiano i polinomi per i quali il numero delle radici λ della prima equazione aventi $I_m \lambda > 0$ è indipendente da ξ_2 , ed ugualmente il numero delle radici μ della seconda equazione con $I_m \mu > 0$ è indipendente da ξ_1 .

1. - Ricordiamo brevemente alcune definizioni relative agli operatori quasi-ellittici, rimandando, per un'esposizione dettagliata, alla Nota [1].

Sia $P(\xi)$ un polinomio a coefficienti complessi costanti nella variabile $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$. Sia m_j , $j = 1, \ldots, n$, il massimo esponente con cui ξ_j compare isolato in P; supporremo $m_j \geq 1$, $\forall j$. Convenendo di porre

$$egin{aligned} \xi^{lpha} &= \xi_1^{lpha_1} \ldots \xi_n^{lpha_n}, & & & lpha_j ext{ intero } \geq 0, \ m &= \max_j m_j \ q &= \left(rac{m}{m_1}, \ \ldots, \ rac{m}{m_n}
ight), \end{aligned}$$

introduciamo la seguente

Definizione 1. - Si dice q-grado del monomio ξ² la quantità

$$\langle q, \alpha \rangle = \sum_{j=1}^{n} \frac{m}{m_{j}} \alpha_{j}$$

Si chiama q-grado di P il più grande dei q-gradi dei suoi termini. Se il q-grado di $P = \sum a^{(\alpha)} \xi^{\alpha} \in M$, porremo $P_0(\xi) = \sum_{\{q,\alpha\} = M} a^{(\alpha)} \xi^{\alpha}$.

Definizione 2. – $P(\xi)$ si dice quasi-ellittico (q.e.) se

$$0 + \xi \in \mathbb{R}^n \Longrightarrow P_0(\xi) + 0.$$

Se
$$P$$
 è q.e.; risulta $M=m$, dunque $P_0(\xi)=\sum\limits_{\sum x_j/m_j=1}a^{(\alpha)}\xi^{\alpha}$.

(*) Lavoro eseguito nell'ambito dell'attività del Gruppo di Ricerca n. 2 del Comitato per la Matematica del C.N.R. per l'anno 1964-65.

L'ennupla $(m_1, ..., m_n)$ verrà detta brevemente il «multi-indice» di P.

DEFINIZIONE 3. – L'ennupla di numeri naturali $(m_1, ..., m_n)$ si dirà quasi-ellittica se esiste almeno un polinomio q. e. avente $(m_1, ..., m_n)$ come multi-indice.

TEOREMA 1. – Per n=2, ogni coppia (m_1, m_2) è q.e.; per n>2, (m_1, \ldots, m_n) è q.e. se e solo se i numeri m_j sono tutti pari, tranne al più uno.

Consideriamo le n equazioni

$$P_0(\xi_1, \ldots, \xi_{j-1}, \lambda, \xi_{j+1}, \ldots, \xi_n) = 0, \qquad j = 1, \ldots, n;$$
 se $0 \neq \xi^* = (\xi_1, \ldots, \xi_{j-1}, \xi_{j+1}, \xi_n)$, essa è dotata di $m_j^+(\xi^*)$ radici con $I_m \lambda > 0$, e $m_j^-(\xi^*)$ radici con $I_m \lambda < 0$, essendo

$$m_i^+(\xi^*) + m_i^-(\xi^*) = m_i$$
.

Per n > 2, essendo connesso l'insieme $R^{n-1} \setminus \{0\}$, i numeri $m_j^+(\xi^*)$ e $m_j^-(\xi^*)$ sono indipendenti da ξ^* ; scriveremo semplicemente m_j^+ e m_j^- . Ciò non è più vero, come è ben noto, per n=2.

DEFINIZIONE 4. – Il polinomio $P(\xi)$ si dirà propriamente quasiellittico (p.q.e.). se $m_j^+(\xi^*)$ è indipendente da $\xi^* \in \mathbb{R}^{n-1} \setminus \{0\}$ per ogni $j=1, \ldots, n$ (cfr. J. Peetre [3]).

Si è appena visto che per n > 2 ogni polinomio q.e. è anche p.q.e.; la definizione posta ha dunque interesse solo per i polinomi in due variabili di cui ci occuperemo d'ora in avanti.

DEFINIZIONE 5. – La coppia di interi non negativi (μ_1^+, μ_2^+) si dirà compatibile col multi-indice (m_1, m_2) se esiste un polinomio p.q.e. $P(\xi_1, \xi_2)$ per cui $m_j^+ = \mu_j^+, j = 1$. 2.

In ciò che segue ci si propone di caratterizzare, in relazione al multi-indice (m_1, m_2) , i polinomi p.q.e., e, subordinatamente all'esistenza o meno di polinomi di tale tipo, di individuare le coppie compatibili col multi-indice.

2. – Supponiamo dapprima m_1 e m_2 entrambi dispari. Sia P un polinomio q.e. di multi-indice (m_1, m_2) ; poniamo

$$P_{0}(\xi_{1}, \xi_{2}) = \sum_{\alpha_{1}/m_{1} + \alpha_{2}/m_{2} = 1} a^{(\alpha_{1}, \alpha_{2})} \xi_{1}^{\alpha_{1}} \xi_{2}^{\alpha_{2}}.$$

Le soluzioni intere non negative (α_1, α_2) dell'equazione

$$\frac{\alpha_1}{m_1} + \frac{\alpha_2}{m_2} = 1$$

sono tali che $\alpha_1 + \alpha_2$ è dispari (v. [1] nº 3). Dunque

$$P_0(\xi_1, \xi_2) = -P_0(-\xi_1, -\xi_2).$$

Se ne deduce

$$m_j^+(1) = m_j^-(-1),$$
 $m_j^-(1) = m_j^+(-1),$ $j = 1, 2;$

d'altra parte, dovendo essere $m_j^+(1) + m_j^-(1) = m_j$ dispari, è necessariamente $m_j^+(1) \neq m_j^-(1) = m_j^+(-1)$.

Se ne conclude

Teorema 2. – Se m_1 e m_2 sono entrambi dispari, nessun polinomio P q.e. di multi-indice (m_1, m_2) è p.q.e..

3. - Supponiamo ora m_1 pari e m_2 dispari. Sia $d = m.c.d.(m_1, m_2)$,

$$\overline{m}_j = \frac{m_j}{d}, \qquad j = 1, 2.$$

Ovviamente \overline{m}_1 è pari, \overline{m}_2 è dispari. Esaminiamo le soluzioni intere non negative dell'equazione

$$\frac{\alpha_1}{m_1} + \frac{\alpha_2}{m_2} = 1;$$

si ha

$$\alpha_1 = m_1 \frac{m_2 - \alpha_2}{m_2} + \frac{\overline{m}_1}{\overline{m}_2} (m_2 - \alpha_2).$$

Essendo \overline{m}_1 e \overline{m}_2 primi tra loro, α_1 è intero solo a patto che $m_2 - \alpha_2$ sia divisibile per \overline{m}_2 :

$$\frac{m_2 - \alpha_2}{\overline{m_2}} = j, \qquad 0 \le j \le d.$$

Se ne deduce per P_0

$$P_{\scriptscriptstyle 0}(\xi_{\scriptscriptstyle 1}\,,\;\xi_{\scriptscriptstyle 2}) = \sum\limits_{j=0}^d a_j \, \xi_{\scriptscriptstyle 1}^{\overline{m}_1 j} \, \xi_{\scriptscriptstyle 2}^{\,(d-j)\overline{m}_2}.$$

Poichè ξ_1 compare in P_0 soltanto con esponente pari, si ha subito

$$m_1^+(\xi_2) = m_1^-(\xi_2) = \frac{m_1}{2}$$
.

Per la stessa ragione, essendo $P_0(\xi_1, \, \xi_2) = P_0(-\xi_1, \, \xi_2)$, si ha anche $m_2(\xi_1) \equiv \text{cost.}$, dunque P è p.q.e..

Restano da caratterizzare le coppie (m_1^+, m_2^+) compatibili con (m_1, m_2) , di cui, per ora, sappiamo solo che è necessariamente $m_1^+ = m_1/2$. Posto $\lambda^* = (\lambda)^{\overline{m_2}}$, l'equazione $P_0(\xi_1, \lambda) = 0$ si scrive

$$\sum_{j=0}^d \alpha_j \xi_1^{\overline{m_1} j} (\lambda^*)^{d-j} = 0 ;$$

ognuna delle d radici λ^* di tale equazione fornisce $(\overline{m}_2+1)/2$ radici λ con $I_m \lambda > 0$, oppure $(\overline{m}_2-1)/2$ radici dello stesso tipo. Dunque m_2^+ è certamente compreso tra $(m_2-d)/2$ e $(m_2+d)/2$. Viceversa, ogni numero naturale $m_2^+ = (m_2+h)/2$, con h (dispari) in valore assoluto non ssperiore a d, fornisce una coppia $(m_1/2, m_2^+)$ compatibile con (m_1, m_2) . Basta considerare i polinomi q.e.

$$(\xi_1^{\overline{m}_1} + i\xi_2^{\overline{m}_2}) \ \ \mathrm{e} \ \ (\xi_1^{\overline{m}_1} - i\xi_2^{\overline{m}_2});$$

il prodotto

$$P(\xi) = (\xi_1^{\overline{m}_1} + i \xi_2^{\overline{m}_2})^{\frac{d+h}{2}} (\xi_1^{\overline{m}_1} - i \xi_2^{\overline{m}_2})^{\frac{d-h}{2}}$$

è q.e (v. [2]) di multi-indice (m_1, m_2) , e per esso si ha $m_1^+ = m_1/2$, $m_2^+ = (m_2 + h)/2$.

Concludendo

TEOREMA 3. – Se m_1 è pari e m_2 è dispari, ogni polinomio q.e. di multi-indice (m_1, m_2) è p.q.e.; le coppie compatibili con (m_1, m_2) sono tutte e sole quelle del tipo $\left(\frac{m_1}{2}, \frac{m_2 + h}{2}\right)$ con h (dispari) in valore assoluto non superiore a d (massimo comun divisore tra m_1 e m_2).

4. - Supponiamo infine che m_1 e m_2 siano entrambi pari. Posto, come in precedenza, $\overline{m_j} = m_j / d$, j = 1, 2, supponiamo che uno dei due numeri $\overline{m_j}$, per esempio $\overline{m_j}$, sia pari, e l'altro sia dispari.

Si ha allora

TEOREMA 4'. – Se m_1 e m_2 sono pari. $\overline{m_1}$ è pari e $\overline{m_2}$ è dispari, ogni polinomio q.e. di multi indice (m_1, m_2) è p.q.e.; le coppie compatibili con (m_1, m_2) sono tutte e sole quelle del tipo $\left(\frac{m_1}{2}, \frac{m_2+h}{2}\right)$ con h (pari) in valore assoluto non superiore a d.

La dimostrazione è identica a quella del teorema 3 con la sola variante che attualmente d è pari.

Supponiamo che i numeri \overline{m}_1 e \overline{m}_2 siano entrambi dispari. Si può porre allora

$$m_j = 2^k m_j^*, \qquad j = 1, 2$$

con m_i^* entrambi dispari

Nel caso in esame possono aversi polinomi p.q.e. e polinomi che non sono p.q e.: si considerino infatti i due esempi

$$(\xi_1 + i\xi_2)^2$$
, $(\xi_1 + i\xi_2)$ $(\xi_1 - i\xi_2) = \xi_1^2 + \xi_2^2$.

Si abbia un polinomio P, con multi-indice del tipo in esame, che sia p.q.; le soluzioni intere non negative di

$$\frac{\alpha_1}{m_1} + \frac{\alpha_2}{m_2} = 1.$$

che può scriversi

$$\frac{\alpha_1}{m_1^*} + \frac{\alpha_2}{m_2^*} = 2^k \,,$$

sono tali che $\alpha_1 + \alpha_2$ è pari. Ne segue

$$P_0(\xi_1\,,\;\xi_2)=P_0(-\xi_1\,,\;-\xi_2)$$

da cui ancora

$$m_j^+(1) = m_j^-(-1)$$

$$m_j^-(1) = m_j^+(-1), \qquad j = 1, 2.$$

Ma essendo per ipotesi $m_j^{\pm}(1) = m_j^{\pm}(-1)$, segue

$$m_j^+ \equiv \frac{m_j}{2}, \qquad j = 1, 2.$$

Concludendo:

Teorema 4". – Se m_1 e m_2 sono entrambi pari, \overline{m}_1 e \overline{m}_2 sono entrambi dispari, un polinomio q.e. di multi-indice (m_1, m_2) può essere o meno p.q.e.; tuttavia se esso è p.q.e. la sola coppia compatibile con (m_1, m_2) è $\left(\frac{m_1}{2}, \frac{m_2}{2}\right)$.

OSSERVAZIONE – Notiamo esplicitamente che i polinomi p.q.e. del tipo considerato nel teorema precedente, non sono necessariamente fortemente quasi-ellittici (v. [1], nº 7 e 8); si consideri, ad esempio, il polinomio

$$[\xi_1 + (\sqrt{2} + i)\xi_2][\xi_1 - (\sqrt{2} - i)\xi_2].$$

BIBLIOGRAFIA

- [1] G. C. Barozzi, Sul multi-indice degli operatori quasi-ellittici, Boll. U.M.I., vol. 19 (1964), pp. 289-299.
- [2] —, Sul prodotto di polinomi quasi-ellittici, Boll. U.M.I. vol. 20 (1965) (in corso di stampa).
- [3] J. PEETRE, On estimating the solutions of hypoelliptic differential equations near the boundary, Math. Scand. 9 (1961) pp. 337-351.

Pervenuta alla Segreteria dell' U. M. I. il 5 aprile 1965