BOLLETTINO UNIONE MATEMATICA ITALIANA

RICHARD ASKEY

On some problems posed by Karlin and Szegö concerning orthogonal polynomials.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 20 (1965), n.1, p. 125–127.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1965_3_20_1_125_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

On some problems posed by Karlin and Szegő concerning orthogonal polynomials

by RICHARD ASKEY (a Madison, Wisconsin)

Summary. - Two results are obtained for Turan determinants of the classical polynomials.

In a very interesting paper [3] Karlin and Szegö have given a number of generalizations of an inequality of Turan. They also pose a number of questions and formulate some conjectures. We have two comments to make on these questions.

Turán's inequality is

(1)
$$\Delta(x) = \begin{vmatrix} P_n(x) & P_{n+1}(x) \\ P_{n+1}(x) & P_{n+2}(x) \end{vmatrix} < 0$$

for -1 < x < 1, where $P_n(x)$ is the Legendre polynomial of degree n with the usual normalization, $P_n(1) = 1$. Szegő [5] has shown that (1) holds for

- (a) ultraspherical polynomials, $P_n^{\lambda}(x)/P_n^{\lambda}(1)$, $\lambda > -1/2$,
- (b) Laguerre polynomials, $L_n^{\alpha}(x)/L_n^{\alpha}(0)$, $\alpha > -1$, x > 0,
- (c) HERMITE polynomials, $H_n(x)$, $-\infty < x < \infty$.

We use the same notation as in Szegő [4].

For ultraspherical polynomials $P_n^{\lambda}(x)$ with the usual normalization we have (1) for -1 < x < 1 only for $\lambda \ge \lambda/2$, see [3, p. 131]. Karlin and Szegö ask the question as to what normalizations of the classical polynomials give rise to an inequality of the form (1) for all x in the interior of the interval of support of the measure for which they are orthogonal. They give the following condition as a sufficient condition and we notice that it is also necessary.

THEOREM 1. - Let $Q_n(x)$ be one of the polynomials given in (a), (a), or (c). Then $R_n(x) = c_n Q_n(x)$ satisfies (1) for at least as

large a set of x, if and only if

(i)
$$c_n \cdot c_{n+2} > 0$$
, $n = 0, 1, ...$

(ii)
$$c_n \cdot c_{n+2} - c_{n+1}^2 \le 0$$
.

The sufficiency of these conditions follows from

(2)
$$R_{n} \cdot R_{n+2} - R_{n+1}^{2} = c_{n} \cdot c_{n+2} [Q_{n} \cdot Q_{n+2} - Q_{n+1}^{2}] + [c_{n} \cdot c_{n+2} - c_{n+1}^{2}] Q_{n+1}^{2}.$$

The necessity of (i) follows from (2) if we choose x as a zero of Q_{n+1} . For $Q_n(x) = P_n^{\lambda}(x)/P_n^{\lambda}(1)$ we have $\Delta(1) = 0$ and $Q_n(1) = 1$. But $\Delta(x)$ is continuous and so to have (1) for x close to 1 we must have (ii). The same argument works for polynomials (b). For $H_n(x)$ we notice that H_{n+1}^2 is a polynomial of degree 2n+2 and $H_n(x) \cdot H_{n+2}(x) = [H_{n-1}(x)]^2$ is a polynomial of degree 2n. Thus for large x we must have (ii).

One of the conjectures of KARLIN and SZEGÖ is that the determinants

$$D_n(h, k, x) = \begin{vmatrix} P_n(x) & P_{n+k}(x) \\ P_{n+k}(x) & P_{n+k+k}(x) \end{vmatrix}$$

have h-1+k-1 zeros in the interior of the interval of support of the measures for which the polynomials $P_n(x)$ are orthogonal.

Turan's inequality and the generalizations in [5] are just the case h=k=1. For h=1 and k arbitrary this result was shown by Karlin and Szegő [3]. They also have a few other special cases of this conjecture. For ultraspherical polynomials with n odd. h=k=2, this result is due to Forsythe [2] for $\lambda=1/2$, Danese [1] for $1/2<\lambda\le 1$ and Szegő [6] for $0<\lambda<1/2$. However it turns out that this conjecture is false for n odd. h=k=2, $\lambda>1$ and also for Hermite polynomials $H_n(x)$. $D_{2n+1}(2,2,x)$ has a double zero at x=0. For x a zero of $P_n(x)$ or of $H_n(x)$ we have $D_{2n+1}(2,2,x)<0$. If we show that $D''_{2n+1}(2,2,0)>0$, then $D_{2n+1}(2,2,x)$ is positive for small x and so $D_{2n+1}(2,2,x)$ has at least four zeros instead of two. A simple computation shows that

$$D''_{2n+1}(2, 2, 0) = 16 \left[\frac{(2n)!}{(n)!} \right]^2 (2n+1)$$

for $H_n(x)$ and

$$D''_{2n+1}(2, 2, 0) = \frac{2^{5}\lambda^{2}(\lambda - 1)}{(2n + 2\lambda + 3)(2n + 3)} \cdot \left[\frac{\Gamma(n + \lambda + 2)\Gamma(2\lambda)(2n + 3)!}{\Gamma(2n + 2\lambda + 3)\Gamma(\lambda + 1)(n + 1)!} \right]^{2}$$

for $P_n^{\lambda}(x)/P_n^{\lambda}(1)$.

So many interesting and deep results are true for determinants of Turan type that it is hard to believe that some nice results are not true for the determinants $D_n(h, k, x)$. However we are lacking enough special cases to formulate a reasonable conjecture.

REFERENCES

- [1] ARTHUR E. DANESE, Some identities and inequalities involving ultraspherical polynomials, *Duke Mathematical Journal*, vol. 26, pp. 349-360.
- [2] George E. Forsythe, Second order determinants of Legendre polynomials, Duke Mathematical Journals, vol. 18 (1951), pp. 361-371.
- [3] S. Karlin and G. Szegö, On certain determinants whose elements are orthogonal polynomials, "Journal d'Analyse Mathematique", vol. 8 (1961), pp. 1-157.
- [4] G. Szegö, Orthogonal Polynomials, American Mathematical Society Colloquium Publications., vol. 23. New York, 1959.
- [5] —, On an inequality of P. Turán concerning Legadre polynomials,
 Bulletin of the American Mathematical Society, vol. 54 (1948), pp. 401-405.
- [6] ——, An inequality for Jacobi polynomials, in Studies in Mathematical Analysis and Related Topics, edited by G. Szegő and others, Stanford, California, 1962, pp. 392-398.

Supported in part by N.S.F. grant GP-4985. Percenuta alla Segreteria dell'U.M.I. il 7 oltobre 1964.