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On Kernel polynomials and related systems

by T. 8. CHiHARA (Seattle University) (*) (*¥)

Summary. - Systems of orthogonal polynomials involving kernel polynomials
are consiructed.

1. Introduction. Let | P, (x)} denote a set of polynomials which
are orthogonal with respect to a distribution d{(x) on a subset
of [0, oo). In [2, § 2], certain relations between the P,(x) and the
special «kernel polynomials. which are orthogonal with respect
to xdy(x) were obtained. Since there is a more general concept
of kernel polynomials [4, Th. 3.1.4], it is natural to extend the
work of [2] to this more general case.

The generalization which we obtain enables us to give a rather
complete discussion of a problem of CarLiTz [1] which has been
considered recently by DicriNsoN and WaRst [3].

2. Orthogonality relations. Let { P,(x)] be the monic polyno-
mials which are orthogonal with respect to a distribution d{(x)
‘Whose support is a subset of an interval [a, b] with a > —oo (b
may be infinite). Let a, be any real number such that a,<a
and let | @, (a,, )| denote the monic kernel polynomials which
are orthogonal with respect to the distribution (x—a,)dy(x). (Q,(a,, x)
can be expressed in terms of the P,(x) by means of CHRISTOFFEL'S
formula [4, Th. 2.5] or the CHRISTOFFEL-DARBOUX formula [4,
Th. 3.2.2)).

Select any real number « such that Va — a, <« and let

2.1) z=sx)=a"4+ a —o

Let «, denote either of the two converse images of a, under
the mapping # and let 8 denote the positive converse of b under
2. We then have:

g)=a, &f)=>b 0=<a<P
2.2
2(%g) = @y, z—a, = a* — o, oy | < .

(*) This work was supported by the National Science Foundation
(NSF-GP 1230).

(**) Pervenuta alla Segreteria dell’ U. M.I. il 18 luglio 1964.
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‘We now define polynomials R, (x) = RBR,(«,, x) by

R, (x) = P,(2)
2.3)
Ry, \fx) = (& — ) Q,(a,, 2).

Next let

Iyy= J B (x) R \(x)de(x).

where E =[—8, —«] [z, 8] and ¢ is a distribution function.
Writing @,(x) in place of Q. a,, x), we have

! B
/ fPM(Z)P,l(Z)[d:P(x) - d(P(_ w)]: N =2n

x=2a
I2m, N =

me(z)Qn(z)[(x - 0"O)d(P(m) + (x + “o)dq’(— w)]’ N = 2” + 1;

X=2%
Thus Iem, v =0 for N==2m if we choose 9 so that

dy(x) — do(— x) = dj(2),

cSxsp
(x — ag)de(x) + (¢ + «y)do(— x) = 0.
‘We therefore obtain
dylw) = 2 ay(a)
dg(— @) = — " ayfe)
and we have finally
g
Lo, omtr = f Qn(2) @nla)(@ — ) dolx) — ( + ag)tde(— a)] =

B
= f Om(2) Qul2)(” — ag)dd(z) = 0

by (2.2) and the orthogonality of the Quz).
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‘We therefore have

TEEoREM 1. - The polynomials defined by (2.3) satisfy the
orthogonality relation

f Bon(2) () ”l""TI“" A4 + @ — a?) = 2hndn
E

where B =[-8, —a]|J[x, §] and
b b
kam = f P (x)dy@),  Famir= f @)@ — a)dd(=).

REMARKS. - (1) A more general quadratic transformation than
(2.1) can be used but leads only to the equivalent of performing
a linear transformation (in «) in our final results above.

(2) When b is finite, a similar result holds involving the kernel
polynomials orthogonal with respect to (b, —x)dy(x), b <b,. In
this case, (2.1) must be replaced by .z ="5 4 p* —a?, Vb, —b <GB
This is equivalent, essentially, to applying the preceding methods
to the polynomials, P,(— x).

3. Recurrence formulas and the «symmetric case». Let the
classical three term recurrence formulas satisfied by the three
systems of orthogonal polynomials just considered be

B.1)  Pua) = (@ — cn) Pr—st) — A Pr_s(%)
38.2) On(x) = (2 — dn)@n—1(%) — v Qn—2f), Onle) = Qula,, ),

(3.3) Ry(x) = (2 — fu) Rp—(2) — YnRu—22),
Pyx) = Qu@) = By(x) =1, P_,(@)= Q_s(@) =E_, =0,
Cn, du, fu rea.l, )\”+1 > 0, Vo1 > 0, Yn41 > 0,

n=1, 2, 3,....
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Proceeding in the same manner as in [2, § 2], we obtain from
(3.3) with the aid of (2.3)

(34)  Pu(2) = (x — fau)l® — %) Qn-1(2) — YonPn—(2)
(8.8)  (® — %)Qul2) = (@ — fant1)Pu(2) — Yonta(® — () Qu—(2).
Now since #(— x) = 2(x), it follows from (3.4) that
(@ — fan)(® — o) = (2 + fom)(® + )

hence fg;,, = — a,. Since Py(z(x,)) = Pula,) F=0 (since a, ¢ (a, b)), it
follows from (3.5) that fan41 = «,. Thus, with a reference to (2.2),
we find

(3.6) Pu(z) =2 — ap)Qn—1 — Y2nPn—(2),
n=1,2 3,..
{3.7) On(2) = Pu(2) — Yont1@n—1(2),

and it is easily verified that (3.7) holds for » =0 also if we define
v1 =0. If we now eliminate Qu—(2) and Qu(2) from (3.7) using
(3.6), we obtain

Py t(8)=(6—ay—Yent+1—Yon+2) Pu(2)—Yontant1Pn—i(2) (n=0)
and similarly
On(2)=(2—ay—Yan—Yon 1) @n—1(8)— Yon—1Y2n@n—2(2)  (B>1).

Comparison of the latter with (3.1) and (3.2) thus yields the
relations

(3.8) fan—1 = oy, fon=— o4

Yon—1 + Yan = Cn — Qy, YenYen+41 = )\n.—{—l (Ya =0)
3.9

Yen + Yent1 = dn — 2%} Yent1Yen+t2 = Vni4a,
n=1, 2 3.,
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The relations in (3.9) are striking when compared with the
corresponding equations obtained in [2, (2.6), (2.7)] (to which they,
of course, reduce when a,=0). Except for the presence of the
«anti-symmetric» coefficients, f,, they suggest the «symmetric»
orthogonal polynomials catisfying
(3.10) Ry, () = & Rp—s(2t) — ynRr—2(x)

R (x) =1, R (x})=0

Indeed, because of (3.9), it follows from [2, § 2] that
Ron(@) = Pu(a® + @),  Banta(®) = 2@nlay, **+ a)

and the Rj(x) are orthogonal with respect to the distribution,
de*(x) = (sgn x)d¢(x? + @,). From (2.3) and Theorem 1, we are thus
led to the tollowing theorem:

THEOREM 2. - Let the polynomials defined by (3.10) be ortho-
gonal with respect to the distribution, d¢*), with support E*.
Then the polynomials defined by
3.11) By = [ 4+ (— 1)80,] By—a(t) — YnR2—n(2), n=1, 2, 3,..

Ry(x) =1, B_,(x) =0, ®, Teal,

satisfy
(3.12) Ran(at) = Rin(V#? — o),

Bonsalt) = (sgn0) (5= Rtwsa VEF— )
(3.13) f Rm(x)Rn(a:)xl+ P 44V — o) = Eenbmn

E

where E=Iw:ac‘~’=zz+a§, z e E¥|

ko = | (B3 (@)Fdo¥(a).
-J

30
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It may be observed that theorem 2 can be proven directely
without reference to the preceding work. For if we consider the
Ru(x) as defined by (3 12), then substitution into (3.10) yields (3.11).
Since (3.11) uniquely determines the R,(x), this verifies (3.12). The
orthogonality relation (3.13) can now be verified directly using
(3.12) and the fact that the sets E and E* are symmetric with
respect to the origin.

The preceding can be illustrated nicely using JacoBx polynomials:

Pue) = (T e — 1), aye) = (1 — ayeata,

Qul0, o) = (2” Fetby 1)—1 PP (9 _y),

Here ay=a =0, b=1 while « and B are the usual parameters
and nof the same as in section 2.

Then

Riu(x) = (2"' +: + ﬁ)—l PP 2z 1)

xPFt) (9 _ 4)

Bl 1() = (2(1 + ;:— B+ 1)—1

are the polynomials orthogonal with respect to the weight function
wHx) = | ¢ [2P+1(1 — 2?)e, —1<z<1.

(For 8 = —1/2, these reduce to well-known formulas for ultra-
spherical polynomials while for « =0 they yield a special case
studied by Szres [4, (4.1.5), (4.1.6)]).

We thus obtain, for arbitrary real «,,

2 4« 4 B
n

R, (@) = ( )—lpﬁ,“* B (20t — 22 — 1)

(2n+«+p+ 1)—1(
n

Ry, \(x) = # — ag PO BT (252 202 1)
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as the polynomials orthogonal with respect to the weight function

|2 +ay| - |2 — B+ =Y, |op| <|o|< VIFar

w(x) =
0 otherwise.

For the recurrences, (3.10) and (3.11), we obtain the coefficients
. (n + B)(n + « + B)
T = @p f 2+ 8—1)20 +a+ p)’

N n(n + )
Tl = B T e F B+« + B+ 1)

4. A problem of Carlitz. Addressing a question posed by
Carvitz [1], DickiNsoN and WARSI [3] have shown that if | P, (x) |
is a set of polynomials orthogonal on a subset of (0, oo) (with
respect to some distribution di(x)), then there exists a set |®, (x)}
of real orthogonal polynomials such that

(4.1) ®,,(%) = P, ().

This follows also from [2, § 2] and the particular solution
constructed by DickiNsoN and WARSI is seen to be the polyno-
mial set orthogonal with respect to the distribution, (sgn x)d¢(x?).

It is also easy to show that the converse of the above is true.
For if | &, (x)} is an orthogonal set with respect to the distribution
do(x), and (4.1) holds. then for m 3=n,

0= f Py (X1 Py, (2)dopl) = f P, ()P, (x")de()
= f P, (@) P, (a?)d[¢(x) — o(— )]

= f P,,(2)P,(2)d¥(2)

where (z) = ¢(V2) — ¢(— \/E) is non-decreasing on [0, oc).
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Theorem 1 also shows that the orthogonal set satisfying (4.1)
is not, in general, unique. Specifically suppose | Pu(x)} is a set
of monic polynomials, Pu(x) of degree m, which are orthogomal
with respect to a distribution, d{(x), and that the «true» interval
of orthogonality (smallest interval which contains the support of
dy(x)) is (a, b). Let

(4.2) Ran(x) = Palz), z=0o+ A.
If A < a, then for each a, satisfying
AL g Za,
we can let « = 2= Va,— A and use (2.8) to define Riut.(x) thus
obtaining an ortogonal set of the type described by theorem 1.
Moreover, every orthogonal polynomial set |Ru(x)} satisfying
(4.2) must be of this type. To see this, let (3.1) and (3.8) be the

recurrences satisfied by the respective polynomials.
Write (3.8) for » = 2m and use (4.2) to obtain

(4.4) (@ — fam)Bem—1(x) = Pm(2) + YamPm—1(2) (m=1)

Since the right side is an even function of x, we conclude that
(4.4) Bom—(®) = (@ + fom) @m—i(?) (m=1)
where Qu(?) is a monic polynomial of degree n in 2.

Next using (3.3) with # =2m — 1 to eliminate Rym—i(x) from
(4.3), we get for m>1

(@ — fam)@® — fom—1)Pm—1(2) — Yam—1(% — fom)(® + [2m—2) @m—o(2) =
= Pu(2) + Yom Pm—(2).

Comparing coefficients of x27—, we conclude that fom-fem—1=0.
Then comparing coefficients of x2»—3 we find that

fom = fam—2 (m =>1),

Thus, writing «y = — fam’, We obtain from (4.3) and (4.4)

@n(e) = (@ — &) [Pnta(2) + Yant2Pal?)] (m = 0).
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Hence letting a, = 2!+ A, We have
b
f On(2)z*(2 — a,)d¥(2) =
a

b
= j [Prga(2) + Yont2Pu(z)]e*dd(z) = 0 for k <mn.

Now the zeros of Py(z) are located in (a, b), hence the positive
and negative zeros of R,u(x) are located in (— B, —«) and («, B),
respectively, where « = Va — A and = Vb — A. Since the zeros
of Romti(x) are interlaced with those of Rym(x), it follows from
(4.4) that — « < &y < «. It follows that a, < a. Hence, | Qu(@)! is a
set of kernel polynomials and {Ry(x)} is of the type described
in Theorem 1.

Of course, a more general quadratic transformation than that

used in (4.2) can be reduced to the case just considered by a
" linear transformation (whic does mnot affect orthogonality). It is
also abvious that the corresponding problem for a cubic or higher
order transformation would be of considerably greater complexity.
Indeed, it would be interesting to find an example of an ortho-
gonal polynomial set | Ru(x)| such that

Ran(x) = Py(2)

where z is a cubic in .
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