Bollettino

Unione Matematica Italiana

T. S. Chimara

On kernel polynomials and related systems.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 19 (1964), n.4, p. 451-459.

Zanichelli
http://www.bdim.eu/item?id=BUMI_1964_3_19_4_451_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

[^0]Bollettino dell'Unione Matematica Italiana, Zanichelli, 1964.

On Kernel polynomials and related systems

by T. S. Chibara (Seattle University) (*) (**)

Summary. - Systems of orthogonal polynomials involving kernel polynomials are constructed.

1. Introduction. Let $\left\{P_{n}(x)\right\}$ denote a set of polynomials which are orthogonal with respect to a distribution $d \psi(x)$ on a subset of $[0, \infty)$. In $[2, \S 2]$, certain relations between the $P_{n 2}(x)$ and the special akernel polynomials . which are orthogonal with respect to $x d \psi(x)$ were obtained. Since there is a more general concept of kernel polynomials [4, Th. 3.1.4], it is natural to extend the work of [2] to this more general case.

The generalization which we obtain enables us to give a rather complete discussion of a problem of Carlitz [1] which has been considered recently by Dickinson and Warsi [3].
2. Orthogonality relations. Let $\left\{P_{n}(x)\right\}$ be the monic polynomials which are orthogonal with respect to a distribution $d \psi(x)$ whose support is a subset of an interval $[a, b]$ with $a>-\infty(b$ may be infinite). Let a_{0} be any real number such that $a_{0} \leqq a$ and let $\left\{Q_{n}\left(a_{0}, x\right)\right\}$ denote the monic kernel polynomials which are orthogonal with respect to the distribution $\left(x-a_{0}\right) d \psi(x) .\left(Q_{n}\left(a_{0}, x\right)\right.$ can be expressed in terms of the $P_{n}(x)$ by means of CHRistoffel's formula [4, Th. 2.5] or the Cheistoffel-Darboux formula [4, Th. 3.2.2]).

Select any real number α such that $\sqrt{a-a_{0}} \leqq \alpha$ and let

$$
\begin{equation*}
z=z(x)=x^{2}+a-\alpha^{2} . \tag{2.1}
\end{equation*}
$$

Let α_{0} denote either of the two converse images of a_{0} under the mapping z and let β denote the positive converse of b under z. We then have:

$$
\begin{gather*}
z(\mathrm{x})=a, \quad z(\beta)=b, \quad 0 \leqq \alpha<\beta \tag{2.2}\\
z\left(\alpha_{0}\right)=a_{0}, \quad z-a_{0}=x^{2}-\alpha_{0}^{2}, \quad\left|\alpha_{0}\right| \leqq \alpha
\end{gather*}
$$

(*) This work was supported by the National Science Foundation (NSF-GP 1230).
(**) Pervenuta alla Segreteria dell' U. M. I. il 18 luglio 1964.

We now define polynomials $R_{n}(x) \equiv R_{n}\left(\alpha_{0}, x\right)$ by

$$
\begin{gather*}
R_{2 n}(x)=P_{n}(z) \tag{2.3}\\
R_{2 n+1}(x)=\left(x-\alpha_{0}\right) Q_{n}\left(a_{0}, z\right)
\end{gather*}
$$

Next let

$$
I_{M N}=\int_{E} R_{M}(x) R_{N}(x) d \varphi(x) .
$$

where $E=[-\beta,-\alpha] \bigcup[\alpha, \beta]$ and φ is a distribution function.
Writing $Q_{n}(x)$ in place of $Q_{n}\left(a_{0}, x\right)$, we have
$I_{2 m i}, N= \begin{cases}\int_{x=\alpha}^{R} P_{m}(z) P_{n}(z)[d \rho(x)-d \varphi(-x)], & N=2 n \\ \int_{x=\alpha}^{\beta} P_{n}(z) Q_{n}(z)\left[\left(x-\alpha_{0}\right) d \varphi(x)+\left(x+\alpha_{0}\right) d \varphi(-x)\right], & N=2 n+1 ;\end{cases}$
Thus $I_{2 m, N}=0$ for $N \neq 2 m$ if we choose φ so that

$$
\begin{gathered}
d \varphi(x)-d \varphi(-x)=d \dot{(z)}, \\
\left(x-\alpha_{0}\right) d \varphi\left(x_{i}+\left(x+\alpha_{0}\right) d \varphi(-x)=0 . \quad \alpha \leqq x \leqq \beta\right.
\end{gathered}
$$

We therefore obtain

$$
\begin{aligned}
d \supsetneq(x) & =\frac{x+\alpha_{0}}{2 x} d \psi(z) \\
d \stackrel{ }{p}(-x) & =-\frac{x-\alpha_{0}}{2 x} d \psi(z)
\end{aligned}
$$

and we have finally

$$
\begin{aligned}
I_{2 m+1,2 n+1} & =\int_{x=x}^{\beta} Q_{m}(z) Q_{n}(z)\left[\left(x-\alpha_{0}\right)^{2} d \varphi(x)-\left(x+\alpha_{0}\right)^{2} d \psi(-x)\right]= \\
& =\int_{x=\alpha}^{\beta} Q_{m}(z) Q_{n}(z)\left(x^{2}-a_{0}^{2}\right) d \psi(z)=0
\end{aligned}
$$

by (2.2) and the orthogonality of the $Q_{n}(z)$.

We therefore have

Theorem 1. - The polynomials defined by (2.3) satisfy the orthogonality relation

$$
\int_{E} R_{m}(x) R_{n}(x) \frac{x+a_{0}}{|x|} d \psi\left(x^{2}+a-\alpha^{2}\right)=2 k_{n} \delta_{m n}
$$

where $E=[-\beta,-\alpha] \bigcup[\alpha, \beta]$ and

$$
k_{2 m}=\int_{a}^{b} P_{m}^{2}(x) d \psi(x), \quad k_{2 m+1}=\int_{a}^{b} Q_{m}^{2}(x)\left(x-a_{0}\right) d \psi(x)
$$

Remarks. - (1) A more general quadratic transformation than (2.1) can be used but leads only to the equivalent of performing a linear transformation (in x) in our final results above.
(2) When b is finite, a similar result holds involving the kernel polynomials orthogonal with respect to $\left(b_{0}-x\right) d \psi(x), b \leqq b_{0}$. In this case, (2.1) must be replaced by $z=b+\beta^{2}-x^{2}, \sqrt{\overline{b_{0}}-b} \leqq \beta$. This is equivalent, essentially, to applying the preceding methods to the polynomials, $P_{n}(-x)$.
3. Recurrence formulas and the symmetric casen. Let the classical three term recurrence formulas satisfied by the three systems of orthogonal polynomials just considered be

$$
\begin{align*}
& P_{n}(x)=\left(x-c_{n}\right) P_{n-1}(x)-\lambda_{n} P_{n-2}(x) \tag{3.1}\\
& Q_{n}(x)=\left(x-d_{n}\right) Q_{n-1}(x)-v_{n} Q_{n-2}(x), \quad Q_{n}(x)=Q_{n}\left(a_{0}, x\right), \tag{3.2}\\
& R_{n}(x)=\left(x-f_{n}\right) R_{n-1}(x)-\gamma_{n} R_{n-2}(x), \tag{3.3}\\
& P_{0}(x)=Q_{0}(x)=R_{0}(x)=1, \quad P_{-1}(x)=Q_{-1}(x)=R_{-1}=0, \\
& c_{n}, \quad d_{n}, \quad f_{n} \text { real, } \quad \lambda_{n+1}>0, \quad v_{n+1}>0, \quad \gamma_{n+1}>0, \\
& n=1.2,3, \ldots
\end{align*}
$$

Proceeding in the same manner as in [2, § 2], we obtain from (3.3) with the aid of (2.3)

$$
\begin{align*}
& P_{n}(z)=\left(x-f_{2 u}\right)\left(x-\alpha_{0}\right) Q_{n-1}(z)-\gamma_{2 n} P_{n-1}(z) \tag{3.4}\\
& \left(x-\alpha_{0}\right) Q_{n}(z)=\left(x-f_{2 n+1}\right) P_{n}(z)-\gamma_{2 n+1}\left(x-\alpha_{0}\right) Q_{n-1}(z) \tag{3.5}
\end{align*}
$$

Now since $z(-x)=z(x)$, it follows from (3.4) that

$$
\left(x-f_{2 n}\right)\left(x-\alpha_{0}\right)=\left(x+f_{2 n}\right)\left(x+\alpha_{0}\right)
$$

hence $f_{2 n}=-\alpha_{0}$. Since $P_{n}\left(z\left(\alpha_{0}\right)\right)=P_{n}\left(a_{0}\right) \neq 0$ (since $a_{0} \notin(a, b)$), it follows from (3.5) that $f_{2 n+1}=\alpha_{0}$. Thus, with a reference to (2.2), we find

$$
\begin{array}{ll}
P_{n}(z)=\left(z-a_{0}\right) Q_{n-1}-\gamma_{2 n} P_{n-1}(z), \\
Q_{n}(z)=P_{n}(z)-\gamma_{2 n+1} Q_{n-1}(z), & n=1,2,3, \ldots
\end{array}
$$

and it is easily verified that (3.7) holds for $n=0$ also if we define $\gamma_{1}=0$. If we now eliminate $Q_{n-1}(z)$ and $Q_{n}(z)$ from (3.7) using (3.6), we obtain

$$
P_{n+1}(z)=\left(z-a_{0}-\gamma_{2 n+1}-\gamma_{2 n+2}\right) P_{n}(z)-\gamma_{2 n} \gamma_{2 n+1} P_{n-1}(z) \quad(n \geq 0)
$$

and similarly

$$
Q_{n}(z)=\left(z-a_{0}-\gamma_{2 n}-\gamma_{2 n+1}\right) Q_{n-1}(z)-\gamma_{2 n-1} \gamma_{2 n} Q_{n-2}(z) \quad(n \geq 1) .
$$

Comparison of the latter with (3.1) and (3.2) thus yields the relations

$$
\begin{equation*}
f_{2 n-1}=\alpha_{0}, \quad f_{2 n}=-\alpha_{0} \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{2 n-1}+\gamma_{2 n}=c_{n}-a_{0}, \quad \gamma_{2 n} \gamma_{2 n+1}=\lambda_{n+1} \quad\left(\gamma_{1}=0\right) \tag{3.9}
\end{equation*}
$$

$$
\begin{aligned}
\gamma_{2 n}+\gamma_{2 n+1}=d_{n}-a_{0}, \quad \gamma_{2 n+1} \gamma_{2 n+2}= & v_{n+1} \\
& n=1,2,3, \ldots,
\end{aligned}
$$

The relations in (3.9) are striking when compared with the corresponding equations obtained in [2, (2.6), (2.7)] (to which they, of course, reduce when $a_{0}=0$). Except for the presence of the «anti-symmetric» coefficients, f_{n}, they suggest the esymmetric* orthogonal polynomials satisfying

$$
\begin{align*}
& R_{n}^{*}(x)=x R_{n-1}^{*}(x)-\gamma_{n} R_{n-2}^{*}(x) \tag{3.10}\\
& R_{0}^{*}(x)=1, \quad R_{-1}^{*}(x)=0 .
\end{align*}
$$

Indeed, because of (3.9), it follows from [2, § 2] that

$$
R_{2 n}^{*}(x)=P_{n}\left(x^{2}+a_{0}\right), \quad R_{2 n+1}^{*}(x)=x Q_{n}\left(a_{0}, x^{2}+a_{0}\right)
$$

and the $R_{n}^{*}(x)$ are orthogonal with respect to the distribution, $d \varphi^{*}(x)=(\operatorname{sgn} x) d \psi\left(x^{2}+a_{0}\right)$. From (2.3) and Theorem 1, we are thus led to the following theorem:

Theorem 2. - Let the polynomials defined by (3.10) be orthogonal with respect to the distribution, $d \varphi^{*}(x)$, with support E^{*}. Then the polynomials defined by

$$
\begin{align*}
& R_{n}(x)=\left[x+(-1)^{n_{\alpha_{0}}}\right] R_{n-1}(x)-\gamma_{n} R_{2-n}(x), \quad n=1,2,3, \ldots \tag{3.11}\\
& R_{0}(x)=1, \quad R_{-1}(x)=0, \quad \alpha_{0} \text { real, }
\end{align*}
$$

satisfy

$$
\begin{gather*}
R_{2 n}(x)=R_{2 n}^{*}\left(\sqrt{x^{2}-\alpha_{0}^{2}}\right), \tag{3.12}\\
R_{2 n+1}(x)=(\operatorname{sgn} x)\left(\frac{x-\alpha_{0}}{x+\alpha_{0}}\right)^{1 / 2} R_{2 n+1}^{*}\left(\sqrt{x^{2}-\alpha_{0}^{2}}\right) \\
\int_{E} R_{m}(x) R_{n}(x) \frac{x+\alpha_{0}}{|x|} d \varphi^{*}\left(\sqrt{x^{2}-\alpha_{0}^{2}}\right)=k_{n} \delta_{m n} \tag{3.13}
\end{gather*}
$$

where $E=\left\{x: x^{2}=z^{2}+\alpha_{0}^{2}, z \in E^{*}\right\}$

$$
k_{n}=\int_{E^{*}}\left[R_{n}^{*}(x)\right]^{2} d \varphi^{*}(x)
$$

It may be observed that theorem 2 can be proven directely without reference to the preceding work. For if we consider the $R_{n}(x)$ as defined by (312), then substitution into (3.10) yields (3.11). Since (3.11) uniquely determines the $R_{n}(x)$, this verifies (3.12). The orthogonality relation (3.13) can now be verified directly using (3.12) and the fact that the sets E and E^{*} are symmetric with respect to the origin.

The preceding can be illustrated nicely using Jacobi polynomials:

$$
\begin{aligned}
& P_{n}(x)=\binom{2 n+\alpha+\beta}{n}^{-1} P_{n}^{(\alpha, \beta)}(2 x-1), \quad d \psi(x)=(1-x)^{\alpha} x^{\beta} d x \\
& Q_{n}(0, x)=\binom{2 n+\alpha+\beta+1}{n}^{-1} P_{n}^{(\alpha, \beta+1)}(2 x-1) .
\end{aligned}
$$

Here $a_{0}=a=0, b=1$ while α and β are the usual parameters and not the same as in section 2.

Then

$$
\begin{aligned}
& R_{2 n}^{*}(x)=\binom{2 n+\alpha+\beta}{n}^{-1} P_{n}^{(\alpha, \beta)}\left(2 x^{2}-1\right) \\
& R_{2 n+1}^{*}(x)=\binom{2 a+\alpha+\beta+1}{n}^{-1} x P_{n}^{(\alpha, \beta+1)}\left(2 x^{2}-1\right)
\end{aligned}
$$

are the polynomials orthogonal with respect to the weight function

$$
w^{*}(x)=|x|^{2 \beta+1}\left(1-x^{2}\right)^{\alpha}, \quad-1 \leqq x \leqq 1
$$

(For $\beta=-1 / 2$, these reduce to well-known formulas for ultraspherical polynomials while for $\alpha=0$ they yield a special case studied by Szegö [4, (4.1.5), (4.1.6)]).

We thus obtain, for arbitrary real α_{0},

$$
\begin{gathered}
R_{2 n}(x)=\binom{2 n+\alpha+\beta}{n}^{-1} P_{n}^{(\alpha, \beta)}\left(2 x^{2}-2 \alpha_{0}^{2}-1\right) \\
R_{2 n+1}(x)=\binom{2 n+\alpha+\beta+1}{n}^{-1}\left(x-\alpha_{0}\right) P_{n}^{(\alpha, \beta+1)}\left(2 x^{2}-2 \alpha_{0}^{2}-1\right)
\end{gathered}
$$

as the polynomials orthogonal with respect to the weight function

$$
w(x)=\left\{\begin{array}{lr}
\left|x+\alpha_{0}\right| \cdot\left|x^{2}-\alpha_{0}^{2}\right|^{\beta}\left(1+\alpha_{0}^{2}-x^{2}\right)^{x}, & \left|\alpha_{0}\right| \leqq|x| \leqq \sqrt{1+\alpha_{0}^{2}} \\
0 & \text { otherwise } .
\end{array}\right.
$$

For the recurrences, (3.10) and (3.11), we obtain the coefficients

$$
\begin{aligned}
\gamma_{2 n} & =\frac{(n+\beta)(n+\alpha+\beta)}{(2 n+\alpha+\beta-1)(2 n+\alpha+\beta)} \\
\gamma_{2 n+1} & =\frac{n(n+\alpha)}{(2 n+\alpha+\beta)(2 n+\alpha+\beta+1)}
\end{aligned}
$$

4. A problem of Carlitz. Addressing a question posed by Carlitz [1], Dickinson and Warsi [3] have shown that if $\left\{P_{n}(x)\right\}$ is a set of polynomials orthogonal on a subset of $(0, \infty)$ (with respect to some distribution $d \Psi(x))$, then there exists a set $\left\{\Phi_{n}(x)\right\}$ of real orthogonal polynomials such that

$$
\begin{equation*}
\Phi_{2 n}(x)=P_{n}\left(x^{2}\right) . \tag{4.1}
\end{equation*}
$$

This follows also from [2, § 2] and the particular solution constructed by Dickinson and Warsi is seen to be the polynomial set orthogonal with respect to the distribution, $(\operatorname{sgn} x) d \psi\left(x^{2}\right)$.

It is also easy to show that the converse of the above is true. For if $\left\{\Phi_{n}(x)\right\}$ is an orthogonal set with respect to the distribution $d \varphi(x)$, and (4.1) holds. then for $m \neq n$,

$$
\begin{aligned}
0=\int_{-\infty}^{\infty} \Phi_{2 m}(x) \Phi_{2 n}(x) d \varphi(x) & =\int_{-\infty}^{\infty} P_{m}\left(x^{2}\right) P_{n}\left(x^{2}\right) d \varphi(x) \\
& =\int_{0}^{\infty} P_{m}\left(x^{2}\right) P_{n}\left(x^{2}\right) d[\varphi(x)-\varphi(-x)] \\
& =\int_{0}^{\infty} P_{m}(z) P_{n}(z) d \psi(z)
\end{aligned}
$$

where $\psi(z)=\varphi(\sqrt{z})-\varphi(-\sqrt{z})$ is non-decreasing on $[0, \infty)$.

Theorem 1 also shows that the orthogonal set satisfying (4.1) is not, in general, unique. Specifically suppose $\left\{P_{n}(x)\right\}$ is a set of monic polynomials, $P_{\boldsymbol{n}}(x)$ of degree n, which are orthogonal with respect to a distribution, $d \psi(x)$, and that the "true s interval of orthogonality (smallest interval which contains the support of $d \psi(x))$ is (a, b). Let

$$
\begin{equation*}
R_{2 n}(x)=P_{n}(z), \quad z=x^{2}+A \tag{4.3}
\end{equation*}
$$

If $A \leqq a$, then for each a_{0} satisfying

$$
A \leqq a_{0} \leqq a
$$

we can let $\alpha= \pm \sqrt{a_{0}-A}$ and use (2.3) to define $R_{2 n+1}(x)$ thus obtaining an ortogonal set of the type described by theorem 1.

Moreover, every orthogonal polynomial set $\left\{R_{n}(x)\right\}$ satisfying (4.2) must be of this type. To see this, let (3.1) and (3.3) be the recurrences satisfied by the respective polynomials.

Write (3.3) for $n=2 m$ and use (4.2) to obtain

$$
\begin{equation*}
\left(x-f_{2 m}\right) R_{2 m-1}(x)=P_{m}(z)+\gamma_{2 m 2} P_{m-1}(z) \quad(m \geqq 1) \tag{4.4}
\end{equation*}
$$

Since the right side is an even function of x, we couclude that

$$
\begin{equation*}
R_{2 m-1}(x)=\left(x+f_{2 m}\right) Q_{m-1}(z) \quad(m \geqq 1) \tag{4.4}
\end{equation*}
$$

where $Q_{n}(z)$ is a monic polynomial of degree n in z.
Next using (3.3) with $n=2 m-1$ to eliminate $R_{2 m-1}(x)$ from (4.3), we get for $m \geqq 1$

$$
\begin{gathered}
\left(x-f_{2 m}\right)\left(x-f_{2 m-1}\right) P_{m-1}(z)-\gamma_{2 m-1}\left(x-f_{2 m}\right)\left(x+f_{2 m-2}\right) Q_{m-2}(z)= \\
=P_{m}(z)+\gamma_{2 m} P_{m-1}(z) .
\end{gathered}
$$

Comparing coefficients of $x^{2 m-1}$, we conclude that $f_{2 m}+f_{2 m-1}=0$. Then comparing coefficients of $x^{2 m-3}$ we find that

$$
f_{2 m}=f_{2 m-2} \quad(m \geqq 1)
$$

Thus, writing $\alpha_{0}=-f_{2 m^{\prime}}$, we obtain from (4.3) and (4.4)

$$
Q_{n}(z)=\left(x^{2}-\alpha_{0}^{2}\right)^{-1}\left[P_{n+1}(z)+\gamma_{2 n+2} P_{n}(z)\right] \quad(m \geqq 0) .
$$

Hence letting $a_{0}=x_{0}^{2}+A$, we have

$$
\begin{aligned}
& \int_{a}^{b} Q_{n}(z) z^{k}\left(z-a_{0}\right) d \psi(z)= \\
= & \int_{a}^{b}\left[P_{n+1}(z)+\gamma_{2 n+2} P_{n}(z)\right] z^{k} d \psi(z)=0 \quad \text { for } k<n .
\end{aligned}
$$

Now the zeros of $P_{m}(z)$ are located in (a, b), hence the positive and negative zeros of $R_{2 m}(x)$ are located in $(-\beta,-\alpha)$ and (α, β), respectively, where $\alpha=\sqrt{a-A}$ and $\beta=\sqrt{\overline{b-A}}$. Since the zeros of $R_{2 m+1}(x)$ are interlaced with those of $R_{2 m}(x)$, it follows from (4.4) that $-\alpha \leqq \alpha_{0} \leqq \alpha$. It follows that $a_{0} \leqq a$. Hence, $\left\{Q_{n}(x)\right\}$ is a set of kernel polynomials and $\left\{R_{n}(x)\right\}$ is of the type described in Theorem 1.

Of course, a more general quadratic transformation than that used in (4.2) can be reduced to the case just considered by a linear transformation (whic does not affect orthogonality). It is also abvious that the corresponding problem for a cubic or higher order transformation would be of considerably greater complexity. Indeed, it would be interesting to find an example of an orthogonal polynomial set $\left\{R_{n}(x)\right\}$ such that

$$
R_{3 n}(x)=P_{n}(z)
$$

where z is a cubic in x.

BIBLIOGRAPHY

[1] Carlitz, Leonard, The relationship of the Hermite to the Laguerre polynomials, «Boll. Un- Mat. Ital. ., vol. 16 (1961), pp. 386.390.
[2] Chifara, T. S., Chain sequences and orthogonal polynomials, "Trans. Amer. Math. Soc., , vol. 104 (1962), pp. 1-16.
[3] Dickinson, David and Warsi, S. A, On a generalized Hermite poly. nomials and a problem of Carlitz, «Boll. Un. Math. Ital », vol. 18 (1963), pp. 256.259.
[4] Szegö, G., Orthogonals Polynomials, «Amer. Math. Soc Colloq Publ.», vol. 23, New York, 1939.

[^0]: Articolo digitalizzato nel quadro del programma
 bdim (Biblioteca Digitale Italiana di Matematica)
 SIMAI \& UMI
 http://www.bdim.eu/

