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On the uniqueness of limit eycles

by W. A. CoppPEL (Canberra, Australia) (*)

Sunto. - Si generalizza un noto criterio dell’unicita dei cicli dovulo a
Massera e Hudai-Veranov.

By a variety of methods and under different hypotheses Liz-
NARD (3], LEviNsoN and Smite [2], SANSONE [6], MAsSERA [4] and
Hupai-VERONOV [1] have proved that the equation

1) x” + fle)x’ +2=0

has at most one limit cycle. The object of the present note is to
extend the method of Hunai-VERONOV to the system

' = P(x, y)
(2)
y’ = Q(x’ y)'

Moreover we replace by rigorous proof the appeal which this
author makes to geometric intuition.

The proof of our uniqueness criterion is based on the follo-
wing lemma, which is perhaps of independent interest.

LemMma. - Let f(x, y) be a conlinuous real-valued function such
that a unique solution of the differential equalion

(3) dy/dx = f(x, Y)

passes through any point of the rectangle o <x <P, y<<y <3.
Moreover let there exist a continuous function x = o(y), defined for

v <y <3, such that fix, y) 2 0 according as x z o(y).
Then the derivative of any solution y(x) of the differential equa-
tion (3) vanishes at most once in the interval « < x <f. Moreover

if ¥'(E) =0 then y'(x) = 0 according as x L

(*) Pervenuta alla Segreteria dell’U. M. I. il 10 agosto 1964.
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PRroor. - A solution of the differential equation (3) cannot-
have its derivative equal to zero throughout an interval z, <
<z < x,. For this would imply the existence of a constant ¢ such
that flz, ¢) =0 for , <x <,, Whereas x = o(c) is the only value
of & for which flz, ¢) = 0.

Suppose that y'(§,) =0 and y'(x)3=0 for £, < x < %,. Then either
Y'(x)> 0 or y'(x) <0 for §, <x<%,. We will show that the second
alternative is impossible. In fact it implies that y = y(x) has a
continuous, strictly decreaéing inverse x = {(y) for 7, <y<<n,,
where 7, = y(§,) and 1, = y(§,) Moreover {(y) < o(y) for n,<<y=m,,
since y'(z) = flz, yla)] <0.

Define a new function fl, ) throughout the rectangle §, <
stss, Ny << Y <"7m,, by setting

fl®, ¥) = flz, y) if ®<<o(y), =0 otherwise.

Also put

ﬁx’ y)=f(x: n,) for y>n,, =7(x3 ny) for y<<u,.

Then f(z, y) is continuous, bounded and non-pesitive in the
entire strip §, <<« < §,, — co <y < oo. Choose any value 1, between
7, and v, and take §, greater than () and less than both §, and
¢(no). The differential equation

dyldx = f(z, y)

has a solution y = mw(x) which passes through the point (,, 7,
and is defined for §, <<x < §,. Moreover n(x) is a non-increasing
function of .

The graph of y = w(x) is contained n the region R: x<Cq(y),
Ny << Y <u,. For suppose the point (x,, w(x,)) lay outside E. Since
(os 7o) belongs to R there must exist a value z, >, such that
(x5, w(x,)) is situated on the boundary of R and (x, w(x)) lies out-
side R for x, <<z <<x,. It follows that w'(x) =0 for z, <z <<=,
and hence w(v,) =w(x,). Moreover w(x,) > 7,, because w'(§,) =
= &y, M) <0, and wix,) << £,, because z, > n,. Thus

N < W(2y) = wix,) < ,.
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Hence, by the definition of the points (z,, w(x,)) and (x,, w(x,)),

x, = ¢[w(a,)], x, > ¢[w(x,)].

" Since », <z, this is a contradiction.

It follows that w(x) is a solution of the original differemtial
equation (3). Therefore the graphs of w{x) have no common point
and w(x) is always greater than y(x). Since y(§,) ==, this implies
w(E,) > n,, contrary to what we have just proved.

Similarly it may be shown that if y'(§,) = 0 and y'(x)=F+ 0 for
E <z <& then ¢'(x) <0 for §, <z < &,.

Suppose now that y'(x) vanished at least twice. At some point
x, between the two zeros y'(x) must be different from 0. Let wx,
and x, be the nearest zeros of y'(x) on either side of x,(x, <x,<z,).
Then by what has been shown y’(x) is positive to the right of «,
and negative to the left of x,. Therefore it vanishes between ,
and x,, which is a contradiction. This completes the proof.

After these preparations we can prove without difficulty our
main result:

THEOREM. - Let Px, y), Q, y) be continuous functions such
that the solutions of the system (2) are uniquely determined by their
initial values. Snppose also

(i) the system (2) has mo critical points, except possibly the
origin,

(ii) for every X >>1 and every point (x, y)
(4) A = PQw, My)Q(x, y) — P(x, y)Q0x, ry) =0,

(iii) strict inequality holds in (4) at all points {x, y)==(0, 0)
for which xQ(x, y) = yP(x, y) and at all points of a curve extending
from the origin to infinity.

Then the system (2) has at most one closed path.

‘We can suppose the origin is a critical point, since otherwise
there are certainly no closed paths. Changing to polar coordinates
=17 cos®, y=1rsin @ we get

"= Pcos® 4 Qsin ®
70’ = @ cos ® — Psin 0,



444 W. A. COPPEL

If ©' vanishes for { =, then #'3=0 for £ ={, by (i). Thus in
the neighbourhood of (r,, ®) we can write

d® 1 Qcos®—Psin® o
dr — r Pcos® + Qsin®=‘?(r’ )

By (iii) we have strict inequality in (4) near the point (x, ¥, =
= (1, cos O, rysin ®). If P(x,, 9,) 30 then cos ©,53=0 and (4) tells
us that Q(r cos O, r sin O)/P(r cos ®, r sin ©) is a decreasing function
of r near (r,, ©,). Hence, by the most elementary form of the
implicit function theorem, for each ® near ®, there is a unique
value p(®) of r near 7, such that

Q(r cos O, r sin ©)/P(r cos O, r sin 0) = tan O.

Moreover p(®) is a continuous function of @ and ¢(r, @); 0

according as r 2 p(®). The same holds if P(x,, y,)=0 and @Q(x,, y,)=3=0.
By the lemma, with y replaced by — y, it follows that at anym
of ® dO/dr changes sign from + to — as r increases. Consequen-
tly ©' changes sign from + to — as ¢ increases. Therefore ©' va-
nishes at most once on any path and does not vanish at all on a
closed path. '

Thus any closed path is defined by an equation » = #(®), where
7(®) is a solution of the equation

dr Pcos® 4 @sin 0
d® Qcos® — Psin©

N

such that r(2x) = »(0). Integrating with respect to © we get

21
Pcos® 4 Qsin®
0_/Qcos®—Psin®d®'
0o

If there were two closed paths, defined by equations » = r,(®
and r = r,(®), where 7,(0)<r,(0), then by subtraction we would get

2m
02/- PzQx—Ple — de
(@, cos ® — P, sin 0)(Q, cos ® — P, sin ©) ~
0
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The denominator of the integrand has constant sign by what we
have already proved. The numerator is mon-negative by (ii), and
actually positive for at least one value of © by (iii). Thus we have
a contradiction.

The equation (1) is equivalent to the system

x' =y — F(z)

’
Yy=—1u

x

where Flx) = j flE)AE. Tt follows from the theorem that the equa-
o

tion (1), where f(x) is continuous, has at most one non-constant
periodic solution if F(x)/x is an increasing function for > 0 and
a decreasing function for x < 0. This is more general than the
requirement of Massera and HUDAI-VERENoOv that f(z) be an
increasing function for x > 0 and a decreasing function for xz<0,
since

[Fla)a] = a—[af(z) — Fiz)]
= o= [ i) — fENE.

Moreover in most practical applications it is the function Flx)
which, is given directly, rather than its derivative fix).
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