Bollettino
 Unione Matematica Italiana

Helen F. Cullen

A characterization of sets of cardinal $\leq \mathrm{C}$

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 19 (1964), n.2, p. 138-140.

Zanichelli
http://www.bdim.eu/item?id=BUMI_1964_3_19_2_138_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

[^0]
A characterization of sets of cardinal $\leq C$
 by Helen F. Cullen (University of Massachusetts) (*)

Summary. - First a property for sets called set-separability is defined. It is then shown with the aid of some results of Marczewski that a set T is set-separable if and only if T has cardinal $\leq C$.

Introduction. Marczewski ([1]), in proving separability for certain product spaces, uses the following lemma: the product space N^{T}, where N is the set of natural numbers with the discrete topology, is separable if T is any subset of the real numbers. In the proof of this lemma, a property related to the density of the rationals in the reals is used. It is the purpose of this note first to abstract this property to obtain a set-theoretic property and then to use it to characterize sets of cardinal $\leq C$.

1. Set-separabitity. A finite partition of a set, T, will, as usual, denote a finite collection of disjoint subsets of T whose union contains T.

Definition 1. A partition, P, of a set, T, is said to separate the subset M of T if and only if distinct points in M lie in distinct sets in P,

Definition 2. A set T is said to be set-separable if and only if there exists a countable collection, \mathscr{P}, of finite partitions such that each finite subset of T is separated by a partition in \mathscr{B}.

Lemma 1. If a set A is sinilar to a set B and if A is set-separable then B is set-separable.

The proof is straighforward and will be omitted.
Lemma 2. Every subset T of real numbers is set-separable.
(*) Pervenuta alla Segreteria dell'U.M.I. il 29 geñnaio 1964.

Proof. For each finite subset $\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ of rational num. bers, such that $r_{1}<r_{2}<\ldots<r_{n}$, define the partition

$$
A_{1}=\left\{x \mid x<r_{1}\right\}, A_{2}=\left\{x \mid r_{1} \leq x<r_{2}\right\}, \ldots, A_{n}=\left\{x \mid r_{n} \leq x\right\}
$$

of T. Since the set of all finite subsets of the set of rationals is countable, the set, \mathscr{F}, of all such partitions is countable. From the density of the rationals in the reals, it follows immediately that each finite set of elements in T is separated by some partition in \mathfrak{J} and hence T is set-separable.

Corollary 1. Every set of cardinal $\leq C$ is set-separable.
Proof. From the definition of \leq and from Lemma 1, the corollary follows.

2. Set-Separability and Topological Separability.

Theorem 1. If T is any set-separable set, then N^{T} is a separable space.

Proof. Let \mathscr{J} dennte a countable collection of finite partitions which separate the finite sets of T. Let $D=\left\{f\right.$ in $N^{T} \mid f$ is constant on each of the subsets $A_{1}, A_{2}, \ldots, A_{n}$ of some partition in $\left.\mathfrak{J}\right\}$. Each function in D is identified by a finite partition $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ and an n-tuple ($f\left(A_{1}\right), f\left(A_{2}\right), \ldots, f\left(A_{n}\right)$) of natural numbers. Since the set of all n-tuples of natural numbers is countable and since \mathscr{J} is countable, D is countable. Next, let Φ be any element in N^{T} and let G^{*} be any basic open set in N^{T} which contains Φ. $G^{*}=\prod_{\alpha \varepsilon T} G_{\alpha}$ where $G_{\alpha}=N$ except for $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, k$ a natural number. Let $P=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be a finite partition in \mathscr{J} which separates $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$. Let $\alpha_{1} \varepsilon A_{i_{1}}, \alpha_{2} \varepsilon A_{i_{2}}, \ldots, \alpha_{k} \varepsilon A_{i_{k}}$. There exists in D a function f such that $f\left(A_{i_{1}}\right)=\Phi\left(\alpha_{1}\right), f\left(A_{i_{2}}\right)=$ $=\Phi\left(\alpha_{2}\right), \ldots, f\left(A_{i_{k}}\right)=\Phi\left(\alpha_{k}\right)$. Hence, f is in G^{*} and D is dense in N^{T}. Thus N^{T} is separable.
3. Set-Separability and the Cardinal, C. In [1], Marczewski establishes the following: a product space $\prod_{\alpha \in T} X_{x}$ where heach X_{α} has disjoint non-empty open sets is separable if and only if (1) each X_{x} is separable and (2) the cardinal of T is less than or equal to C.

Theorem 2. A set T has cardinal greater than C if and only if T is not set-separable.

Proof. A. Let T have cardinal greater than C. The space N^{T} is not, then, separable by Marczewski's theorem. Hence, by Theorem 1, T cannot be set-separable.
B. Let T be not set-separable. By corollary $1 T$ does not have cardinal $\leq C$. By comp rability of cardinals numbers, T has cardinal $>C$.

Corollary 2. A set T has cardinal $\leq C$ if and only if T is set-separable.

REFERENCES
[1] Marczewski, E., Separabilité et Multiplication Cartésienne des Espace Topologiques, Fund. Math., Vol. 34 (1947), pp. 127-143.

[^0]: Articolo digitalizzato nel quadro del programma
 bdim (Biblioteca Digitale Italiana di Matematica)
 SIMAI \& UMI
 http://www.bdim.eu/

