BOLLETTINO UNIONE MATEMATICA ITALIANA

HELEN F. CULLEN

A characterization of sets of cardinal \leq C

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 19 (1964), n.2, p. 138–140. Zanichelli

<http://www.bdim.eu/item?id=BUMI_1964_3_19_2_138_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

A characterization of sets of cardinal $\leq C$

by HELEN F. CULLEN (University of Massachusetts) (*)

Summary. - First a property for sets called set-separability is defined. It is then shown with the aid of some results of Marczewski that a set T is set-separable if and only if T has cardinal $\leq C$.

INTRODUCTION. Marczewski ([1]), in proving separability for certain product spaces, uses the following lemma: the product space N^T , where N is the set of natural numbers with the discrete topology, is separable if T is any subset of the real numbers. In the proof of this lemma, a property related to the density of the rationals in the reals is used. It is the purpose of this note first to abstract this property to obtain a set-theoretic property and then to use it to characterize sets of cardinal $\leq C$.

1. SET-SEPARABITITY. A finite partition of a set, T, will, as usual, denote a finite collection of disjoint subsets of T whose union contains T.

Definition 1. A partition, P, of a set, T, is said to separate the subset M of T if and only if distinct points in M lie in distinct sets in P,

Definition 2. A set T is said to be set-separable if and only if there exists a countable collection, \mathcal{S} , of finite partitions such that each finite subset of T is separated by a partition in \mathcal{S} .

LEMMA 1. If a set A is similar to a set B and if A is set-separable then B is set-separable.

The proof is straighforward and will be omitted.

LEMMA 2. Every subset T of real numbers is set-separable.

(*) Pervenuta alla Segreteria dell'U.M.I. il 29 gennaio 1964.

Proof. For each finite subset $|r_1, r_2, ..., r_n|$ of rational numbers, such that $r_1 < r_2 < ... < r_n$, define the partition

$$A_1 = |x| | x < r_1 |, \ A_2 = |x| | r_1 \le x < r_2 |, \ \dots, \ A_n = |x| | r_n \le x |$$

of T. Since the set of all finite subsets of the set of rationals is countable, the set, \mathcal{G} , of all such partitions is countable. From the density of the rationals in the reals, it follows immediately that each finite set of elements in T is separated by some partition in \mathcal{G} and hence T is set-separable.

COROLLARY 1. Every set of cardinal $\leq C$ is set-separable.

Proof. From the definition of \leq and from Lemma 1, the corollary follows.

2. SET-SEPARABILITY AND TOPOLOGICAL SEPARABILITY.

THEOREM 1. If T is any set-separable set, then N^T is a separable space.

Proof. Let S denote a countable collection of finite partitions which separate the finite sets of T. Let $D = \{f \text{ in } N^T | f \text{ is constant}$ on each of the subsets A_1, A_2, \ldots, A_n of some partition in S}. Each function in D is identified by a finite partition $\{A_1, A_2, \ldots, A_n\}$ and an n-tuple $(f(A_1), f(A_2), \ldots, f(A_n))$ of natural numbers. Since the set of all n-tuples of natural numbers is countable and since S is countable, D is countable. Next, let Φ be any element in N^T and let G^* be any basic open set in N^T which contains Φ . $G^* = \prod_{\alpha \in T} G_{\alpha}$ where $G_{\alpha} = N$ except for $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_k, k$ a natural number. Let $P = \{A_1, A_2, \ldots, A_n\}$ be a finite partition in S which separates $\{\alpha_1, \alpha_2, \ldots, \alpha_k\}$. Let $\alpha_1 \in A_{i_1}, \alpha_2 \in A_{i_2}, \ldots, \alpha_k \in A_{i_k}$. There exists in D a function f such that $f(A_{i_1}) = \Phi(\alpha_1), f(A_{i_2}) =$ $= \Phi(\alpha_2), \ldots, f(A_{i_k}) = \Phi(\alpha_k)$. Hence, f is in G* and D is dense in N^T . Thus N^T is separable.

3. SET-SEPARABILITY AND THE CARDINAL, C. In [1], Marczewski establishes the following: a product space $\prod_{\alpha \in T} X_{\alpha}$ where heach X_{α} has disjoint non-empty open sets is separable if and only if (1) each X_{α} is separable and (2) the cardinal of T is less than or equal to C.

THEOREM 2. A set T has cardinal greater than C if and only if T is not set-separable.

Proof. A. Let T have cardinal greater than C. The space N^T is not, then, separable by Marczewski's theorem. Hence, by Theorem 1. T cannot be set-separable.

B. Let T be not set-separable. By corollary 1 T does not have cardinal $\leq C$. By comporability of cardinals numbers, T has cardinal > C.

COROLLARY 2. A set T has cardinal $\leq C$ if and only if T is set-separable.

REFERENCES

 MARCZEWSKI, E., Separabilité et Multiplication Cartésienne des Espace Topologiques, Fund. Math., Vol. 34 (1947), pp. 127-143.