Bollettino
 Unione Matematica Italiana

R. Bellman, T. A. Brown
\title{ On the computational solution of two-point boundary-value problems. }

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 19 (1964), n.2, p. 121-123.

Zanichelli
http://www.bdim.eu/item?id=BUMI_1964_3_19_2_121_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

[^0]Bollettino dell'Unione Matematica Italiana, Zanichelli, 1964.

On the computational solution of two-point boundary-value problems.

Nota di R. Bellman e T. A. Brown (California U.S.A.) (*)

Stmmary. - Two-point boundary-value problems for second-order systems of linear differential equations are usually solved by a process involving the inversion of a certain matrix. If the system is too large, it may be difficult to compute this incerse to a high degree of accuracy.

The purpose of this paper is to discuss a method of overcoming this difficulty.

1. Introduction.

Consider (as in [1]) the n-dimensional vector differential equation

$$
\begin{equation*}
x^{\prime \prime}+A(t) x=0 \tag{1.1}
\end{equation*}
$$

where the solution is subject to the boundary conditions

$$
\begin{equation*}
x(0)=c, \quad x(1)=d . \tag{1.2}
\end{equation*}
$$

The problem is generally solved as follows. Let X_{1} and X_{2} denote the matrix solutions of

$$
\begin{equation*}
X^{\prime \prime}+A(t) X=0 \tag{1.3}
\end{equation*}
$$

satisfying the initial conditions

$$
\begin{array}{ll}
X_{1}(0)=I, & X_{1}^{\prime}(0)=0 \tag{1.4}\\
X_{2}(0)=0, & X_{2}{ }^{\prime}(0)=I
\end{array}
$$

If g represents the (unknown) value of $x^{\prime}(0)$, where $x(t)$ is the solution to the problem, then

$$
\begin{equation*}
g=X_{2}(1)^{-1}\left[d-X_{1}(1) c\right] \tag{1.5}
\end{equation*}
$$

(*) Pervenuta alla Sergeteria dell' U•M.I il 16 novembre 1963.

If $X_{2}(1)$ is singular, then there may be m any solutions, or none, and (1.5), of course, makes no sense.

If n is large, it may be difficult to compute $X_{2}^{-1}(1)$ to a high degree of accuracy. The purpose of this paper is to discuss a method of overcoming this difficulty.

2. An iterative technique.

Let X_{2}^{*} (1) be some approximation to $X_{2}^{-1}(1)$. Define

$$
\begin{align*}
& g_{1}=X_{2}^{*}(1)\left[d-X_{2}(1) c\right] \tag{2.1}\\
& g_{n}=X_{2}^{*}(1)\left[d-X_{1}(1) c-X_{2}(1) g_{n-1}\right]+g_{n-1}
\end{align*}
$$

Then we have the following theorem:
Theorem If the spectral radius of $\mathrm{I}-\mathrm{X}_{2}^{*}(1) \mathrm{X}_{2}(1)$ is less than one, then the sequence $\left[\mathrm{g}_{\mathrm{n}}\right]$ defined by (2.1) converges to g , the unique solution of (1.5).

Proof. - First note that if $I-X_{2}^{*}(1) X_{2}(1)$ has spectral radius less than one, then $X_{2}^{*}(1) X_{2}(1)$ must be nonsingular. Thus $X_{2}^{*}(1)$ and $X_{2}(1)$ are nonsingular, which means that (1.5) has a unique solution. If g is the unique solution of (1.5), then

$$
\begin{align*}
g_{n}-g & =X_{2}^{*}(1)\left[d-X_{1}(1) c-X_{2}(1) g_{n-1}\right]+g_{n-1}-g= \tag{2.2}\\
& =X_{2}^{*}(1)\left[d-X_{1}(1) c-X_{2}(1) g_{n-1}\right]- \\
& -X_{2}^{*}(1)\left[d-X_{1}(1) c-X_{2}(1) g\right]+g_{n-1}-g= \\
& =\left(I-X_{2}^{*}(1) X_{2}(1)\right)\left(g_{n-1}-g\right) .
\end{align*}
$$

If the spectral radius of $I-X_{2}^{*}(1) X_{2}(1)$ is less than one, this shows that $\left[g_{n}-g\right]$ goes to zero as n goes to infinity, and this concludes the proof. This theorem may be viewed as an application of a method of matrix inversion like that of Bodewig and HotelLING (see [3], [4] for additional references).

Corllary. - If $\mathbf{A}(\mathrm{t})=\mathbf{B}^{2}$, a constant positive-definite matrix, then taking $\mathrm{X}_{2}^{*}(1)=\mathbf{X}_{\mathbf{2}}(1)$ makes $\left[\mathrm{g}_{\mathrm{n}}\right]$ converge to the solution.

Proof. Since $X_{2}(1)=B^{-1} \sin B$, it follows that the eigenvalues of $X_{2}(1)$ all have absolute value less than one, and thus all the eigenvalues of $X_{2}^{2}(1)$ are between zero and one.

Corollary. - If each element of $\mathrm{I}-\mathrm{X}_{2}^{*}(\mathrm{1}) \mathrm{X}_{2}(1)$ is less in absolute value than $1 / \mathrm{n}$, then $\left[\mathrm{g}_{\mathrm{n}}\right]$ converges to the solution.

Corollary. - If $\mathrm{A}(\mathrm{t})=-\mathrm{B}^{2}$, where B is a matri:x with only real eigenvalues each of which is greater than zero then taking $\mathrm{X}_{2}^{*}(1)=2 \mathrm{Be}^{-\mathrm{B}}$ makes $\left[\mathrm{g}_{\mathrm{n}}\right]$ converge to the solution.

Corollary. - If $\mathrm{Y}_{1}(\mathrm{t}), \mathrm{Y}_{2}(\mathrm{t})$ are solutions to $\mathrm{Y}^{\prime \prime}+\mathbf{A}(1-t) \mathrm{Y}=0$ satisfying initial conditions like (1.4), then taking $\mathbf{X}_{2}^{*}(1)=\mathbf{Y}_{1}{ }^{\prime}(1)$ will make $\left[\mathrm{g}_{\mathrm{n}}\right]$ converge to the solution if $\mathrm{Y}_{2}{ }^{\prime}(1) \mathrm{X}_{2}{ }^{\prime}(1)$ has spectral radius less than one.

$$
\text { Proof. }-Y_{2}^{\prime}(1) X_{2}^{\prime}(1)=I-Y_{1}^{\prime}(1) X_{2}(1)
$$

Corollary. - If $\mathrm{X}_{2}^{*}(1)=\mathrm{dA}$, where A is the transpose of $\mathrm{X}_{2}(1)$ and d is a positive constant chosen to be less than twice the reciprocal of the sum of the absolute values of each row of $\mathrm{AX}_{\mathbf{2}}(1)$, then $\left[\mathrm{g}_{\mathrm{n}}\right]$ converges to the solution.

Note that this last corollary is not apt to be computationally useful, however, since if $X_{2}(1)$ has some very small eigenvalues (and thus is hard to invert) under the above procedure $I-X_{2}^{*}(1) X_{2}(1)$ will have spectral radius very close to one, so that convergence will be slow.

REFERENCES

[1] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill Book Company, Inc., New York, 1960.
[2] - -, On the Iterative Solution of Two-point Boundary-value problems, a Boll. U.M.I. », Vol. 16, No. 3, 1961, pp. $14 \overline{0}-149$.
[3] E. Bodewig, Matrix Calculus, «North-Holland Pubbl. C», Amsterdam, 1956.
[4] A. S. Householder, Principles of Numerical Analysis, McGraw-Hill Book Co., Inc., New York, 1953.

[^0]: Articolo digitalizzato nel quadro del programma
 bdim (Biblioteca Digitale Italiana di Matematica)
 SIMAI \& UMI
 http://www.bdim.eu/

