BOLLETTINO UNIONE MATEMATICA ITALIANA

R. Bellman, T. A. Brown

On the computational solution of two-point boundary-value problems.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 19 (1964), n.2, p. 121–123.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1964_3_19_2_121_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

On the computational solution of two-point boundary-value problems.

Nota di R. Bellman e T. A. Brown (California U.S.A.) (*)

Summary. - Two-point boundary-value problems for second-order systems of linear differential equations are usually solved by a process involving the inversion of a certain matrix. If the system is too large, it may be difficult to compute this inverse to a high degree of accuracy.

The purpose of this paper is to discuss a method of overcoming this difficulty.

1. Introduction.

Consider (as in [1]) the n-dimensional vector differential equation

$$(1.1) x'' + A(t)x = 0$$

where the solution is subject to the boundary conditions

$$(1.2) x(0) = c, x(1) = d.$$

The problem is generally solved as follows. Let X_1 and X_2 denote the matrix solutions of

$$(1.3) X'' + A(t)X = 0$$

satisfying the initial conditions

(1.4)
$$X_1(0) = I, \quad X_1'(0) = 0,$$
 $X_2(0) = 0, \quad X_2'(0) = I.$

If g represents the (unknown) value of x'(0), where x(t) is the solution to the problem, then

$$(1.5) g = X_{2}(1)^{-1}[d - X_{1}(1)c].$$

(*) Pervenuta alla Sergeteria dell' U·M. I il 16 novembre 1963.

If $X_2(1)$ is singular, then there may be m any solutions, or none, and (1.5), of course, makes no sense.

If n is large, it may be difficult to compute $X_2^{-1}(1)$ to a high degree of accuracy. The purpose of this paper is to discuss a method of overcoming this difficulty.

2. An iterative technique.

Let X_2^* (1) be some approximation to X_2^{-1} (1). Define

(2.1)
$$g_1 = X_2^* (1)[d - X_2(1)c],$$

$$g_n = X_2^* (1)[d - X_1(1)c - X_2(1)g_{n-1}] + g_{n-1}.$$

Then we have the following theorem:

THEOREM If the spectral radius of $I - X_2^*(1)X_1(1)$ is less than one, then the sequence $[g_n]$ defined by (2.1) converges to g, the unique solution of (1.5).

PROOF. - First note that if $I - X_2^*(1)X_2(1)$ has spectral radius less than one, then $X_2^*(1)X_2(1)$ must be nonsingular. Thus $X_2^*(1)$ and $X_2(1)$ are nonsingular, which means that (1.5) has a unique solution. If g is the unique solution of (1.5), then

$$(2.2) g_n - g = X_2^* (1)[d - X_1(1)c - X_2(1)g_{n-1}] + g_{n-1} - g =$$

$$= X_2^* (1)[d - X_1(1)c - X_2(1)g_{n-1}] -$$

$$- X_2^* (1)[d - X_1(1)c - X_2(1)g] + g_{n-1} - g =$$

$$= (I - X_2^* (1)X_2(1))(g_{n-1} - g).$$

If the spectral radius of $I - X_2^*(1)X_2(1)$ is less than one, this shows that $[g_n - g]$ goes to zero as n goes to infinity, and this concludes the proof. This theorem may be viewed as an application of a method of matrix inversion like that of BODEWIG and HOTELLING (see [3], [4] for additional references).

CORLLARY. - If $A(t) = B^2$, a constant positive-definite matrix, then taking $X_2^*(1) = X_*(1)$ makes $[g_n]$ converge to the solution.

Proof. Since $X_2(1) = B^{-1} \sin B$, it follows that the eigenvalues of $X_2(1)$ all have absolute value less than one, and thus all the eigenvalues of $X_2(1)$ are between zero and one.

Corollary. – If each element of $I = X_2^*(1)X_1(1)$ is less in absolute value than 1/n, then $[g_n]$ converges to the solution.

Corollary. – If $A(t) = -B^t$, where B is a matrix with only real eigenvalues each of which is greater than zero then taking $X_2^*(1) = 2Be^{-B}$ makes $[g_n]$ converge to the solution.

PROOF. -
$$X_2(t = B^{-1}(\frac{e^{Bt} - e^{-Bt}}{2})$$
, whence $X_2^*(1)X_2(1)$ equals $I - e^{-2B}$.

COROLLARY. - If $Y_1(t)$, $Y_2(t)$ are solutions to Y'' + A(1-t)Y = 0 satisfying initial conditions like (1.4), then taking $X_2^*(1) = Y_1'(1)$ will make $[g_n]$ converge to the solution if $Y_2'(1)X_2'(1)$ has spectral radius less than one.

PROOF. -
$$Y_2'(1)X_2'(1) = I - Y_1'(1)X_2(1)$$
.

COROLLARY. – If $X_2^*(1) = dA$, where A is the transpose of $X_2(1)$ and d is a positive constant chosen to be less than twice the reciprocal of the sum of the absolute values of each row of $AX_2(1)$, then $[g_n]$ converges to the solution.

Note that this last corollary is not apt to be computationally useful, however, since if $X_2(1)$ has some very small eigenvalues (and thus is hard to invert) under the above procedure $I = X_2^* (1) X_2(1)$ will have spectral radius very close to one, so that convergence will be slow.

REFERENCES

- [1] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill Book Company, Inc., New York, 1960.
- [2] —, On the Iterative Solution of Two-point Boundary value problems, Boll. U.M.I. *, Vol. 16, No. 3, 1961, pp. 145-149.
- [3] E. Bodewig, Matrix Calculus, «North-Holland Pubbl. C.», Amsterdam, 1956.
- [4] A. S. HOUSEHOLDER, Principles of Numerical Analysis, McGraw-Hill Book Co., Inc., New York, 1953.