BOLLETTINO
UNIONE MATEMATICA ITALIANA

U. A. SASTRY

Heat transfer of laminar forced convection
in doubly connected regions.

Bollettino dell’Unione Matematica Italiana, Serie 3, Vol. 18
(1963), n.4, p. 351-357.

Zanichelli
<http://www.bdim.eu/item?id=BUMI_1963_3_18_4_351_0>

L’utilizzo e la stampa di questo documento digitale & consentito liberamen-
te per motivi di ricerca e studio. Non é consentito 'utilizzo dello stesso per
motivi commerciali. Tutte le copie di questo documento devono riportare
questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=BUMI_1963_3_18_4_351_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Zanichelli, 1963.



Heat transfer ot laminar forced convection in
doubly connected regions

by U. A. SasTrY (India) (*)

Summary. - In this paper the heat transfer of laminar forced convection
in a pipe whose outer cross-section 1s a Booths’ lemniscate and inner
cross section a circle has been 1nvestigated by using Schwarz’s Alter-
nating Method.

Mathematical Formulation.

Let us consider a steady fully developed laminar flow with
arbitrbry heat generation in a pipe of cross-section D bounded by
a closed curve L. Suppose the axis of the pipe be in the z-direc-
tion. The basic momentum and energy equations of the constant
property non-dissipative fluid in cartesian coordinates are

(1.1) vu=20C,
1.2 vit=(Cou — C,).
where

12 ot
Clz,,_‘ agy 0,2%6,55, C, = Qik,

¢, = specific heat at constant pressure, u — viscosity.
k = thermal conductivity and ¢ = demsity.

Q = heat source intemnsity, v* is the LAPLACE operator in two di-
mensions.

Boundary conditions.

Consider the problem of forced-convection in non-circular pipes
with the boundary conditions '

(1.3) u=0, t=-1ty,.
where
% =1local velecity, { —=local temperature, {» = wall temperature.

(*) Pervenuta alla, Segreteria dell’U. M. L. il 17-maggio 1863.



3562 . A. BASTRY

Writing e=x+4dy, g=xz—4dy, T=(t—1n) We can easily
deduce the expressions for the velocity .and temperature (heat
generation is constant) in the form

(1.4) u= C,z2/4 + (4 C,)['(2) + ®'(2)},

C(éE)

(1.5) IT'=—4—+ z¢(z) + z<b(a) + Y(2) + v.p(z)

+ ,(0) + B,8) — 2

where ®(2), $(2) and ®,(2) are functions holomorphic in the region D
of the cross-section satisfying the given boundary conditions.

The average velocity u,,, average temperatare T,, the mixed
mean temperature Tu, the heat transfer rate g, the heat transfer
coefficient h and the NUSSELT number based on the mixed mean
temperature are given by

(1.6) Au, = | udA,
D
(1.7 AT, = | TdA,
l
(1.8 Au, Ty = juTdA,
D
(1.9) g = (Cytm — Cy)kA,
(1.10 h=—q/STx,
(1.11) “Nu = (hD,/k) = 4(A/S)’(O, — C,,)/ Tt

where A is the area of the section, D, is equivalent hydraulio
diameter = (44/8), S is' the circumferential length of the section.

Alternating Method of Schwarsz.

+The region R,, can be considered as the intersection of infinite
region R, bounded by L, with finite region R, interior to L,.
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First we write the boundary condition on (Ly + L) as
(2) L(®) =f(2)

where L is an operator with the usual meaning.
To obtain the first approximation ® to ® we determine the
functions in the region R, so that

(2.1) LY} |, = f|1,

To obtain the second approximation we consider the solution
in R, such that

(2.2) L®®) |, = |1, — L(®") |z,

For the third approximation we determine in the region R,
the solution satisfying the condition

(2.3) L@ |, =f |t — L(®*) |1,

and so on. Then ® = & 4 &® 4 ®® 4., is the required solution.

Cross-section bounded externally by a Booths’ lemniscate and
internally a circle.

Let us find the velocity field satisfying the boundary conditions
) u=0, on L,
3) % =1u,. on L,

%, is a constant to be determined.
Using (2) and (3) in (1.4) we find

@ ®(f) + ®(f) = — Ct#/16, on L,
®) = — CRY/16 + C,u,/4, on L,
t#t=F, on L,.

First approximation.

Let ¥ be the first approximation to ® which is to be deter-
mined in the region interior to L, satisfying

(6) L(o") |L, = |,
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The function
) z=0/(1L +mf), |m|<1/2
maps the region interior to L, onto the unit circle in the {-plane.
Using (4), (7) in (6) and multiplying the resulting equation by

1
5 (c_d—if) ‘where T is a point inside the unit circle we easily find
8) @,(0) = — CO'K/32 + Cb*mk{*/16(1 + mZ?)

The above equation can also be written in the form
oo
9 DI(2) = — (Ckb?/32) £ ¢, 2™
/]

where ¢, =¢,8"% B=( 4m/b?)
(10) {=(b — Vb*— 4mz")/2mz, k=1/(1 —m’)
Integrating (9) we obtain

(1) D) = — (Ckb32) S ¢',e+1/(2n + 1)

Second approximation.

Let & be the second approximation to ¢ which is to be cal-
culated subject to the condition

(12) L@®) 1, = |1, — L@ 1,
using (6), (9) in (12) we find
(13) D(1) ; D) = —CR'/16 + Cyu, 4 +
+ (Ckb32) £ o\ (0 + B
since ®® is holomorphic outside L, we may take ®'*(co)=0.

Multiplying (13) by dt/2ni|t — 2) where z is a point outside the
circle L, we obtain after integration

(14) OW(z) = (CkY/32) S ¢\ R4j2™.
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From the equation (13) we also have
(16) %, = C(R* — kbY)/4.
Integrating (14) we find

(16) Q(l)(z) —_— (Ckb!/32) i‘: c'ﬂRlu/(gn —_ l)z!n—l

Using (9) and (14) in (1.4) wo find

17 u= C,(zz — kb*)/4 — C’Zb

[ o]
Re 2 ¢’ (2 — R /[z).
1

Let us find the temperature field subject to the boundary con-
ditions

(18) I'=0,0n L,
(19) I'=7Ty-0on L,

T, is a constant to be defermined. From (18), (19) and (1.5) we have

(20) 1D(t) + 1D(E) + Yi) + J(E) + D,(t) + D,{f) =
_Gi_ o g,
21) = CZR. - Cﬁ—f + T, on L,

First approximation.
Let @V, ¢, @,V be the first approximation to be determined
in the region interior to L, satisfying

(22) L((D(l)’ l‘l’“)’ (I)l(l)) |L2 j— f IL’

From (20), (22) we obtain after multiplying the resulting equa-
1

d
tion by Imi (c_—ct_) and integrating

(23) $7E) + Vo) = 5 (1 T ) —
o
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Cb'k? ® w
— ogp (L + Z ¢2")t — G + Ck 3 (¢,b*"+/(2n + 1)
0 [}

) o)
; S B, ZpP 4 3 E_,Z, 2 p—att)
P=0 p=0
where

@
2, = — (b/2m) = ¢’ 2¥—!
1

Second appoximation

Let ®®, ¢, ® ® be the second approximation to @, §, ®, which
is to be determined in the region exterior to L, subject to the
condition
(24) L((p(l)’ ll,(!)’ Q|(l)) ILI p— f IIJI —_— L((D(l). +(l)’ (Dl(l)) ILI

Using (21), (23) in (24) and multiplying the resulting equation
by dt/2ri(t — 2), where 2 is a point outside the circle L, and in-
tegrating we find

@5)  YM(e) + O Be) = (CkbY32) I c'udnR+1|(4n? — 1)o™
— (H)2) £ &, R'7/2* + (Cb*k*/256)
@ ..} 2
32 b c,R"’/z"-H( 2 c’,R"’/z’P) ‘
+ (CH/32) 2 ¢ b+ 2n + 1)} 3 B, (b/2myreng,ttn 4
1 p=1

-+ g) E—p(b/2m)’("‘"’ Z.z(,,_.,) i
p=1
where

@
2,= I ¢ RUY-V[g¥=1
1

(26) H = (b'%k/8)(C, — Cb*m’k/8), G = (H — Cb*k*/64 — Clkb*/2

T, can be determined from- (6.23) using the fact that (oo} =
®,®(c0) = 0.
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The usual complex torsion function is related to the function
®(z) by the relation

27 ®(2) = iFl2)

writing C, = —2, C, =38, C = — 16 we obtain the expression for
the torsion function and the torsional rigidity is given by

(28) D* = 2udu,

where

(C,A, 14)_2”C[lb‘k‘(1+4m’+ mi) — R* l] kb®
2 m -

64 - 3_2’ ’b2k2(1 Fm’)—R‘ |

s =] o (o] —(2n+-1)
— bs2) | 3 obren 1) 3 ( S (—1)yme+r@r+1) C, )+
1 p=0 \ r=0
@ ¢ R © o —(2n-41)
2 s T 3 2 (— 12 1ymetr )
) + % g M(m( rer+ymer "6, ) |

and
(30) A = =[k%(1 + m?) — R?]

The stress components are given by

X. Ckb® ® . R sin (2n+-1)0

By =[ 5 ne',) pin=s sm(zn—ne__r,,f,_ﬁ_)_ ( _yl
2 oo 4n 9

(32) }%= C’;b , 12 nc’.,%"’"_’ cos (2n—1)p + R_%ﬂz +w]

Writing R=0, in the expressions for the torsional rigidity
and the torsion function we obtain known results.
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