BOLLETTINO UNIONE MATEMATICA ITALIANA

U. A. SASTRY

Heat transfer of laminar forced convection in doubly connected regions.

Bollettino dell'Unione Matematica Italiana, Serie 3, Vol. 18 (1963), n.4, p. 351–357.

Zanichelli

<http://www.bdim.eu/item?id=BUMI_1963_3_18_4_351_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Heat transfer of laminar forced convection in doubly connected regions

by U. A. SASTRY (India) (*)

Summary. In this paper the heat transfer of laminar forced convection in a pipe whose outer cross-section is a Booths' lemniscate and inner cross section a circle has been investigated by using Schnarz's Alternating Method.

Mathematical Formulation.

Let us consider a steady fully developed laminar flow with arbitrbry heat generation in a pipe of cross-section D bounded by a closed curve L. Suppose the axis of the pipe be in the z-direction. The basic momentum and energy equations of the constant property non-dissipative fluid in cartesian coordinates are

$$\nabla^2 u = C_1,$$

$$\nabla^2 t = (C_2 u - C_3).$$

where

$$C_1 = \frac{1}{u} \frac{\partial p}{\partial z}, \quad C_2 = \frac{\varphi}{k} c_p \frac{\partial t}{\partial z}, \quad C_3 = Q/k,$$

 $c_v =$ specific heat at constant pressure, u = viscosity.

k =thermal conductivity and $\varphi =$ density.

 $Q = \text{heat source intensity}, \ \nabla^{\text{s}}$ is the Laplace operator in two dimensions.

Boundary conditions.

Consider the problem of forced-convection in non-circular pipes with the boundary conditions

$$(1.3) u=0, t=t_w.$$

where

u = local velecity, t = local temperature, $t_w = wall$ temperature.

(*) Pervenuta alla Segreteria dell' U. M. I. il 17 maggio 1963.

Writing z = x + iy, $\bar{z} = x - iy$, $T = (t - t_w)$ we can easily deduce the expressions for the velocity and temperature (heat generation is constant) in the form

(1.4)
$$u = C_1 z \bar{z} / 4 + (4/C_2) [\Phi'(z) + \overline{\Phi'(z)}],$$

(1.5)
$$T = \frac{C(z\overline{z})^{2}}{64} + \overline{z}\Phi(z) + z\overline{\Phi(z)} + \psi(z) + \overline{\psi(z)} + \Phi_{1}(z) + \overline{\Phi_{1}(z)} - \frac{C_{1}z\overline{z}}{4}$$

where $\Phi(z)$, $\psi(z)$ and $\Phi_1(z)$ are functions holomorphic in the region D of the cross-section satisfying the given boundary conditions.

The average velocity u_m , average temperature T_m , the mixed mean temperature T_M , the heat transfer rate q, the heat transfer coefficient h and the Nusselt number based on the mixed mean temperature are given by

$$Au_{m} = \int_{D} u dA,$$

$$AT_{m} = \int_{D} T dA,$$

$$(1.8) Au_m T_M = \int_D u T dA,$$

$$(1.9) q = (C_3 u_m - C_3) kA,$$

$$(1.10) h = -q/ST_M,$$

where A is the area of the section, D_e is equivalent hydraulic diameter = (4A/S), S is the circumferential length of the section.

Alternating Method of Schwarz.

The region R_{12} can be considered as the intersection of infinite region R_1 bounded by L_1 with finite region R_2 interior to L_2 .

First we write the boundary condition on $(L_1 + L_2)$ as

$$(2) L(\Phi) \Longrightarrow f(t)$$

where L is an operator with the usual meaning.

To obtain the first approximation $\Phi^{(1)}$ to Φ we determine the functions in the region R_1 so that

$$(2.1) L(\Phi^{(1)})|_{L_1} = f|_{L_1}$$

To obtain the second approximation we consider the solution in R_2 such that

(2.2)
$$L(\Phi^{(2)})|_{L_2} = f|_{L_2} - L(\Phi^{(1)})|_{L_2}$$

For the third approximation we determine in the region R_1 the solution satisfying the condition

(2.3)
$$L(\Phi^{(3)})|_{L_1} = f|_{L_1} - L(\Phi^{(3)})|_{L_1}$$

and so on. Then $\Phi = \Phi^{(1)} + \Phi^{(2)} + \Phi^{(3)} + ...$ is the required solution.

Cross-section bounded externally by a Booths' lemniscate and internally a circle.

Let us find the velocity field satisfying the boundary conditions

(2)
$$u=0$$
, on L_2

$$u=u_0. \text{ on } L_1$$

 u_0 is a constant to be determined.

Using (2) and (3) in (1.4) we find

(4)
$$\Phi(t) + \overline{\Phi(t)} = -Ct\overline{t}/16, \text{ on } L_s$$

(5)
$$= -CR^3/16 + C_3u_0/4, \text{ on } L_1$$

 $tt = \bar{R}^2$, on L_1 .

First approximation.

Let $\Phi^{(1)}$ be the first approximation to Φ which is to be determined in the region interior to L_1 satisfying

(6)
$$L(\Phi^{(1)})|_{L_1} = f|_{L_2}$$

354 U. A. SASTRY

The function

(7)
$$z = b\zeta/(1 + m\zeta^2), \quad |m| < 1/2$$

maps the region interior to L_2 onto the unit circle in the ζ -plane. Using (4), (7) in (6) and multiplying the resulting equation by $\frac{1}{2\pi i} \frac{d\sigma}{(\sigma - \zeta)}$ where ζ is a point inside the unit circle we easily find

(8)
$$\Phi_{1}(\zeta) = -Cb^{2}k/32 + Cb^{2}mk\zeta^{2}/16(1+m\zeta^{2})$$

The above equation can also be written in the form

(9)
$$\Phi^{(1)}(z) = -(Ckb^2/32) \sum_{0}^{\infty} c', z^{2n}$$

where $c_n' = c_n \beta^n$, $\beta = (4m/b^2)$

(10)
$$\zeta = (b - \sqrt{b^2 - 4mz^2})/2mz, \quad k = 1/(1 - m^2)$$

Integrating (9) we obtain

(11)
$$\Phi^{(1)}(z) = -(Ckb^2/32) \sum_{n=0}^{\infty} c'_{n}z^{2n+1}/(2n+1)$$

Second approximation.

Let $\Phi^{(1)}$ be the second approximation to Φ which is to be calculated subject to the condition

(12)
$$L(\Phi^{(2)})|_{L_1} = f|_{L_1} - L(\Phi^{(1)})|_{L_2}$$

using (5), (9) in (12) we find

(13)
$$\Phi^{(1)}(t) + \overline{\Phi^{(2)}(t)} = -CR^2/16 + C_2 u_0 4 + (Ckb^2/32) \sum_{n=0}^{\infty} c'_n (t^{2n} + \overline{t}^{2n})$$

since $\Phi^{(2)}$ is holomorphic outside L_1 we may take $\Phi^{(2)}(\infty) = 0$. Multiplying (13) by $dt/2\pi i(t-z)$ where z is a point outside the circle L_1 we obtain after integration

(14)
$$\Phi^{(z)}(z) = (Ckb^{z}/32) \sum_{n=1}^{\infty} c'_{n}R^{4n}/z^{2n}.$$

From the equation (13) we also have

(15)
$$u_0 = C_1(R^2 - kb^2)/4.$$

Integrating (14) we find

(16)
$$\Phi^{(1)}(z) = -(Ckb^2/32) \sum_{1}^{\infty} c'_{n}R^{4n}/(2n-1)z^{2n-1}$$

Using (9) and (14) in (1.4) we find

(17)
$$u = C_1(z\bar{z} - kb^2)/4 - \frac{Ckb^2}{4} \operatorname{Re} \sum_{i=1}^{\infty} c'_n(z^{2n} - R^{4n}/z^{2n}).$$

Let us find the temperature field subject to the boundary conditions

$$(18) T = 0, \text{ on } L_{\bullet}$$

$$(19) T = T_0 \cdot \text{on } L_1$$

 T_0 is a constant to be determined. From (18), (19) and (1.5) we have

(20)
$$\overline{t}\Phi(t) + \overline{t}\overline{\Phi(t)} + \psi(t) + \overline{\psi(t)} + \Phi_1(t) + \overline{\Phi_1(t)} =$$

$$= \frac{C_i t\overline{t}}{4} - \frac{C(t\overline{t})}{64} \text{ on } L_i$$

(21)
$$= \frac{C_0 R^2}{4} - \frac{CR^4}{64} + T_0 \text{ on } L_1$$

First approximation.

Let $\Phi^{(1)}$, $\psi^{(1)}$, $\Phi_1^{(1)}$ be the first approximation to be determined in the region interior to L_2 satisfying

(22)
$$L(\Phi^{(1)}, \psi^{(1)}, \Phi_1^{(1)})^{\dagger} L_2 = f |_{L_2}$$

From (20), (22) we obtain after multiplying the resulting equation by $\frac{1}{2\pi i}\frac{d\sigma}{(\sigma-\zeta)}$ and integrating

(23)
$$\psi^{(1)}(z) + \Phi^{(1)}(z) + = \frac{H}{2}(1 + \sum_{p=0}^{\infty} c'_{p}z^{p}) -$$

$$-\frac{Cb^{4}k^{2}}{256}\left(1+\sum_{0}^{\infty}c'_{p}z^{2p}\right)^{2}-G+Ck\sum_{0}^{\infty}\left(c'_{n}b^{2n+4}/(2n+1)\right)$$

$$\left\{\sum_{p=0}^{\infty}E_{p}Z_{1}^{2(n+p)}+\sum_{p=0}^{\infty}E_{-p}Z_{1}^{2(p-n)}\right\}$$

where

$$z_1 = -\left(b/2m\right) \sum_{j=1}^{\infty} c'_{,j} z^{ij-1}$$

Second appoximation

Let $\Phi^{(2)}$, $\psi^{(2)}$, $\Phi_1^{(2)}$ be the second approximation to Φ , ψ , Φ_1 which is to be determined in the region exterior to L_1 subject to the condition

(24)
$$L(\Phi^{(s)}, \psi^{(s)}, \Phi_1^{(s)})|_{L_1} = f|_{L_1} - L(\Phi^{(1)}, \psi^{(1)}, \Phi_1^{(1)})|_{L_1}$$

Using (21), (23) in (24) and multiplying the resulting equation by $dt/2\pi i(t-z)$, where z is a point outside the circle L_1 and integrating we find

$$(25) \qquad \psi^{(2)}(z) + \Phi_1^{(2)}(z) = (Ckb^2/32) \sum_{1}^{\infty} c'_n 4nR^{4n+2}/(4n^2 - 1)z^{2n}$$

$$- (H/2) \sum_{1}^{\infty} c'_p R^{4p}/z^{2p} + (Cb^4k^2/256)$$

$$\left\{ 2 \sum_{1}^{\infty} c_p R^{4p}/z^{2p} + \left(\sum_{1}^{\infty} c'_p R^{4p}/z^{2p} \right)^2 \right\}$$

$$+ (Ck/32) \sum_{1}^{\infty} c'_n b^{2n+4}/(2n+1) \left\{ \sum_{p=1}^{\infty} E_p (b/2m)^{2(n+p)} z_2^{2(n+p)} + \sum_{p=1}^{\infty} E_{-p} (b/2m)^{2(p-n)} Z_2^{2(p-n)} \right\}$$

where

$$z_2 = \sum_{j=1}^{\infty} c'_{j} R^{2(2j-1)} / z^{2j-1}$$

(26)
$$H = (b^2k/8)(C_3 - Cb^2m^2k/8), G = (H - Cb^4k^2/64 - Ckb^4/2)$$

 T_0 can be determined from (6.23) using the fact that $\psi^{(1)}(\infty) = \Phi_1^{(2)}(\infty) = 0$.

HEAT TRANSFER OF LAMINAR FORCED CONVECTION IN DOUBLY, ETC.

The usual complex torsion function is related to the function $\Phi(z)$ by the relation

$$\Phi(z) = iF(z)$$

writing $C_1 = -2$, $C_2 = 8$, C = -16 we obtain the expression for the torsion function and the torsional rigidity is given by

$$(28) D^* = 2\mu A u_m$$

where

$$(C_2Au_m/4) = 2\pi C \left[\frac{|b^4k^4(1+4m^2+m^4)-R^4|}{64} \right] - \frac{kb^2}{32} |b^2k^2(1+m^2)-R^2|$$

$$-(kb^{3}/32)\left\{\begin{array}{l} \sum\limits_{1}^{\infty}c',b^{2n+3}/(2n+1)\sum\limits_{p=0}^{\infty}\left(\sum\limits_{r=0}^{\infty}(-1)^{r}m^{p+r}(2r+1)C_{p}^{-(2n+1)}\right)+\right.$$

$$(29) + \sum_{1}^{\infty} \frac{c'_{n}R^{4n}}{(2n-1)G^{2n-2}} \sum_{p=0}^{\infty} \left(\sum_{r=0}^{\infty} (-1)^{r}(2r+1)m^{p+r} C_{p}^{-(2n+1)} \right)_{n+r=p}$$

and

(30)
$$A = \pi [k^2 b^2 (1 + m^2) - R^2]$$

The stress components are given by

(31)
$$\frac{X_{r}}{\mu \tau} = \left[\frac{Ckb^{2}}{2} \sum_{n=1}^{\infty} nc'_{n} \right] r^{2n-1} \sin(2n-1)\theta - \frac{R^{4n} \sin(2n+1)\theta}{r^{2n+1}} \left\{ -y \right]$$

(32)
$$\frac{Y_{1}}{\mu \tau} = \left[\frac{Ckb^{2}}{2}, \sum_{1}^{\infty} nc'_{n} \right\} r^{2n-1} \cos((2n-1)\theta) + \frac{R^{4n} \cos((2n+1)\theta)}{r^{2n+1}} + x \right]$$

Writing R=0, in the expressions for the torsional rigidity and the torsion function we obtain known results.

REFERENCES

(1) L. N. TAO, Heat Transfer of Laminar Forced-Convection in indented pipes, Developments in Mechanicics, Vol. 1. Plenum Press. N. Y. (1961).

(2) 1. S. SOKOLNIKOFF, Mathematical theory of Elasticity (1956).